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Motion in a Plane

I n this chapter we shall generalize our discussion of accelerated motion to include

nonlinear motion. For simplicity we shall limit our study to motion in a single plane.

There are many examples of such motion: the trajectory of a baseball, football, or any

other projectile is in a vertical plane, the trajectory of a car rounding a curve is in a hori-

zontal plane, and the trajectory of an earth satellite is in a plane passing through the

center of the earth.

Each of the satellites in this proposed
new satellite network moves in a
plane.The satellites would provide a
worldwide cellular telephone system,
enabling subscribers to be reached
at the same telephone number, no
matter where they travel throughout
the world.

C.HAPTER 3
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The trajectories of cannon balls in
a drawing by Leonardo daVinci.
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Acceleration on a Curved Path
In Chapter 2 acceleration was defined as the rate of change of velocity. For linear
motion, which is restricted to one unchanging direction, this definition implies that
there is nonzero acceleration only when there is a change of speed. For nonlinear
motion, however, the definition implies that there is acceleration even when the speed
is constant, for the following reason: as a particle moves along a curved path, its
velocity vector constantly changes direction. Since there is a change in the direction of
the velocity vector, the particle is accelerated whether its speed changes or not.

In studying linear motion in Chapter 2, we were able to represent any motion as
being either along the x-axis or along the y-axis. With motion in two dimensions, we
need to be concerned with movement in both the x and y directions—in other words,
with movement in the xy plane. We shall obtain an expression for average acceleration
in the xy plane by applying the definition of average acceleration (Eq. 2–3):

–a 
 (average acceleration) (3–1)

In two dimensions, the change in velocity vector �v in general has components �vx

and �vy. The x and y components of the average acceleration vector are therefore the
rates of change of the x and y components of velocity:

–ax 
 (3–2)

–ay 
 (3–3)

As we learned in Chapter 2, the instantaneous acceleration a is the limiting value of the
average acceleration for a time interval approaching zero (Eq. 2–4):

a 
 limit
�t → 0

(instantaneous acceleration) (3–4)

In two dimensions, the instantaneous acceleration has components ax and ay, which are
the respective limits of –ax and –ay for �t approaching zero:

ax 
 limit
�t → 0

(3–5)

ay 
 limit
�t → 0

(3–6)
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If the x and y components of a particle’s acceleration are known functions of time,
we can find expressions for both the particle’s velocity (vx and vy) and its position
(x and y) as functions of time. In other words, we can predict the future motion of the
particle. We shall see an example of this in the following section, for the particularly
simple case of projectile motion.

EXAMPLE 1 Accelerating on a Curve

Fig. 3–1

A car initially is traveling east at a speed of 20.0 m/s. Then,
3.00 s later, having rounded a curve, the car is traveling 30.0°
north of east at a speed of 25.0 m/s. Find the car’s average
acceleration during the 3.00 s interval.

SOLUTION In Fig. 3–1a we have sketched the motion of
the car, with initial velocity v and final velocity v�. The corre-
sponding change in velocity �v � v� � v is indicated in Fig.
3–1b. Our knowns are: v � 20.0 m/s directed east, v� � 25.0
m/s directed 30.0° north of east, and �t � 3.00 s. Our task is
to find –a in terms of v and v�. We shall first find the x and y
components of the car’s average acceleration. Applying Eq.
3–2, we express the x component of acceleration in terms of the
change in the x component of velocity:

–ax � �

From Fig. 3–1b we find

–ax �

�

� 0.550 m/s2

Next we find the y component of acceleration, applying Eq. 3–3
and again using Fig. 3–1b:

–ax � �

�

� 4.17 m/s2

The magnitude and direction of –a are found from its compo-
nents in the usual way. First the magnitude:

�–a� � �–ax� 2����–ay� 2� � �(0�.5�5�0� m�/s�2)�2��� (�4�.1�7� m�/s�2)�2�

� 4.21 m/s2

As indicated in Fig. 3–1c, the vector –a makes an angle � with
the x-axis, where

� � arctan � � � arctan � �
� 82°

The car experiences an average acceleration of 4.21 m/s2 in a
direction 82° north of east. This considerable acceleration is
caused mainly by the change in direction (�vy) rather than by
the change in speed. The same rate of change of speed on a
straight road would produce an acceleration of only (25.0 m/s
� 20.0 m/s)/3.00 s � 1.67 m/s2.
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Fig. 3–2 Projectile motion.

Fig. 3–3 Components of a projectile’s
initial velocity v0.
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Projectile Motion
In Section 2–3 we learned that, in the absence of air resistance, a freely falling object
near the surface of the earth has constant acceleration. Whether an object falls from rest
or is given some vertical initial velocity, the same free-fall equations apply.

Now suppose we attempt to describe the motion of an object that is thrown into
the air with an initial velocity that is not vertically directed. The object is thrown, or
projected, with an initial velocity vector v0 that makes some angle '0 with the hori-
zontal, as in Fig. 3–2.

An experimental fact that was first recognized by Galileo is that any projectile
experiences exactly the same acceleration as a freely falling body does: its acceleration
vector, denoted by g, is a constant vector of magnitude 9.8 m/s2 pointing in the down-
ward direction.* Choosing our coordinate system as in Fig. 3–3, we have ax 
 0,
ay 
 �g, and x0 
 y0 
 0, where x0 and y0 are the coordinates of the original position
of the projectile. Both components of acceleration are constant. In Sections 2–2 and
2–3 we derived equations of motion for constant acceleration in either the x or the y
direction. So we may apply the two sets of equations: Eqs. 2–7 and 2–11 for the x
direction (with ax and x0 set equal to zero) and Eqs. 2–13 through 2–16 for the y direc-
tion (with y0 set equal to zero):

(a) ax 
 0

(b) vx 
 vx0 (3–7)

(c) x 
 vx0t

(a) ay 
 �g

(b) vy 
 vy0 � gt

(c) y 
 (vy0 
 vy)t (3–8)

(d) y 
 vy0t � gt2

(e) vy
2 
 vy0

2 � 2gy

The components of the initial velocity vector, vx0 and vy0, determine the entire motion
of the projectile. In many sports, the skill of an athlete rests on his or her ability to
impart the correct initial velocity to a ball, thereby determining where it will go. In
basketball, for example, once the ball leaves a player’s hand, its value of v0 is fixed and
its motion is thereafter governed by Eqs. 3–7 and 3–8 (as long as its path is unob-
structed). Whether the player makes the basket depends on the value of v0. In football,
the crucial problem for the quarterback trying to complete a pass is to release the ball
at the right time with the right initial velocity, so that it arrives downfield in the hands
of the intended receiver.

*We assume here that air resistance is negligible and that the trajectory of the particle is very small
compared with the radius of the earth.
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EXAMPLE 2 Projecting a Marble Horizontally

A marble rolls along a table at a constant speed of 1.00 m/s and
then falls off the edge of the table to the floor 1.00 m below.
(a) How long does the marble take to reach the floor? (b) At
what horizontal distance from the edge of the table does the
marble land? (c) What is its velocity as it strikes the floor?
(d) Indicate in a diagram the marble’s position and velocity at
0.100 s intervals.

SOLUTION Projectile motion of the marble begins as it
leaves the table (Fig. 3–4). Since the marble is initially moving
horizontally, vy0 � 0 and vx0 � 1.00 m/s. In order to use Eqs. 3–7
and 3–8, we must take the origin to be at the edge of the table,
so that x0 � y0 � 0. (a) This problem can be stated: Find t
when y � �1.00 m. Because vy0 � 0, Eq. 3–8d reduces to

y � � gt2

Solving for t, we find

t � ���2�y/�g� � �(��2�)(���1�.0�0� m�)/�(9�.8�0� m�/s�2)� � 0.452 s

Fig. 3–4

Fig. 3–5

(b) Here we want the marble’s x coordinate at the instant
it strikes the floor; that is, we wish to find x when t � 0.452 s.
Eq. 3–7 gives

x � vx0t � (1.00 m/s)(0.452 s) � 0.452 m

(c) Here we must find v at t � 0.452 s. The x component of
velocity is constant throughout the motion (Eq. 3–7b):

vx � vx0 � 1.00 m/s

We find the y component by using Eq. 3–8b:

vy � vy0 � gt � 0 � (9.80 m/s2)(0.452 s) � �4.43 m/s

Thus the velocity vector has magnitude

v � �v�x
2� �� v�y

2� � �(1�.0�0� m�/s�)2� �� (���4�.4�3� m�/s�)2�
� 4.54 m/s

and is directed at an angle � below the horizontal, where

� � arctan � � � arctan � � � 77.3°

As the marble hits the floor, its velocity is 4.54 m/s directed
77.3° below the horizontal.

(d) The marble’s coordinates and velocity components at times
t � 0, 0.100 s, 0.200 s, 0.300 s, and 0.400 s are obtained by
direct substitution into Eqs. 3–7b and c, and Eqs. 3–8b and d.
The results were used to obtain Fig. 3–5. As illustrated in the
figure, the motion in the x direction is that of a body moving at
constant velocity, while the motion in the y direction is that of
a freely falling body. What we see is the vector sum of these
two effects. Fig. 3–6 shows the motion of a horizontally
projected object.

Fig. 3–6 One ball is released from rest, and at the same instant
the other is given a horizontal initial velocity. Both balls are at the
same elevation at any instant.
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EXAMPLE 3 ThrowingToo High

Fig. 3–7

A quarterback, standing on his opponents’ 35-yard line, throws
a football directly downfield, releasing the ball at a height of
2.00 m above the ground with an initial velocity of 20.0 m/s,
directed 30.0° above the horizontal. (a) How long does it take
for the ball to cross the goal line, 32.0 m (35 yards) from the
point of release? (b) The ball is thrown too hard and so passes
over the head of the intended receiver at the goal line. What is
the ball’s height above the ground as it crosses the goal line?

SOLUTION To better visualize the situation described here,
we first sketch the trajectory (Fig. 3–7):

(a) The problem here is to find t when x � 32.0 m. We can use
Eq. 3–7c (x � vx0t), if we first find vx0. From Fig. 3–7 we see
that

vx0 � v0 cos �0 � (20.0 m/s)(cos 30.0°)

� 17.3 m/s

Now we apply Eq. 3–7c and solve for t.

x � vx0t

t � � � 1.85 s

(b) We want to find y when x � 32.0 m, or, since we have
already found the time in part (a), we can state this: find y
when t � 1.85 s. We apply Eq. 3–7d:

y � vy0t � gt2

where

vy0 � v0 sin �0 � (20.0 m/s)(sin 30.0°)

� 10.0 m/s

Thus

y � (10.0 m/s)(1.85 s) � (9.80 m/s2)(1.85 s)2

� 1.73 m

Since y � 0 is 2.00 m above the ground, this means the ball is
3.73 m above the ground as it crosses the goal line—much too
high to be caught at that point.

1
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�
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32.0 m
�
17.3 m/s

x
�
vx0
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Fig. 3–8 The range of a projectile.

Although Eqs. 3–7 and 3–8 are sufficient to solve any problem in projectile motion,
it is sometimes convenient to have other formulas indicating various aspects of the
projectile’s path. We shall find an expression for a projectile’s horizontal range R, the
horizontal distance traveled by the projectile before returning to its initial elevation
(y 
 0), illustrated in Fig. 3–8. And we shall find an expression for the time tR the
projectile takes to travel the distance R. We can find the time tR at which the projectile
returns to its initial elevation using Eq. 3–8d, setting y 
 0.

y 
 0 
 vy0t � gt2

The nonzero solution to this equation is the time tR:

tR 
 (3–9)

We can obtain an expression for the horizontal range by applying Eq. 3–7c.

x 
 vx0t

Setting x 
 R when t 
 tR and using Eq. 3–9 for tR, we find

R 
 vx0� �
Next we substitute

vx0 
 v0 cos '0 and vy 0 
 v0 sin '0

to obtain

R 


We can use the trigonometric identity sin 2'0 
 2 sin '0 cos '0 to express this result
more concisely:

R 
 (3–10)

The dependence of R on v0
2 shows that a doubling of v0 quadruples the range. For

example, if a ball is thrown a distance of 20 m, doubling the initial speed will increase
the range to 80 m. For a fixed value of v0, R will be maximum at an angle '0 
 45�, for
which sin 2'0 
 sin 90� 
 1.

v0
2 sin 2'0

**
g

2v0
2 sin '0 cos '0

**
g

2vy0
*

g

2vy0
*

g

1
*
2

Fig. 3–9 Water is projected from two
tubes at the same speed—from one at
an angle of 30� and from the other at
60�.Why are the ranges equal?



Fig. 3–10 Parabolic paths of projectiles.
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The trajectory equation describes the path of a projectile by relating its x and y coor-
dinates. We derive this equation by solving Eq. 3–7c for t to obtain t 
 x/vx0 and then
substituting this expression for t into Eq. 3–8d:

y 
 vy 0t � gt2


 vy 0� � � g� �
2

From Fig. 3–3 we see that vy0/vx0 
 tan '0. Substituting into the equation above, we
obtain

y 
 (tan '0)x � � �x2 (3–11)

This equation has the form y 
 ax 
 bx2, the general equation for a parabola. Thus a
projectile has a parabolic trajectory (Fig. 3–10).
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EXAMPLE 4 Snowball Strategy

A clever strategy in a snowball fight is to throw two snowballs
at your opponent in quick succession, the first one with a high
trajectory and the second one with a lower trajectory and
shorter time of flight, so that they both reach the target at the
same instant. Suppose your opponent is 20.0 m away. You
throw both snowballs with the same initial speed v0, but �0 is
60.0° for the first snowball and 30.0° for the second. If they are
both to reach their target at the same instant, how much time
must elapse between the release of the two snowballs?

SOLUTION We need to find the time of flight for each
snowball. The time tR is determined by vy 0, the vertical compo-
nent of initial velocity, according to Eq. 3–9:

tR � �

To find tR, we need to know, in addition to the initial angle �0 (a
given), the initial speed v0, which is not given. We can find v0 by
applying the range equation (Eq. 3–10):

R �

Solving for v0, we obtain

v0 � ��
We obtain the same value for v0 whether we use �0 � 30.0° or
�0 � 60.0°, since sin 2(30.0°) � sin 2(60.0°):

v0 � ��� � 15.0 m/s

Now we can apply Eq. 3–9 and find tR for each snowball.

tR � �

For the first snowball,

tR � � 2.65 s

For the second snowball,

t�R � � 1.53 s

Thus you should wait a time �t before making your second
throw, where �t is the difference in the times of flight:

�t � tR � t�R � 2.65 s � 1.53 s � 1.12 s

2v0 sin �0
��

g
2vy0
�

g

Rg
�
sin 2�0

2(15.0 m/s)(sin 30.0°)
���

9.80 m/s2

2(15.0 m/s)(sin 60.0°)
���

9.80 m/s2

(20.0 m)(9.80 m/s2)
���

sin 60.0°

v0
2 sin 2�0

��
g
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��
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Fig. 3–12 A particle moving along a
circular path at constant speed has a
velocity v that changes direction.The
velocity change �v from one position
to the next is constructed in the figure.
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Circular Motion
A particle moving along a circular path at constant speed is said to undergo uniform
circular motion. Fig. 3–12 shows the position and the velocity vector at selected
points for a particle moving in this way. The dots are equally spaced and the velocity
vectors are of uniform length, indicating that the speed is constant. However, the fact
that v changes direction as the particle moves along the circle implies that there is
nonzero acceleration. The change in v from one point to the next is a vector, �v,
pointing toward the inside of the curve, as indicated in Fig. 3–12. The particle’s path
is bending inward, and therefore its acceleration is inward.

Next we shall determine the direction and magnitude of the instantaneous acceler-
ation of a particle in uniform circular motion, using Fig. 3–13. Fig. 3–13a shows the
particle’s velocity vector drawn tangent to the trajectory at two points P and P�. The
particle moves from P to P� along an arc of length �s over a time interval �t, and the
velocity vector changes from v to v� � v � �v during this time. The triangle formed
by vectors v, v�, and �v is constructed in the figure. We see that vector �v is in the
same direction as a line from the center of the arc �s to point O at the center of the
circle. The particle’s average acceleration –a 
 �v/�t is a vector proportional to �v,
and so it points in the same direction as �v.

3–3

EXAMPLE 5 Shooting With the RightVelocity

A basketball player shoots the ball at a hoop 3.00 m above the
floor from a horizontal distance of 6.00 m from the center of the
hoop. The ball leaves the player’s hand 2.00 m above the floor
at an angle of 45.0° with the horizontal. With what initial speed
must the ball be shot in order to hit the center of the basket,
without hitting the rim or backboard?

SOLUTION First we sketch the motion (Fig. 3–11). Once
again we must take the origin to be at the initial position of the
ball because the equations describing projectile motion were
derived on the assumption x0 � y0 � 0. Our problem is to find
v0 such that y � 1.00 m when x � 6.00 m. We use the trajec-
tory equation (Eq. 3–11) because it relates v0 to quantities that
are given:

y � (tan �0)x �

Substituting vx0 � v0 cos �0, we have

1.00 m � (tan 45.0°)(6.00 m) �

Solving for v0, we find

v0 � 8.40 m/s

Through experience a good shooter knows how to give the ball
just this initial speed.

Fig. 3–11

gx2

�
2vx0

2

(9.80 m/s2)(6.00 m)2

���
2v0

2 cos2 45.0°
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In Fig. 3–13b �v is constructed for a shorter time interval �t. Again vectors �v and
–a are directed toward the center of the circle. Because �t is shorter, this second figure
shows a smaller change in velocity, �v. However, the vector –a 
 �v/�t has slightly
greater magnitude than in the first figure. As the time interval �t approaches zero, �v
also approaches zero, but the ratio �v/�t approaches as a limit the instantaneous
acceleration a, shown in Fig. 3–13c. Notice that a is directed toward the center of the
circle, perpendicular to v.

Next we wish to find an expression for the magnitude of a. In Fig. 3–13a the angle
' between the equal length vectors v and v� is the same as the angle ' between the two
equal length lines OP and OP�, since v is perpendicular to OP and v� is perpendicular
to OP�. (Remember that the velocity vector is always tangent to the trajectory and
therefore is always perpendicular to the radius of the circle.) This means that the
triangle formed by the velocity vectors is geometrically similar to the triangle OPP�.
Therefore ratios of corresponding sides of these two triangles are equal. For very short
time intervals, the length of line PP� is approximately equal to the arc length �s. Thus

	

Multiplying both sides of this equation by v/�t, we obtain

	

As �t approaches 0, the equation becomes exact and �s/�t approaches v, the instan-
taneous speed. Thus the limiting value of �v/�t, the magnitude of the instantaneous
acceleration a, is given by

a 
 (uniform circular motion) (3–12)

Fig. 3–13 (a) A particle’s velocity change �v and average acceleration –a are constructed
for some time interval �t. (b) �v and –a are constructed for a shorter time interval.
(c) Instantaneous acceleration, a.
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Fig. 3–14 Centripetal acceleration a
is at any instant directed toward the
center of the circular path, perpendicular
to velocity v.

Fig. 3–15 A rock swung overhead from
a string moves along a circular path.
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In Fig. 3–14 the illustration of Fig. 3–12 is repeated, this time with the acceleration
vectors drawn in. The acceleration vector always points from the instantaneous posi-
tion of the particle to the center of the circle. The term centripetal acceleration is used
to describe a. “Centripetal” means ‘directed toward the center’.

Note that although the magnitude of a is constant for uniform circular motion, the
acceleration vector is not constant; it continuously changes direction—that direction
always being toward the center of the circle.

As a physical example of uniform circular motion, suppose a rock is attached to a
string and swung horizontally overhead along a circular path at a constant rate. The
rock experiences centripetal acceleration; its acceleration vector points inward along
the string (Fig. 3–15). We shall see in Chapter 4 that a force is required to produce an
acceleration. The string maintains the circular path and its associated inward acceler-
ation by exerting an inward pull (a force) on the rock. The greater the speed of the
rock, the greater the acceleration and the greater the force provided by the string. A
person swinging a rock in this way must pull harder on the string as the speed is
increased. If at some instant the string is released, the rock will fly off tangent to the
circle, in the direction of its instantaneous velocity.

The effect of acceleration is felt by passengers in a car making a sharp turn.
Suppose that a car moves at a speed of 10 m/s around a curve of radius 20 m. The car’s
centripetal acceleration v2/r 
 (10 m/s)2/20 m
 5 m/s2, or approximately 0.5 g. Such
a turn would cause a passenger to move relative to the car until something (perhaps the
door) can provide a strong enough force to compel the passenger to follow the circular
path. This force is directed inward, toward the center of the circle, that is, in the
direction of the centripetal acceleration.

It is possible for a projectile to have a circular trajectory. If the initial velocity of a
projectile is very large, so that its trajectory is not very small relative to the size of the
earth, the description of projectile motion in Section 3.2 is no longer valid. If the initial
velocity is great enough (on the order of thousands of meters per second), the projectile
may become a satellite orbiting the earth (Fig. 3–16). For the special case of a circular
orbit (achieved by giving the satellite just the right initial velocity), the satellite’s speed
is constant and its motion is uniform and circular. In this case the centripetal acceler-
ation is equal to gravitational acceleration. This means that if a satellite could orbit the
earth at an elevation of only a few kilometers above the surface, its centripetal accel-
eration would be 9.8 m/s2, directed toward the center of the earth. Air resistance
precludes such a low orbit, however. At a more realistic elevation of 200 km, a satel-
lite would experience a centripetal acceleration of 9.2 m/s2, the same acceleration that
would be experienced by a body released from rest at this altitude (see Problem 26).

Fig. 3–16 In this drawing from the Principia,
Newton showed how a particle projected hori-
zontally from a high elevation might be given an
initial velocity great enough to orbit the earth.
For smaller values of v0 the paths (D and E) are
approximately parabolic, but if v0 is sufficiently
great, the particle falls around the earth, rather than
into it. Thus Newton anticipated artificial satellites
over 300 years ago.



753–3 Circular Motion

EXAMPLE 6 Swinging an Arm

Extend your arm straight up overhead and then swing it in a
vertical plane, so that your hand follows a circular path. If you
rotate your arm as fast as possible, you should be able to
achieve a rate of 2.0 revolutions per second. Compute the accel-
eration of the blood in your fingertips at this rate, assuming
your arm is 65 cm long.

SOLUTION As indicated in Fig. 3–17, the acceleration
vector is directed toward the center of the circle, which is at
your shoulder joint. The magnitude of the acceleration is given
by Eq. 3–12.

a �

To use this equation, we must know the speed v. We compute v
by dividing the path length for one revolution (2�r, the circum-
ference of the circle) by the time for one revolution, called the
period and denoted by T:

v �

Since the rate of rotation is 2.0 rev/s, the period T � 0.50 s.
Combining the two preceding expressions, we obtain

a � �

� � 100 m/s2

This is approximately10 g. Such an acceleration is quite painful.

Fig. 3–17
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Fig. 3–18 A car moves relative to the
earth, and the earth moves relative to
the car.
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Reference Frames and Relative Motion
We shall sometimes refer to a coordinate system used in the description of motion as
a “reference frame.” It is not hard to imagine yourself standing at the origin of a
reference frame and viewing a moving body.

Since we are earthbound, it is always tempting to think of the earth as stationary and
to describe any motion from the earth’s reference frame, that is, from a set of coordi-
nate axes fixed with respect to the surface of the earth.* However, there is no funda-
mental reason to give this reference frame a uniquely privileged status. The earth
moves relative to other bodies. Suppose, for example, you are in a moving car or train.
As you look out the window, you see passing trees and buildings. Relative to you, these
objects are moving. Indeed, the entire earth is moving relative to you (Fig. 3–18).

We shall often find it convenient to describe the motion of a body from a reference
frame that is moving relative to the earth. For example, a moving plane or train serves
as a natural reference frame for describing the motion of passengers inside.

It is sometimes useful to be able to go from one reference frame to another, that is,
to have transformation equations that allow us to relate descriptions of motion in two
different reference frames. Such relationships are of practical importance to an airplane
pilot, for example. The pilot is obviously interested in the plane’s motion relative to the
earth. But the plane is moving relative to the air, and so, when determining the plane’s
position, the pilot must know how to compensate for the velocity of the air relative to
the earth. We shall now derive the equations relating the relative motion of three
bodies (earth, air, and plane in our example). Each of the three arbitrary moving
bodies, labeled A, B, and C, are treated on equal footing. Each body moves relative to
the other two.

Relative displacement is a displacement vector directed from one body to another.
Let DAB denote the displacement of A relative to B, that is, the displacement vector
required to go from the position of B to the position of A (Fig. 3–19a). Using this nota-
tion, DAC denotes the displacement of A relative to C, and DCB denotes the displacement
of C relative to B. These relative displacement vectors are related to each other. From
Fig. 3–19b we see that vectors DAB, DAC, and DCB form a vector addition triangle, with
DAB equal to the vector sum of the other two vectors:

DAB � DAC � DCB (3–13)

Fig. 3–19 (a) The displacement DAB of A relative to B is a vector directed from B to A.
(b) The relative displacements of any three bodies are related by a vector addition triangle.

*Historically, this led to the view that the earth was the center of the universe—the geocentric theory advo-
cated by Aristotle.
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Fig. 3–20 The displacement of B
relative to A (DBA) is a vector equal in
magnitude but opposite in direction to
the displacement of A relative to B (DAB).

773–4 Reference Frames and Relative Motion

As the bodies move, these relative displacement vectors change. The change in
relative displacement per unit time is called relative velocity. The changes in
relative displacement vectors are related in the same way as the relative displacements
at any instant:

�DAB � �DAC � �DCB

Dividing by the time interval �t during which the displacement occurs, we obtain


 


Taking the limit of this expression as �t approaches zero, we obtain a relationship
between the relative velocity vectors vAB, vAC, vCB, each of which describes the velocity
of one body relative to another:

vAB � vAC � vCB (3–14)

This expression tells us that the velocity of A relative to B is the vector sum of the
velocity of A relative to C and the velocity of C relative to B. The significant point to
note about this equation is the relationship between the subscripts. (We may want to
use subscripts other than A, B, and C to denote the bodies in relative motion, and we
can, just as long as we always maintain the same relationship between subscripts.) The
first subscript on the left side of the equation (A) is the same as the first subscript on
the right side. The last subscript on the left side (B) is the same as the last subscript on
the right side. The second and third subscripts on the right side are the same (C).
Following this rule, we could write, for example, vXZ � vXY � vYZ.

Sometimes it is useful to relate vAB, the velocity of A relative to B, to vBA, the
velocity of B relative to A. From Fig. 3–20 we see that

DBA � �DAB

and the change in relative displacement is given by

�DBA 
 ��DAB

Dividing by �t, we have




Taking the limit as �t approaches zero, we obtain a second useful relationship between
relative velocities:

vBA � –vAB (3–15)

Thus each vector is the negative of the other; the relative velocity vectors have equal
magnitudes but are oppositely directed. For example, if A is moving east at 20 m/s rela-
tive to B, then B is moving west at 20 m/s relative to A.

Application of the equations of relative motion requires only a careful labeling of
the subscripts corresponding to the bodies and simple vector addition.

�DBA
*

�t

��DAB
*

�t

�DAB
*

�t

�DAC
*

�t

�DCB
*

�t



EXAMPLE 7 Navigating a Plane in a Crosswind

A pilot flying with an airspeed of 325 km/h wishes to fly due
north in a 70.0 km/h wind blowing from east to west. In what
direction should she head, and what is her speed relative to
the earth?

SOLUTION First we assign a letter to each body: E, earth;
P, plane; and A, air. Next we express the given information in
terms of the relative velocity vectors:

vAE � 70.0 km/h, west
�vPA

� � 325 km/h
vPE is directed north

In this problem, we have been given one vector completely,
only the magnitude of the second vector, and only the direction
of the third vector. Our task is to find the direction of the second
vector and the magnitude of the third. Using the relationship
described in Eq. 3–14, we have

vPE � vPA � vAE

Fig. 3–21 Velocity vPE is the vector sum of vectors vPA and vAE.

We can now use the vector triangle corresponding to this equa-
tion (Fig. 3–21) to obtain the desired information:

� � arcsin � �
� arcsin � �
� 12.4°

vPE � �v�PA�2��� v�AE�2� � �(3�2�5� k�m�/h�)2� �� (�7�0�.0� k�m�/h�)2�

� 317 km/h

To have her velocity relative to the earth directed north, the pilot
must point the plane 12.4° east of north. The resulting speed
relative to the ground has been reduced to 317 km/h. Fig. 3–22
indicates the position of the plane as seen from the earth at three
successive instants.

Fig. 3–22

70.0
�
325

vAE

�
vPA
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EXAMPLE 8 Walking on a Moving Sidewalk

Fig. 3–23

An airline passenger late for a flight walks on an airport
“moving sidewalk” at a speed of 5.00 km/h relative to the side-
walk, in the direction of its motion. The sidewalk is moving at
3.00 km/h relative to the ground and has a total length of135 m.
(a) What is the passenger’s speed relative to the ground?
(b) How long does it take him to reach the end of the sidewalk?
(c) How much of the sidewalk has he covered by the time he
reaches the end?

SOLUTION The situation is sketched in Fig. 3–23a. We
assign a letter to each body in relative motion: P, passenger;
S, sidewalk; G, ground. The relative velocities vPS and vSG

are given:

vPS �� 5.00 km/h, to the right

vSG �� 3.00 km/h, to the right

(a) Here we must find the magnitude of the vector vPG , given
the magnitude and direction of two other vectors. We find the
velocity vPG by using Eq. 3–14:

vPG �� vPS � vSG

Here the vectors are parallel, and so the vector addition is quite
simple (Fig. 3–23b). We add vectors by adding magnitudes:

vPG � vPS � vSG

� 5.00 km/h � 3.00 km/h

� 8.00 km/h

(b) The length of the sidewalk is 135 m, and so this is the
distance �xG the passenger travels relative to the ground. So our
problem is to find �t when �xG � 135 m. The rate at which this
distance along the ground is covered by the passenger is vPG,
where

vPG �

Therefore

�t � �

8.00 km/h� �
� 60.8 s

(c) The problem here is to determine how much of the side-
walk’s surface the passenger moves over. If he were standing
still and not walking along the surface, he would cover none of
it. Because he is moving relative to the surface at velocity vPS,
he does move some distance �xS relative to the surface. The
problem is to find �xS when �t � 60.8 s, since we found in
part (b) that this is the time interval during which he is on
the moving sidewalk. His velocity relative to the sidewalk is
vPS � �xS/�t, and so

�xs � vPS �t

� (5.00 km/h)� �(60.8 s)

� 84.4 m

135 m
���

1.00 m/s
��
3.60 km/h

1.00 m/s
��
3.60 km/h

�xG

�
vPG

�xG

�
�t
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EXAMPLE 9 Running in the Rain

Fig. 3–24

Rain is falling vertically at a speed of 20.0 m/s. A woman runs
through the rain at a speed of 5.00 m/s. (a) What is the velocity
of the rain relative to the woman? (b) How far in front of her
would an umbrella have to extend to keep the rain off if she
holds the umbrella 1.50 m above her feet?

SOLUTION (a) We assign the following letters: W, woman;
R, rain; and E, earth. We are given the relative velocities vRE and
vWE, which are drawn in Fig. 3–24a. We want to find the relative
velocity vRW. Following the usual rule, we obtain an expression
for vRW:

vRW � vRE � vEW

To perform the vector addition, we must first find the velocity
vEW, which is not given. But vEW is the negative of vWE, which is
given. Performing the vector addition, we obtain the diagram
shown in Fig. 3–24b. From the figure we find

vRW � �v�RE�2��� v�EW�2� � �(2�0�.0� m�/s�)2� �� (�5�.0�0� m�/s�)2�

� 20.6 m/s

and

� � arctan � � � arctan � �
� 14.0°

(b) The rain as seen by the running woman is shown in Fig.
3–24c. From the figure we see that the distance d the umbrella
must extend is

d � (1.50 m)(tan 14.0°)

� 0.375 m

� 37.5 cm

5.00 m/s
�
20.0 m/s

vEW

�
vRE
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1 Is an object moving along a curved path necessarily
accelerated?

2 If an object moves along a linear path, is its acceleration
necessarily zero?

3 If your speedometer reading is constant, does this neces-
sarily mean your car is not accelerating?

4 The initial speed with which a ball is thrown is doubled,
with the angle of projection fixed. Is the maximum
height to which the ball rises doubled?

5 A person running away from you at a speed of 3 m/s
throws a ball vertically upward (as seen by him), the ball
leaving his hand with an initial velocity of 4 m/s (relative
to him). What is the speed of the ball relative to you?

6 When riding a bicycle, is the force of the air resistance
greater when riding with the wind or against the wind?
Explain.

7 Would you expect a typical trajectory of a Ping-Pong
ball to be a parabola? Explain.

8 While driving a car around a curve, an observer sees a
road sign. Is the road sign moving with respect to the
car? Is it accelerated with respect to the car?

Answers to Odd-Numbered Questions
1 yes; 3 no; 5 5 m/s; 7 no

Questions

For motion in a plane, average acceleration –a, defined as
�v/�t, has Cartesian components

–ax 
 and –ay 


whereas instantaneous acceleration a, defined as

a 
 limit
�t → 0

has components

ax 
 limit
�t → 0

and ay 
 limit
�t → 0

In the absence of air resistance, the motion of a projec-
tile over a limited region near the earth’s surface is
described by the following equations for the projectile’s x
and y coordinates, and its velocity components vx and vy:

ax 
 0 ay 
 �g

vx 
 vx0 vy 
 vy 0 � gt

x 
 vx0t y 
 (vy 0 
 vy)t

y 
 vy 0 t � gt 2

vy
2 
 vy 0

2 � 2gy

The x and y coordinates of a projectile are related at any
instant by the equation

y 
 (tan '0)x � � �x2

The range R of a projectile is the horizontal distance it
travels before falling to its original elevation and is given by

R 


A projectile travels the distance R in time

tR 


When a particle moves along a circular path of radius r
at constant speed v, its acceleration, called centripetal accel-
eration, is directed toward the center of the circle and has
magnitude

a 


Relative velocity vectors are related by the equations

vAB � vAC � vCB

vBA � �vAB

v2

*
r

2vy0**
g

v0
2 sin 2'0****

g

g
*
2vx 0

2

1
*
2

1
*
2

�vy
*
�t

�vx
*
�t

�v
*
�t

�vy*
�t

�vx*
�t
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Acceleration on a Curved Path

Average acceleration

1 A cyclist is initially traveling north, then turns 90.0�

and moves west at the same speed. Find the direction of
the cyclist’s average acceleration.

2 A halfback is initially running south at a speed of
10.0 m/s, quickly cuts to his right, and 0.500 s later is
running 60.08 west of south at 10.0 m/s. Find his
average acceleration.

3 A pilot claims to have seen a UFO moving initially at a
speed of about 440 m/s in an easterly direction and then,
in a time interval of only 1.0 s, turning 45� and moving
southeast at 440 m/s. Compute the UFO’s average accel-
eration during the turn.

4 A particle is initially moving along the positive x-axis at
a speed of 10.0 m/s. After 2.00 s, the particle is moving
along the negative y-axis at a speed of 5.00 m/s. Find the
x and y components of the particle’s acceleration.

5 The initial and final velocities of a particle are shown in
Fig. 3–25. Find the particle’s average acceleration if the
change in velocity takes place in a 10.0 s interval.

Fig. 3–25

Instantaneous acceleration

6 An aircraft initially flying north at 225 m/s turns toward
the east and 0.100 s later is flying 0.0400� east of north
at the same speed. Estimate the aircraft’s instantaneous
acceleration.

7 A baseball has a velocity of 44.0 m/s (98.4 mi/h), directed
horizontally, as it is released by a pitcher. The ball’s velo -
city 0.0100 s before it is released is 42.0 m/s, directed
3.00� above the horizontal. Estimate the ball’s instanta-
neous acceleration just before it is released.

8 A child on a Ferris wheel is moving vertically upward at
5.00 m/s at one instant, and 0.100 s later is moving at
5.00 m/s at an angle of 86.0� above the horizontal. Esti-
mate the child’s instantaneous acceleration.

Projectile Motion

9 A water pistol aimed horizontally projects a stream of
water with an initial speed of 5.00 m/s.
(a) How far does the water drop in moving 1.00 m hori-

zontally?
(b) How far does it travel before dropping a vertical

distance of 1.00 cm?
10 A beam of electrons in a television tube moves hori-

zontally with a velocity of 1.00 � 107 m/s. How far will
the electrons drop as they travel a horizontal distance of
20.0 cm?

11 Standing on a balcony, you throw your keys to a friend
standing on the ground below. One second after you
release the keys, they have an instantaneous velocity of
13.9 m/s, directed 45� below the horizontal. What initial
velocity did you give them?

12 A baseball pitcher throws a pitch with an initial velocity
of 44.0 m/s, directed horizontally. How far does the ball
drop vertically by the time it crosses the plate 18.0 m
away?

13 An archer wishes to shoot an arrow at a target at eye
level a distance of 50.0 m away. If the initial speed
imparted to the arrow is 70.0 m/s, what angle should the
arrow make with the horizontal as it is being shot?

14 A fox fleeing from a hunter encounters a 0.800 m tall
fence and attempts to jump it. The fox jumps with an
initial velocity of 7.00 m/s at an angle of 45.0�, begin-
ning the jump 2.00 m from the fence. By how much
does the fox clear the fence? Treat the fox as a particle.

3–2

3–1
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*15 The object of the long jump is to launch oneself as a
projectile and attain the maximum horizontal range
(Fig. 3–26). Here we shall treat the long jumper as a
particle even though the human body is fairly large
compared to the size of the trajectory. Actually there is
one point within the athlete’s body, called the “center of
mass” (to be studied in Chapter 5), that behaves as a
projected particle. Our analysis of projectile motion
implies that the long jumper should try to maximize v0

and take off at an angle as close to 45.0� as possible.
However, it is easier to get a large value of vx0 (by a
running start) than it is to get a large value of vy 0; conse-
quently '0 is usually much less than 45.0�. Suppose the
jumper takes off with vx0 
 9.00 m/s and jumps with a
value of vy0 sufficient to reach a vertical height of 1.00 m.
Find v0, '0, and the horizontal range. The world record,
as of 1994, is 8.95 m.

Fig. 3–26

16 Suppose that a world-class long jumper jumped on the
moon with the same initial velocity as that which
produced a world record of 8.95 m on earth. What
would be the lunar record for the long jump? Gravita-
tional acceleration on the moon is 1.67 m/s2.

17 In an article on the use of the sling as a weapon (Korf-
mann M: Sci Am 229:34, Oct. 1973), the author states
that a skilled slinger can sling a rock a distance of about
400 m. What is the minimum speed the rock must have,
when it leaves the sling, to travel exactly 400 m?

*18 Prove the following:
(a) The maximum height of a projectile equals vy0

2/2g.
(b) The time it takes a projectile to reach its maximum

height equals vy0/g.
(c) The time it takes a projectile to descend from its

maximum height to its original elevation is the same
as the time to ascend, vy0/g.

(d) The y component of velocity is reversed when a pro -
jectile descends to its original elevation: vy 
 �vy0.

19 A football is kicked 60.0 meters. If the ball is in the air
5.00 s, with what initial velocity was it kicked?

20 A baseball player hits a home run over the left-field
fence, which is 104 m from home plate. The ball is hit at
a point 1.00 m directly above home plate, with an initial
velocity directed 30.0� above the horizontal. By what
distance does the baseball clear the 3.00 m high fence, if
it passes over it 3.00 s after being hit?

Circular Motion

21 A runner moving at a constant speed of 10.0 m/s rounds
a curve of radius 5.00 m. Compute the acceleration of
the runner. Are these numbers realistic?

22 A large merry-go-round completes one revolution every
10.0 s. Compute the acceleration of a child seated on it,
a distance of 6.00 m from its center.

23 In Problem 17, the initial velocity of the rock is pro duced
by rotating the sling in a circle. What rate of rotation, in
rev/s, is necessary to give the rock the required speed?
Take the radius of the circle to be 1.50 m.

24 A certain centrifuge produces a centripetal acceleration
of magnitude exactly 1000g at a point 10.0 cm from the
axis of rotation. Find the number of revolutions per
second.

25 Find the speed of a lunar orbiter in a circular orbit that is
just above the surface of the moon, given that the orbi -
ter’s acceleration is equal to the moon’s gravitational
acceleration of 1.67 m/s2. The radius of the moon is
1.74 � 106 m.

26 An artificial earth satellite has a circular orbit of radius
6.50 � 106 m (which means it is orbiting approximately
130 km above the surface of the earth) in an equatorial
plane. The period T (the time required for one complete
orbit) is 5.22 � 103 s (about 1.5 h).
(a) Compute the (constant) speed of the satellite.
(b) If the satellite is directly above the equator and trav-

eling east at time t, find the average acceleration
during the time interval from t to t 
 T/40.0.

(c) Find the satellite’s instantaneous acceleration at
time t.

3–3
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Reference Frames and Relative Motion

27 Two cars, A and B, travel in the same direction on a
straight section of highway. A has a speed of 70.0 km/h,
and B a speed of 90.0 km/h (both relative to the earth).
(a) What is the speed of B relative to A?
(b) If A is initially 400 m in front of B, how long will it

take for B to reach A?
28 A plane is headed due west with an air speed of 225

m/s. The wind blows south at 20.0 m/s. Find the velocity
of the plane relative to the earth.

29 A plane is headed east with an air speed of 250.0 m/s.
The wind blows southeast at 40.0 m/s. Find the velocity
of the plane relative to the earth.

30 A man observes snow falling vertically when he is at
rest, but when he runs through the falling snow at a
speed of 6.00 m/s, it appears to be falling at an angle of
30.0� relative to the vertical. Find the speed of the snow
relative to the earth.

*31 You are driving your car with a velocity of 20.0 m/s,
north, approaching an intersection. Another car ap -
proaches the intersection with a velocity of 25.0 m/s,
west (Fig. 3–27).
(a) Find the velocity of the other car relative to you.
(b) The cars are initially each 100.0 m from the inter-

section. Sketch the path of the other car as you see it.

Fig. 3–27

32 A man can row a boat at a speed of 6.00 km/h in still
water. If he is crossing a river where the current is 3.00
km/h, in what direction should his boat be headed if he
wants to reach a point directly opposite his starting point?

*33 A river 100.0 m wide flows toward the south at 33.3
m/min. A girl on the west bank wishes to reach the east
bank in the least possible time. She can swim 100.0 m
in still water in 1.00 min.
(a) How long does it take her to cross the river?
(b) How far downstream does she travel?
(c) What is her velocity relative to land?
(d) What is the total distance she travels?
(e) In what direction must she swim if she wishes to

travel straight across the river?

Additional Problems
*34 In the game of darts, the player stands with feet behind

a line 2.36 m from a dartboard, with the bull’s-eye at eye
level. Suppose you lean across the line, release a dart at
eye level 1.80 m from the board, and hit the bull’s-eye
(Fig. 3–28). Find the initial velocity of the dart, if the
maximum height of its trajectory is 1.00 cm above eye
level.

Fig. 3–28

3–4
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**35 A football is to be thrown by a quarterback to a receiver
who is running at a constant velocity of 10.0 m/s directly
away from the quarterback, who intends for the ball to
be caught a distance of 40.0 m away. At what distance
should the receiver be from the quarterback when the
ball is released? Assume the football is thrown at an
initial angle of 45.0� and that it is caught at the same
height at which it is released.

36 A particle requires 4.00 s to complete a circular path of
radius 20.0 m. At t 
 0, the particle is moving east and
has instantaneous acceleration directed south. Find the
particle’s average acceleration from t 
 0 to (a) t 


4.00 s; (b) t 
 2.00 s; (c) t 
 1.00 s. (d) Find the
magnitude of its instantaneous acceleration at t 
 0.

*37 In the shot put, a heavy lead weight—the “shot”—
is given an initial velocity, starting from an initial eleva-
tion approximately equal to the shot putter’s height, say,
1.90 m. If v0 
 8.00 m/s, find the horizontal distance
traveled by the shot for (a) '0 
 0�; (b) '0 
 40.0�;
(c) '0 
 45.0�.

*38 A tennis ball is struck at the base line of the court,
12.0 m from the net. The ball is given an initial velocity
with a horizontal component equal to 24.0 m/s at an
initial elevation of 1.00 m.
(a) What vertical component of initial velocity must be

given to the ball, such that it barely clears the 1.00 m
high net?

(b) How far beyond the net will the ball hit the ground?
39 The sun travels about the center of our galaxy in a nearly

circular orbit of radius 2.5 � 1017 km in a period of
about 2.0 � 108 years. Compute the magnitudes of the
velocity and acceleration of the sun relative to the center
of the galaxy.

*40 The moon travels about the earth at uniform speed in a
nearly circular orbit of radius 3.8 � 105 km in a period of
about 27 days. The earth travels about the sun at uniform
speed in a circular orbit of radius 1.5 � 108 km in a
period of about 365 days. Compute the magnitudes of
the velocity and acceleration of (a) the moon relative to
the earth and (b) the earth relative to the sun. (c) What
is the maximum acceleration of the moon relative to
the sun, and during what phase of the moon does this
occur? The orbits of the moon and earth are very nearly
coplanar.

*41 The earth is approximately a sphere of radius 6.37 � 103

km. A particle P at rest on the surface of the earth at
40.0� north latitude moves in a circular path as the earth
rotates on its axis (Fig. 3–29). Compute the magnitudes
of the particle’s velocity and acceleration relative to the
center of the earth.

Fig. 3–29

*42 A rocket is fired at 40.0� north latitude with an initial
velocity in an eastward direction. Its velocity relative to
the center of the earth is of magnitude 11.0 km/s, just
enough to escape the earth. Find the velocity of the
rocket relative to the ground. What would be the advan-
tage in firing the rocket from a site closer to the equator?

*43 A golfer must hit an approach shot to the green over a
tree.
(a) What initial velocity must be imparted to the ball so

that it will follow the trajectory indicated in Fig.
3–30?

(b) Find the horizontal distance d that the ball travels
after it clears the tree before hitting the ground.

Fig. 3–30

Problems
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*44 A point that is instantaneously on the top edge of an
automobile tire moves in the forward direction at a
speed of 40.0 m/s, as the car moves at a constant speed
of 20.0 m/s.
(a) Find the velocity of the point relative to a passenger

in the car.
(b) Find the centripetal acceleration of the point relative

to the earth. The tire’s radius is 35.0 cm.
*45 When you walk, your upper leg rotates about the hip

joint, the knee describing an approximately circular arc
relative to the hip. During its forward motion, the max -
imum speed of your knee relative to the ground is
approximately twice the speed of your hip relative to the
ground. What is the maximum centripetal acceleration
of your knee when you are walking at a speed of 2 m/s,
if the length of your upper leg is 0.5 m?

*46 A tennis ball is served at a height of 3.00 m with an ini -
tial horizontal component of velocity equal to 25.0 m/s.
(a) What should the vertical component of initial velo -

city be if the ball clears the 1.00 m high net, 12.0 m
away?

(b) At what angle is the initial velocity vector below
the horizontal?

(c) At what angle below the horizontal would the initial
velocity vector be directed if there were no gravita-
tional acceleration?

**47 Airplane A is flying at a constant velocity of 1.20 � 102

m/s north. Airplane B is flying at a constant velocity of
1.60 � 102 m/s west.
(a) What is the velocity of B relative to A?
(b) If, at a certain instant, the pilot of A observes the

pilot of B 75.0 m directly north, what will be the
smallest distance between the pilots as they pass?
(HINT: Consider the path of B as seen by A.)

**48 Water from a garden hose has a maximum horizontal
range of 10.0 m. The hose is used to put out a fire on a
roof top. Find the initial angle '0 that will allow the water
to reach the greatest possible horizontal distance d from
the edge of the roof, as shown in Fig. 3–31. (HINT: Con -
sider first the angle '1.)

Fig. 3–31

**49 Suppose you are standing on a 30.0� slope and kick a
ball on the ground up the slope, giving the ball an initial
velocity of 10.0 m/s, directed at an angle of 45.0� above
the horizontal.
(a) At what distance from your feet will the ball strike

the ground?
(b) Repeat your calculation with the initial velocity

directed 50.0� above the horizontal.
**50 A rock is thrown from the edge of a cliff to the ground

20.0 m below. The rock has an initial velocity of 15.0
m/s, directed 30.0� above the horizontal.
(a) How long does it take the rock to reach the ground?
(b) How far from the base of the cliff does the rock

strike the ground?
(c) Find the velocity of the rock just before it strikes the

ground.
*51 A car is found in swampy ground 100.0 m from the base

of a cliff 40.0 m high. The car is headed directly away
from the cliff. Find the car’s initial velocity, assuming
that it left the edge of the cliff with a horizontal initial
velocity and that it did not roll after hitting the ground.

*52 A passenger in a car moving at 50.0 km/h looks out
her side window and observes rain falling vertically. A
man standing outside in the rain observes the rain falling
at an angle of 30.0� with the vertical. Find the speed of
the rain relative to the earth.

53 Suppose you want to leap from the top of a building to
the top of an adjacent building of the same height, across
a gap of 3.00 m. With what minimum initial velocity
would you have to jump?

*54 A dart player stands 2.40 m from a dartboard and throws
a dart, releasing it at eye level, which is also the level of
the bull’s-eye. The dart strikes the board 0.200 s after it
is released, at a point 2.00 cm directly below the center
of the bull’s-eye.
(a) Find the x and y components of the dart’s initial

velocity.
(b) Find the angle that the dart’s velocity vector makes

with the horizontal as it strikes the board.
*55 A car traveling along a straight section of road at a speed

of 100.0 km/h approaches a curve of radius 20.0 m. The
driver must apply the brakes to round the curve. The car
decelerates at the rate of 3.00 m/s2 while the brakes are
applied.
(a) If the centripetal acceleration of the car is not to

exceed 4.00 m/s2 as it rounds the curve, at what
distance from the beginning of the curve must the
brakes be applied?

(b) If the driver continues to apply the brakes as she
begins to round the curve, what is the instantaneous
acceleration of the car?
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