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1 Introduction and definitions

Heat transfer is a fundamental part of thermal engineering. It is the science of the rules
governing the transfer of heat between systems of different temperatures. In thermo-
dynamics, the heat transferred from one system to its surroundings is assumed as a
given process parameter. This assumption does not give any information on how the
heat is transferred and which rules determine the quantity of the transferred heat.

Heat transfer describes the dependencies of the heat transfer rate from a corre-
sponding temperature difference and other physical conditions.

The thermodynamics terms “control volume” and “system” are also common in heat
transfer. A system can be a material, a body or a combination of several materials or
bodies, which transfer to or receive heat from another system.
The first two questions are:

• What is heat transfer?
• Where is heat transfer applied?

Heat transfer is the transport of thermal energy, due to a spacial  temperature
difference.

If a spacial temperature difference is present within a system or between sys-
tems in thermal contact to each other, heat transfer occurs.

The application of the science of heat transfer can be easily demonstrated with the
example of a radiator design.

Room temperature

Heat rate

Radiator surface area

Inlet temperatureϑ
Mass flow ratem

. in

Heating water ϑR

A

Q
.

Figure 1.1: Radiator design

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 1
DOI 10.1007/978-3-642-19183-1_1, © Springer-Verlag Berlin Heidelberg 2012 
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To obtain a certain room temperature, radiators, in which warm water flows, are
installed to provide this temperature. For the acquisition of the radiators, the
architect defines the required heat flow rate, room temperature, heating water mass
flow rate and temperature. Based on these data, the radiator suppliers make their
offers. Is the designed radiator surface too small, temperature will be too low, the
owner of the room will not be satisfied and the radiator must be replaced. Is the
radiator surface too large, the room temperature will be too high. With throttling the
heating water flow rate the required room temperature can be established. However,
the radiator needs more material and will be too expensive, therefore it will not be
ordered. The supplier with the correct radiator size will succeed. With experiments the
correct radiator size could be obtained, but this would require a lot of time and costs.
Therefore, calculation procedures are required, which allow the design of a radiator
with an optimum size. For this example, the task of heat transfer analysis is to obtain
the correct radiator size at minimum costs for the given parameters .

In practical design of apparatus or complete plants, in which heat is transferred,
besides other technical sciences (thermodynamics, fluid mechanics, material science,
mechanical design, etc.) the science of heat transfer is required. The goal is always to
optimize and improve the products. The main goals are to:

• increase efficiency
• optimize the use of resources
• reach a minimum of environmental burden
• optimize product costs.

To reach these goals, an exact prediction of heat transfer processes is required.

To design a heat exchanger or a complete plant, in which heat is transferred,
exact knowledge of the heat transfer processes is mandatory to ensure the
greatest efficiency and the lowest total costs.

Table 1.1 gives an overview of heat transfer applications.

Table 1.1: Area of heat transfer applications

Heating, ventilating and air conditioning systems
Thermal power plants
Refrigerators and heat pumps
Gas separation and liquefaction
Cooling of machines
Processes requiring cooling or heating
Heating up or cooling down of production parts
Rectification and distillation plants
Heat and cryogenic isolation
Solar-thermic systems
Combustion plants
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1.1 Modes of heat transfer

Contrary to assured knowledge, most publications describe three modes of heat
transfer: thermal conduction, convection and thermal radiation.
Nußelt, however, postulated in 1915, that only two modes of heat transfer exist [1.2]
[1.3]. The publication of Nußelt states:

“In the literature it is often stated, heat emission of a body has three causes: radiation,
thermal conduction and convection.

The separation of heat emission in thermal conduction and convection suggests that
there would be two independent processes. Therefore, the conclusion would be: heat
can be transferred by convection without the participation of thermal conduction. But
this is not correct.”

Heat transfer modes are thermal conduction and thermal radiation.

Figure 1.2 demonstrates the two modes of heat transfer.

ϑ

to a moving fluid (convection)
Thermal conduction from a surface

ϑ

>

....

Thermal conduction in a solid
material or static fluid

Q
ϑ2

ϑ1

>ϑ1 ϑ2

ϑ

....
Q

1

Moving fluid

radiation between two surfaces
Heat transfer by thermal               

1
>ϑ1 ϑ2

2

ϑ2 Q1

....
ϑ

....
2Q

1

ϑ2

Figure 1.2: Modes of heat transfer

1. Thermal conduction develops in materials when a spacial temperature gradi-
ent is present. With regard to calculation procedures there is a differentiation
between static materials (solids and static fluids) and moving fluids. Heat
transfer in static materials depends only on the spacial temperature gradient
and material properties.
Heat transfer between a solid wall and a moving fluid occurs by thermal con-
duction between the wall and the fluid and within the fluid. Furthermore, the
transfer of enthalpy happens, which mixes areas of different temperatures.
The heat transfer is determined by the thermal conductivity and the thickness
of the boundary layer of the fluid, the latter is dependent on the flow and
material parameters. In the boundary layer the heat is transferred by conduc-
tion.
Because of the different calculation methods, the heat transfer between a
solid wall and a fluid is called convective heat transfer or more concisely
convection. A further differentiation is made between free convection and
forced convection.



4 1 Introduction and definitions

In free convection the fluid flow is generated by gravity due to the density
difference caused by the spacial temperature gradient. At forced convection
the flow is established by an external pressure difference.

2. Thermal radiation can occur without any intervening medium. All surfaces
and gases consisting of more than two atoms per molecule of finite tempera-
ture, emit energy in the form of electromagnetic waves. Thermal radiation is a
result of the exchange of electromagnetic waves between two surfaces of
different temperature.

In the examples shown in Figure 1.3 the temperature ϑ
1
 is larger than ϑ

2
, therefore,

the heat flux is in the direction of the temperature ϑ
2
. In radiation both surfaces emit

and absorb a heat flux, where the emission of  the surface with the higher temperature
ϑ

1
 has a higher intensity.
Heat transfer may occur through combined thermal conduction and radiation. In

many cases, one of the heat transfer modes is negligible. The heat transfer modes of
the radiator, discussed at the beginning of this chapter are: forced convection inside
from the water to the inner wall, thermal conduction in the solid wall and a combina-
tion of free convection and radiation from the outer wall to the room.

The transfer mechanism of the different heat transfer modes are governed by differ-
ent physical rules and therefore, their calculation methods will be discussed in sepa-
rate chapters.

1.2 Definitions

The parameters required to describe heat transfer will be discussed in the following
chapters.

In this book the symbol ϑ  is used for the temperature in Celsius and T  for the
absolute temperature.

1.2.1 Heat (transfer) rate and heat flux

The heat rate, also called  heat transfer rate Q is the amount of heat transferred
per unit time. It has the unit Watt W.

A further important parameter is the heat flux density  AQq /= , which defines the
heat rate per unit area. Its unit is Watt per square meter W/m2.

1.2.2 Heat transfer coefficients and overall heat transfer coefficients

The description of the parameters, required for the definition of the heat flux density
will be discussed in the example of a heat exchanger as shown in Figure 1.3. The heat
exchanger consist of a tube that is installed in the center of a larger diameter tube.
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A fluid with the temperature ϑ
1
' enters the inner tube and will be heated up to the

temperature ϑ
1
''. In the annulus a warmer fluid will be cooled down from the

temperature ϑ
2
' to the temperature ϑ

2
''. Figure 1.3 shows the temperature profiles in

the fluids and in the wall of the heat exchanger.
The governing parameters for the heat rate transferred between the two fluids will be
discussed now. The quantity of the transferred heat rate Q  can be defined by the
heat transfer coefficient α, the heat transfer surface area A and the temperature
difference Δϑ.

The heat transfer coefficient defines the heat rate Q transferred per unit
transfer area  A and per unit temperature difference Δϑ.

The unit of the heat transfer coefficient is W/(m2 K).

system boundary

x.
m ϑ'2

ϑ'1

ϑ
ϑ'2

2

ϑ'1

m
.

1

Y

dx

1ϑ''
ϑ''2

x

1

Y

ϑ

ϑW 1

ϑ''1

ϑW 2

ϑ2

ϑ''2

.
Q

Figure 1.3: Temperature profile in the heat exchanger

With this definition, the finite heat rate through a finite surface element is:

22222 )( dAQ W ⋅−⋅= ϑϑαδ (1.1)

11111 )( dAQ W ⋅−⋅= ϑϑαδ (1.2)

WWWWW dAQ ⋅−⋅= )( 12 ϑϑαδ (1.3)

The symbol Qδ  shows that the heat rate has an inexact differential, because the
value of its integral depends on the heat transfer processes and path.

The integral of Qδ  is 
12Q  and not 

2 1Q Q− .



6 1 Introduction and definitions

Here the temperature differences were selected such that the heat rate has positive
values. For a heat exchanger with a complete thermal insulation to the environment,
the heat rate coming from fluid 2 must have the same value as the one transferred to
fluid 1 and also have the same value as the heat rate through the pipe wall.

QQQQ W δδδδ === 21 (1.4)

In most cases, the wall temperatures are unknown and the engineer is interested in
knowing the total heat rate transferred from fluid 2 to fluid 1. For its determination the
overall heat transfer coefficient k is required. It has the same unit as the heat transfer
coefficient.

dAkQ ⋅−⋅= )( 12 ϑϑδ (1.5)

Using equations (1.1) to (1.5) the relationships between the heat transfer and over-
all heat transfer coefficients can be determined. It has to be taken into account that
the surface area in- and outside of the tube has a different magnitude. The determina-
tion of the overall heat transfer coefficient will be shown in the following chapters.

In this chapter the heat transfer coefficients are assumed to be known values.
In the following chapters the task will be to determine the heat transfer coeffi-
cient as a function of material properties, temperatures and flow conditions of
the involved fluids.

1.2.3 Rate equations

Equations (1.1) to (1.3) and (1.5) define the heat rate as a function of heat transfer
coefficient, surface area and temperature difference. They are called rate equations.

The rate equations define the heat rate, transferred through a surface area at
a known heat transfer coefficient and a temperature difference.

1.2.4 Energy balance equations

In heat transfer processes the first law of thermodynamics is valid without any re-
strictions. In most practical cases of heat transfer analysis, the mechanical work,
friction, kinetic and potential energy are small compared to the heat rate. Therefore,
for problems dealt with  in this book, they are neglected. The energy balance
equation of thermodynamics then simplifies to [1.1]:

CV
CV e e a a

e a

dE
Q m h m h

dt
= + ⋅ − ⋅ (1.6)

The temporal change of energy in the control volume is equal to the total heat rate
to the control volume and the enthalpy flows to and from the control volume. In most
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cases of heat transfer problems only one mass flow enters and leaves a control
volume. The change of the enthalpy and energy in the control volume can be given as
a function of the temperature. The heat rate is either transferred over the system
boundary or originates from an internal source within the system boundary (e.g.
electric heater, friction, chemical reaction). Equation (1.7) is presented here as it is
mostly used for heat transfer problems:

12 2 1( )CV p in

d
V c Q Q m h h

dt

ϑ
ρ⋅ ⋅ = + + ⋅ − (1.7)

In Equation (1.7) 12Q is the heat rate transferred over the system boundary and

inQ the heat rate originating from an internal source. For stationary processes the left
side of Equation (1.7) has the value of zero:

12 1 2 1 2( ) ( )in pQ Q m h h m c ϑ ϑ+ = ⋅ − = ⋅ ⋅ − (1.8)

The Equations (1.7) and (1.8) are called energy balance equations.

1.2.5 Log mean temperature difference

With known heat transfer coefficients, the heat rate at every location of the heat
exchanger, shown in Figure 1.3, can be determined. In engineering, however, not the
local but the total transferred heat is of interest. To determine the overall heat transfer
rate, the local heat flux density must be integrated over the total heat transfer area.
The total transferred heat rate is:

dAkQ
A

⋅−⋅= )( 12

0

ϑϑ (1.9)

The variation of the temperature in the surface area element dA can be calculated
using the energy balance equation (1.8).

1 1 1 1 1pQ m dh m c dδ ϑ= ⋅ = ⋅ ⋅ (1.10)

2 2 2 2 2pQ m dh m c dδ ϑ= − ⋅ = − ⋅ ⋅ (1.11)

The temperature difference ϑ
2
 – ϑ

1
 will be replaced by Δϑ. The change of the

temperature difference can be calculated from the change of the fluid temperatures.

⋅
+

⋅
⋅−=−=

2211
12

11

pp cmcm
Qddd δϑϑϑΔ (1.12)

Equation (1.12) set in Equation (1.5) results in:
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dA
cmcm

k
d

pp

⋅
⋅

+
⋅

⋅−=
2211

11

ϑΔ

ϑΔ
(1.13)

Assuming that the overall heat transfer coefficient, the surface area and the spe-
cific heat capacities are constant, Equation (1.13) can be integrated. This assumption
will never be fulfilled exactly. However, in practice the use of mean values has proven
to be  an excellent approach. The integration gives us:

⋅
+

⋅
⋅⋅=

′′−′′

′−′

221112

12 11
ln

pp cmcm
Ak

ϑϑ

ϑϑ
(1.14)

With the assumptions above, Equations (1.10) and (1.11) can also be integrated.

)( 1111 ϑϑ ′−′′⋅⋅= pcmQ (1.15)

)( 2222 ϑϑ ′′−′⋅⋅= pcmQ (1.16)

In Equation (1.14) the mass flow rates and specific heat capacities can be replaced
by the heat rate and fluid temperatures. This operation delivers:

2 1 2 1

2 1

2 1

ln
mQ k A k A

ϑ ϑ ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

′ ′ ′′ ′′− − +
= ⋅ ⋅ = ⋅ ⋅

′ ′−

′′ ′′−
(1.17)

The temperature difference mΔϑ  is the temperature difference relevant for the

estimation of the heat rate. It is called the log mean temperature difference
and is the integrated mean temperature difference of a heat exchanger.

The log mean temperature difference is valid for the special case of the heat
exchanger shown in Figure 1.3. For heat exchanger with parallel-flow, counterflow
and if the temperature of one of the fluids remains constant (condensation and boil-
ing) a generally valid log mean temperature difference can be given. For its formula-
tion the temperature differences at the inlet and outlet of the heat exchangers are
required. The greater temperature difference is Δϑ

gr
, the smaller one is Δϑ

sm
.

if 0
ln( / )

gr sm
m gr sm

gr sm

Δϑ Δϑ
Δϑ Δϑ Δϑ

Δϑ Δϑ

−
= − ≠ (1.18)

If the temperature differences at inlet and outlet are approximately identical, Equa-
tion (1.18) results in an indefinite value. For this case the log mean temperature diffe-
rence is the average value of the inlet and outlet temperature differences.

( ) / 2 if 0m gr kl gr klΔϑ Δϑ Δϑ Δϑ Δϑ= + − = (1.19)
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The log mean temperature of a heat exchanger in which the flow of the fluids is
perpendicular (cross-flow) or has changing directions will be discussed in Chapter 8.

1.2.6 Thermal conductivity

Thermal conductivity λ is a material property, which defines the magnitude of the
heat rate that can be transferred per unit length in the direction of the flux and per unit
temperature difference. Its unit is W/(m K). The thermal conductivity of a material is
temperature and pressure dependent.

Good electric conductors are usually also good thermal conductors, however, ex-
ceptions exist. Metals have a rather high thermal conductivity, liquids a smaller one
and gases are “bad” heat conductors. In Figure 1.4 thermal conductivity of several
materials is plotted versus temperature.

The thermal conductivity of most materials does not vary much at a medium tem-
perature change. Therefore, they are suitable for calculation with constant mean
values.

1.3 Methodology of solving problems

This chapter originates from [1.5], with small changes. For solving problems of heat
transfer usually, directly or indirectly, the following basic laws and principles are
required:

• law of Fourier

• laws of heat transfer

• conservation of mass principle

• conservation of energy principle (first law of thermodynamics)

• second law of thermodynamics

• Newton’s second law of motion

• momentum equation

• similarity principles

• friction principles

Besides profound knowledge of the basic laws, the engineer has to know the
methodology, i.e. how to apply the above mentioned basic laws and principles to
concrete problems. It is of great importance to learn a systematic analysis of prob-
lems. This consist mainly of  six steps as listed below. They are proven in practice
and can, therefore, highly be recommended.
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Fig. 1.4: Thermal conductivity of materials versus temperature [1.5]
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1. What is given?

Analyze, what is known about the problem you have to investigate. Note all para-
meters which are given or may be necessary for further considerations.

2. What are you looking for?

At the same time as the first step, analyze which parameter has to be determined
and which questions have to be answered.

3. How is the system defined?

Make schematic sketches of the system and decide which types of system bound-
aries are best for the analysis.

•  Define the system boundary(ies) clearly!

Identify the transactions between systems and environment.
State which changes of state or processes are acting on or are passing through the

system.

•  Create clear system schematics!

4. Assumptions

Consider how the system can be modelled as simple as possible, make simplifying
assumptions. Specify the boundary values and assumptions.

Check if idealizing assumptions are possible, e.g. physical properties determined
with mean temperatures and negligible heat losses assumed as perfect heat insula-
tion.

5. Analysis

Collect all necessary material properties. Some of them may be given in the appen-
dices of this book. If not, a research in the literature is requested (e.g. VDI Heat Atlas
[1.7]).

Take into account the idealizing and simplifying assumptions, formulate the heat
balance and rate equations.

Recommendation: Finish all formulations, transformations, simplifications and
solutions in symbolic equations, before inserting numeric values.

Check the equations and data of correctness of units and dimensions before the
numeric evaluation is started.

Check the order of magnitude of the results and the correctness of algebraic signs.
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 6. Discussion

Discuss the results and its basic aspects, comment on the main results and their
correlations.

Do remember: Step 3 is of greatest importance, as it clarifies how the analysis was
performed and step 4 is as important, as it determines the quality and validity range of
the results. The examples in this book are treated according to the above described
methodology. The definition of the examples is according to steps 1 and 2, the solu-
tion starts with step 3.

EXAMPLE 1.1: Determination of the heat rate, temperature and heat transfer
surface area

The counterflow heat exchanger is a pipe, installed concentrically in a pipe of lager
diameter. The fluid in the pipe and in the annulus is water in this example. The mass
flow rate in the pipe is 1 kg/s and the inlet temperature 10 °C .  In the annulus we have
a mass flow rate of  2 kg/s and the water is cooled from 90 °C down to 60 °C  The
overall heat transfer coefficient is 4

 
000 W/(m2 K). The specific heat capacity of the

water in the pipe is 4.182 kJ/(kg K) and that in the annulus 4.192 kJ/(kg K).

Find

The heat rate, the outlet temperature of the water in the pipe and the required heat
transfer surface area.

Solution

Schematic See sketch.

Assumptions

• The heat exchanger does not transfer any heat to the environment.
• The process is stationary.

Analysis

The heat rate transferred from the water in the annulus to the water in the tube can
be calculated with the energy balance Equation (1.15).

2 2 2 2( )

2 kg/s 4192 J/(kg K) (90 60) K
pQ m c ϑ ϑ′ ′′= ⋅ ⋅ − =

= ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 251.52  kW

''
= 10 °Cϑ '1

= 60 °C

m
.
  = 1 kg/s1

ϑ 2''

2m
.
  = 2 kg/s

= 90 °Cϑ '2

ϑ 1
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The outlet temperature of the water determined with Equation (1.16) is:

1 1
1 1

251520  W
10 C

1 kg/s 4182 J/(kg K)p

Q

m c
ϑ ϑ′′ ′= + = ° + = °

⋅ ⋅ ⋅ ⋅ ⋅
70.1 C

For the determination of the required surface area Equations (1.17) and (1.18) are
used. First with Equation (1.18) the log mean temperature difference Δϑ

m
 is

calculated. At the inlet of the tube  the large temperature difference has the value of
50 K, the small one at the outlet 19.9 K.

(50 19.9) K
32.6 K

ln( / ) ln(50/19.9)
gr kl

m
gr kl

ϑ ϑ
ϑ

ϑ ϑ

− − ⋅
= = =

With Equation (1.17) the required surface area results as:

2

251520 W

4000  W/(m K) 32.6 Km

Q
A

k ϑ
= = =

⋅ ⋅ ⋅ ⋅ ⋅

21.93 m

Discussion

With a known heat rate and energy balance equations the temperature change of
the liquids can be calculated. To determine the required heat exchanger surface area
the rate equation is required, however first the overall heat transfer coefficient has to
be known. Its calculation will be discussed in the following chapters. This example
shows that with water, a relatively small surface area is sufficient to transfer a fairly
large heat rate.

EXAMPLE 1.2: Determination of the outlet temperature

In the heat exchanger in Example 1.1, the inlet temperature of the water in the tube has
changed from 10 °C to 25 °C. The mass flow rates, material properties and the inlet
temperature of the water into the annulus remain the same as in Example 1.1.

Find

The outlet temperatures and the heat rate.

Solution

Assumptions

• The heat transfer coefficient in the whole heat exchanger is constant.
• The process is stationary.
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Analysis

The Equations (1.15) to (1.17) provide three independent equations for the
determination of the three unknown values: Q, 1ϑ ′′  and 2ϑ ′′ . The energy balance
equations for the two mass flow rates are:

)( 1111 ϑϑ ′−′′⋅⋅= pcmQ     and    )( 2222 ϑϑ ′′−′⋅⋅= pcmQ

The rate equation is:

mAkAkQ ϑΔ

ϑϑ

ϑϑ

ϑϑϑϑ
⋅⋅=

′′−′

′−′′

′′−′−′−′′
⋅⋅=

12

12

1212

ln

)(

The temperatures in the numerator of the above equation can be replaced by the
heat rate divided by the product of mass flow rate and heat capacity. The above three
equations deliver:

1 1 2 2

1 1 W 1 1 K
4000 1.93 

K 1 4182 2 4192 W2 1

2 1

2.518p p

k A
m c m c

e e
ϑ ϑ

ϑ ϑ

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅
⋅ ⋅ ⋅ ⋅′′ ′−

= = =
′ ′′−

With the energy balance equation the temperature 2ϑ ′′ can be given as a function
of the temperature 1ϑ ′′ and inserted in the equation above. The equation solved
for 2ϑ ′′  delivers.

1 1
2 2 1 1 1

2 2

1

( ) 90 C 0.4988 ( 25 C)

102.47 C 0.4988

p

p

m c

m c
ϑ ϑ ϑ ϑ ϑ

ϑ

⋅
′′ ′ ′′ ′ ′′= − ⋅ − = ° − ⋅ − ° =

⋅

′′= ° − ⋅

2 1
1

2.522 102.47 C 2.522 90 C 25 C 102.47 C

2.0232 2.0232

ϑ ϑ
ϑ

′ ′⋅ + − ° ⋅ ° + ° − °
′′= = = °73.9 C

The result for temperature 1ϑ ′′ is:

2 1102.47 C 0.4988ϑ ϑ′′ ′′= ° − ⋅ = °65.6 C

The heat rate can be determined with the energy balance equation.

1 1 1 1

kg J
( ) 1 4182 (73.9 25) K

s kg KpQ m c ϑ ϑ′′ ′= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ − ⋅ =
⋅

204.5 kW
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Discussion

With the energy balance and the rate equations, the outlet temperatures of an
already designed heat exchanger (of which the physical dimensions are known) can
be calculated. With increased inlet temperature of the cold water in the pipe, the
outlet temperature increases but the heat rate decreases as the temperature changes
of both water flows decrease.



  



2 Thermal conduction in static materials

Thermal conduction in static materials is a heat transfer process in solids or static
fluids. The carriers of the energy transfer can be molecules, atoms, electrons and
phonons. The latter are energy quantums of elastic waves, in nonmetallic and metallic
solids. Electrons transfer heat in metals, both in solid and fluid state.

Heat transfer will occur in any static material, as soon as a spacial tempera-
ture gradient exists.

In this chapter, only heat transfer in solids and static fluids will be discussed.
Thermal conduction in moving fluids, called convection, will be treated in Chapters 3
to 6. Thermal conduction in static fluids is a rare phenomenon in practice, as the
density differences in the fluid, caused by the temperature differences, generate
gravity-driven flows.

Heat transfer with a constant heat flux and a steady-state spacial temperature
distribution is called steady-state thermal conduction. If a body is heated up or
cooled down, there is a transient change of the heat rate and also of  the spacial
temperature distribution. This process is called transient thermal conduction.

2.1 Steady-state thermal conduction

The heat flux, caused by a temperature difference in a material, is defined by the law
of  Fourier.

d
q

dr

ϑ
λ ϑ λ= − ⋅∇ = − ⋅ (2.1)

The spacial coordinate is r. The heat flux is proportional to the thermal conductivity
and to the spacial temperature gradient. It is always contrary to the direction of the
temperature gradient. According to Equation (2.1) the vector of the heat flux is per-
pendicular to any isothermal surface. Alternatively, the law of Fourier can be given
as:

dn

d
qn

ϑ
λ ⋅−= (2.2)

Where nq is the normal component of the heat flux vector through an arbitrary
surface and n the normal component of the space vector at this surface.

The heat rate through the surface area is:

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_2, © Springer-Verlag Berlin Heidelberg 2012 
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⋅=
A

n dAqQ (2.3)

The thermal conductivity is a function of the temperature and the surface area can
be a more or less complicated function of the spacial coordinates, therefore the solu-
tion of the integral can be very complicated or even impossible. For many technical
applications the thermal conductivity can be taken as constant with a mean value. In
bodies with simple geometrical shapes, Equation (2.3) can be solved.

2.1.1 Thermal conduction in a plane wall

Figure 2.1 shows a plane wall with the thickness s and the thermal conductivity λ. At
the top and bottom  the wall is thermally completely insulated. Heat transfer is
possible only in x direction, therefore the problem is one dimensional. The surface
area A of the wall, through which the heat flux passes, is constant. Equation 2.1 can be
given as:

dx

d
AQ

ϑ
λ ⋅⋅−= (2.4)

s

1
x

1
ϑ

ϑ
Q

2
x

x

2

A

.

Figure 2.1: Thermal conduction in a plane wall

Due to the thermal insulation of the top and bottom of the wall sideways leakage of
heat is impossible. Assuming a constant thermal conductivity, there exists only a
heat rate in x direction and Equation (2.4) can be integrated.
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⋅⋅−=⋅
2

1

2

1

θ

θ

ϑλ dAdxQ
x

x
(2.5)

)( 21 ϑϑ
λ

−⋅⋅= A
s

Q (2.6)

In a plane wall with constant thermal conductivity, the temperature distribution is
linear. With the definition (1.1) of the heat transfer coefficient we receive:

s/λα = (2.7)

The heat transfer coefficient of a plane wall with constant thermal conductiv-
ity is the thermal conductivity divided by the wall thickness.

To establish constant temperatures on both sides of the wall, as shown in Figure
2.1, on the one side a heat source emitting a constant heat flux and a heat sink on the
other side absorbing this heat flux, are required. This could be, for example, on one
side a  moving warm fluid, that delivers the heat rate, and a cold fluid on the  side,
receiving the heat rate. This is the case in heat exchangers, where heat is transferred
through a solid wall from a fluid 1 to a fluid 2.

Figure 2.2 shows the plane wall of a heat exchanger, in which the heat is transferred
from a warm fluid with the temperature ϑ

f1
 and a given heat transfer coefficient α

f1
 to

a cold fluid with the temperature ϑ
f2
 and a given heat transfer coefficient α

f2
. Here the

fluid heat transfer coefficients are assumed as known values. Their determination will
be discussed in Chapters 3 to 7.

s

1
x

Fluid 1

f1
α

1
ϑ

ϑ
f1

ϑ
Q

2
x

x

α

ϑ
f2

2

f2

A

.

Fluid 2

Figure 2.2: Determination of the overall heat transfer coefficient

By definition, the heat transfer coefficient represents the heat rate, that can be
transferred at a certain temperature difference. The heat rates from fluid 1 to the wall,
through the wall and from the wall to fluid 2 can be calculated with the rate equations.
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)(

)(

)(

222

21

111

ff

w

ff

AQ

AQ

AQ

ϑϑα

ϑϑα

ϑϑα

−⋅⋅=

−⋅⋅=

−⋅⋅=

(2.8)

With the overall heat transfer coefficient k the heat flux from fluid 1 to fluid 2 can
be directly determined.

)( 21 ffkAQ ϑϑ −⋅⋅= (2.9)

To calculate the overall heat transfer coefficient, first the wall temperatures ϑ
1
 and

ϑ
2
 must be determined with Equation (2.8).

2
22

1
11

f
f

f
f A

Q

A

Q

α
ϑϑ

α
ϑϑ

⋅
+=

⋅
−= (2.10)

Inserting Equations 2.10 in 2.8 delivers:

1 2
1 2

1 1 1
( )f f

f W f

Q A ϑ ϑ
α α α

⋅ + + = ⋅ − (2.11)

The overall heat transfer coefficient is:

1 2

1 1 1 1

f W fk α α α
= + + (2.12)

The reciprocal of the overall heat transfer coefficient is the sum of the recipro-
cals of the heat transfer coefficients.

The reciprocal of the product of heat transfer coefficient and transfer surface
area 1/(α  . A) is a thermal resistance.
 The thermal resistances have to be added as serial electric resistances.

The temperature differences between the fluid and wall can be calculated with
Equations (2.8) and (2.9).

221

22

21

21

121

11

fff

f

Wfffff

f kkk

αϑϑ

ϑϑ

αϑϑ

ϑϑ

αϑϑ

ϑϑ
=

−

−
=

−

−
=

−

−
(2.13)

For the transfer of a certain heat rate, with decreasing heat transfer coeffi-
cient,  the required temperature difference increases proportionally.
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EXAMPLE 2.1: Determination of the wall heat transfer coefficient, overall heat
transfer coefficient and the wall temperatures

Inside a room the air temperature is 22 °C, that outside 0 °C. The wall has a thickness
of 400 mm and a thermal conductivity of 1 W/(m K). The heat transfer coefficient of
the air on both sides has the value of 5 W/(m2 K).

Find

The heat transfer coefficient of the wall, the overall heat transfer coefficient, heat flux
and the wall temperatures.

Solution

Schematic See sketch.

Assumptions

• The thermal conductivity in the wall is constant.
• No heat losses through the sides of the wall.
• The process is stationary.

Analysis

With Equation (2.7) the heat transfer coefficient in the wall can be determined.

1 W/(m K)

0.4 mW s

λ
α

⋅ ⋅
= = =

⋅ ⋅2

W
2.5 

m K

The overall heat transfer coefficient is being calculated with Equation (2.12).

1 1

2
1 2

1 1 1 1 1 1 W

5 2.5 5 m Kf W f

k

− −

= + + = + + ⋅ =
⋅ ⋅2

W
1.25 

m K

To determine the heat flux, Equation (2.9) can be used.

2
1 2/ ( ) 1.25 W/(m K) (22 0) Kf fq Q A k ϑ ϑ= = ⋅ − = ⋅ ⋅ ⋅ − ⋅ = 227.5 W / m

The wall temperatures can be calculated with Equation (2.13) or with Equation
(2.8). The temperature of the wall inside is determined with Equation (2.13), that
outside with Equation (2.8).

1 1 1 2
1

1.25
( ) 22 C (22 0) K

5f f f
f

k
ϑ ϑ ϑ ϑ

α
= − − = ° − − ⋅ ⋅ = °16.5 C

2 2 2/ 27.5/5 K 0 Cf fqϑ α ϑ= + = ⋅ + ° = °5.5 C

400

Fluid 1

f1
α

1
ϑ

ϑ
f1

ϑ
Q

α

ϑ
f2

2

f2

A

.

Fluid 2
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Discussion

The calculation demonstrates that the smallest heat transfer coefficient has the
largest influence on the overall heat transfer coefficient. The largest temperature
difference is in the material with the lowest heat transfer coefficient, here in the wall
with 11 K.

2.1.2 Heat transfer through multiple plane walls

Plane walls are often consisting of multiple layers (wall of a house, insulation of a
refrigerator). Figure 2.3 shows a wall with n layers of different thicknesses and
thermal conductivities.

ϑ
Fluid 1

4
ϑ

s

ϑ

α
ϑf 1

1

f 1

1

ϑ

ϑ
3

2
....

ss
2 3

Q

n

+ 1
ϑ

i

i

ϑ

α

ϑ
f 2

f 2

ϑ
+ 1n

....

si

Fluid 2

.

A

sn

Figure 2.3: Heat transfer through a wall consisting of multiple plane layers

The heat transfer coefficient of each layer can be determined with Equation (2.7).

iii s/λα = (2.14)

The overall heat transfer coefficient can be determined with the same calculation
procedure as used for a plane wall.

211211

111111

f

n

i i

i

ff

n

i Wif

s

k αλαααα
++=++=

==
(2.15)

Equation (2.13) delivers for the temperature differences in the wall layers:

121
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f k

αϑϑ

ϑϑ
=

−

−
     

Wiff

ii k

αϑϑ

ϑϑ
=

−

− +

21

1
       

221

22

fff

f k

αϑϑ

ϑϑ
=

−

−
(2.16)



2 Thermal conduction in static materials 23

EXAMPLE 2.2: Determination of the insulation layer thickness of a house wall

The wall of a house consists of an outer brick layer of  240 mm thickness and an inner
layer of 120 mm thickness. Between the two walls there is mineral fibre insulation
layer. The thermal conductivity of the inner and outer wall is 1 W/(m K), that of the
insulation 0.035 W/(m K). The overall heat transfer coefficient of the multiple layer
house wall shall not exceed  0.3 W/(m2 K).

Find

The required insulation thickness.

Solution

Schematic See sketch.

Assumptions

• The thermal conductivities of all layers are areally homogeneous and indepen-
dent from the temperature.

• No heat losses on sides of the wall.

Analysis

The overall heat transfer coefficient is given with Equation (2.15).

2

3

2

2

1

1

1

1

λλλλ

ssss

k

n

i i

i ++==
=

In this example the overall heat transfer coefficient is known, the thickness of the
insulation layer s

2 
is to be determined. Therefore, with the above equation s

2
 can be

calculated.

31
2 2

1 3

2

2

1

1 0.24 0.12 m K W
0.035

0,3 1 1 W m K

ss
s

k
λ

λ λ
= − − ⋅ =

⋅
= − − ⋅ ⋅ ⋅ =

⋅
0.104 m

Discussion

The insulation layer is the main heat transfer resistance. Its heat transfer coeffi-
cient of 0.337 W/(m2 . K) is only 12 % higher as the overall heat transfer coefficient.

?240 120

Outer wall Insulation Inner wall
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EXAMPLE 2.3: Determination of the insulation layer thickness and the wall
temperature of a cold store

The wall of a cold store consists of an outer brick wall of 200 mm thickness, an insu-
lation layer and an inner plastic covering of 5 mm thickness. The thermal conducti-
vities: brick wall 1 W/(m K), plastic 1,5 W/(m K), insulation 0.04 W/(m K). The cold
storage temperature is  –22  °C. The heat transfer coefficient of air in the cold storage
is 8 W/(m2 K). At an outside temperature of 35 °C it must be made sure, that between
the brick wall and insulation layer no dew formation occurs. This requires that at an
outer heat transfer coefficient of  5 W/(m2 K) the temperature on the inner side of the
brick wall does not fall below 32 °C.

Find

What thickness is required for the insulation layer?

Solution

Schematic See sketch.

Assumptions

• The thermal conductivities of all layers are areally homogeneous and indepen-
dent from the temperature.

• No heat leakage at side of the wall.

Analysis

After conversion of Equation (2.16) the overall heat transfer coefficient, at which
no dew formation occurs, is:

1 2

2 2

1
1 2

1 1

(35 32) K W
0.132

1 0.2 m K m K1 (35 22) K( ) 5 1 W

f

f f
f

k
s

ϑ ϑ

ϑ ϑ
α λ

− − ⋅
= = =

⋅ ⋅
+ ⋅ ⋅ + ⋅− ⋅ +

The thickness of the insulation layer can be calculated as in example 2.1.

31
2 2

1 1 3 2

1 1 1

f f

ss
s

k
λ

α λ λ α
= − − − − ⋅ = 0.283 m

Discussion

The main heat transfer resistance and thus the largest temperature difference is in
the insulation layer. With the insulation layer thickness the overall heat transfer
coefficient and the wall temperatures can be influenced.

? 5
200

Brick wall Plastic coverInsulation

1
2

ϑ f1

3 4
ϑ f2
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2.1.3 Thermal conduction in a hollow cylinder

In a plane wall the surface area for the heat rate is constant. In a hollow cylinder (tube
wall) the surface area changes with the radius r, thus A is a function of r. Figure 2.4
demonstrates the thermal conduction in a hollow cylinder.

f 2

Q
r2

f
α

ϑ

f1

1 ϑ1

ϑ2

r1 r

α

ϑ
f 2

.

Figure 2.4: Thermal conduction in a hollow cylinder

The heat rate through the cylinder wall is constant. As the cylinder surface area
changes with the radius, the heat flux also changes. The surface area as a function of
the radius inserted in Equation (2.3) delivers:

dr

d
lr

dr

d
rAQ

ϑ
πλ

ϑ
λ ⋅⋅⋅⋅⋅−=⋅⋅−= 2)( (2.17)

The separation of variables results in:

ϑ
π

λ d
Q

l

r

dr
⋅

⋅⋅
⋅−=
2

(2.18)

With the assumption, that the thermal conductivity in the wall is constant and a
cylindrically symmetric heat flux occurs, Equation (2.18) can be integrated. The result
for the heat rate is:

)(
)/ln(

2
21 ϑϑ

π
λ −⋅

⋅⋅
⋅=

ia rr

l
Q (2.19)

To determine the heat transfer coefficient, a reference surface area must first be
defined. In Europe it is common to use the outer wall surface area as reference, but if
necessary or more convenient for the calculation the inner wall surface area can also
be selected. Equation (2.19) will be converted such that the reference surface areas is
that of the outer wall surface. Furthermore, the radius will be replaced by the more
commonly used diameter.
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The heat transfer coefficient related to the outer wall surface area then reads:

)/ln(

2

iaa
Wa ddd ⋅

⋅
=

λ
α (2.21)

It is very important to define which surface area the heat transfer coefficient is
related to.

The different surface areas have to be taken into account when calculating the
overall heat transfer coefficient. For the heat rates at the different surfaces the follow-
ing rate equations exist:

)()( 11111111 ϑϑαπϑϑα −⋅⋅⋅⋅=−⋅⋅= ffff dlAQ (2.22)

)()( 22222222 ffff dlAQ ϑϑαπϑϑα −⋅⋅⋅⋅=−⋅⋅= (2.23)

)()( 212212 ϑϑαπϑϑα −⋅⋅⋅⋅=−⋅⋅= WaWa dlAQ (2.24)

)()( 212212 ffff kdlkAQ ϑϑπϑϑ −⋅⋅⋅⋅=−⋅⋅= (2.25)

Note, that according to the first law of thermodynamics, the heat rate crossing the
different surface areas must be the same, as long as a steady state is assumed for the
whole cylinder volume. After conversions, the heat rate results in:

1

2
2 1 2

1 1 2

1 1 1
( )f f

f Wa f

d
Q A

d
ϑ ϑ

α α α

−

= ⋅ − ⋅ ⋅ + + (2.26)

With this, the overall heat transfer coefficient related to the outside surface area of
the cylinder, i.e. to the outer diameter d

2
, results as:
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By relating the overall heat transfer coefficient to the inner wall surface area, i.e. to
the inner diameter d

1
, the overall heat transfer will be:
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Both equations deliver the same heat rate, because it results from the multiplica-
tion of the overall heat transfer coefficient with the reference surface area. By using
the wrong reference surface, big differences can result in the determination of the
required surface area of the heat exchanger.
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It is important that the reference surface area of the heat transfer coefficient is
defined.

The temperature differences in the fluid and in the wall are:
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For very thin tube walls or for rough estimates the tube wall can be handled as a
plane wall. For this approximation the tube wall heat transfer coefficient is:

iaiaa
Wa ddsddd −

⋅
=≈

⋅

⋅
=

λλλ
α

2

)/ln(
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(2.30)

EXAMPLE 2.4: Overall heat transfer coefficient in a heat exchanger tube

In a high pressure reheater the water flow in the tube is heated by steam condensing
on the outer wall. The heat transfer coefficient in the tube is 15

 
000 W/(m2 K) and

outside 13
 
000 W/(m2 K). The tube has an outer diameter of 15 mm and a wall thickness

of 2.3 mm. The thermal conductivity of the tube is 40 W/(m K).

Find

a) The overall heat transfer coefficient related to the outer tube surface area.
b) The overall heat transfer coefficient related inner tube surface area.
c) The error when calculating the wall heat transfer coefficient with Equation (2.30).

Solution

Schematics See Figure 2.4.

Assumptions

• The heat conductivity in the wall is constant.
• The temperatures inside and outside of the wall are constant.

Analysis

a) The overall heat transfer coefficient related to the outside diameter can be calcu-
lated with Equation (2.27).
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b) The overall heat transfer coefficient related to the inner diameter is calculated with
Equation (2.28).
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c) The tube wall heat transfer coefficient calculated with Equation (2.21) is:

2 2 40 W/(m K)

ln( / ) 0.015 m ln(15/10.4)Wa

a a id d d

λ
α

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅2

W
14562  

m K

The approximated value calculated with Equation (2.30):
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m K

The value calculated with Equation (2.30) is 19 % too large. Reason: The ratio wall
thickness to diameter is relatively large in this case, thus considering the hollow
cylinder as a wall is not correct.

Discussion

It is extremely important to define the surface area to which the heat transfer
coefficient is related. In this example the overall heat transfer coefficient related to the
inner wall is 44 % larger than that to the outer wall. Using the heat transfer coefficient
related to the inner surface area by mistake as that related to the outer surface area,
the heat exchanger would be 44 % too small in area and thus in rated power.

The calculation of the wall heat transfer coefficient with the Equation (2.30) results
in too high values. For an outer diameter 10 % larger than the inner one, (2.30) results
in an error of 5 %. The deviation in Equation (2.21) can be shown by expansion in
series.
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In Equation (2.30) the expansion in series is stopped after the first term.
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2.1.4 Hollow cylinder with multiple layers

In technology applications tubes (hollow cylinders) often consist of multiple layers.
Examples are heat exchanger tubes with corrosion resistant inner tubes, tubes with an
outside insulation layer, corrosion, fouling and oxide layers inside and outside.
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Figure 2.5: Thermal conduction in a hollow cylinder consisting of multiple layers

Figure 2.5 shows a hollow cylinder, with a wall consisting of n layers with differ-
ent thicknesses and thermal conductivities. The heat transfer coefficients of the
layers related to the outermost surface area are:
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The overall heat transfer coefficient is again the reciprocal of the sum of all rel-
evant heat resistances:
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To determine the wall temperatures the surface area change must be considered.
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EXAMPLE 2.5: Condenser tube with fouling

In a titanium condenser tube of 24 mm outer diameter and 0.7 mm wall thickness an
inside fouling layer of 0.05 mm is detected  after a certain operation time. The thermal
conductivity of titanium is 15 W/(m K), that of the fouling layer 0.8 W/(m K).
In the tube the heat transfer coefficient has the value of 18

 
000 W/(m2 K), outside that

of 13
 
000 W/(m2 K).
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Find

The reduction of the overall hat transfer coefficient.

Solution

Schematics See sketch.

Assumptions

• The thermal conductivity in the layers is constant.
• The wall temperatures of the layers are constant.

Analysis

The overall heat transfer coefficient related to the outermost wall can be calculated
with Equation (2.32). For the clean tube it results in:
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For the tube with fouling the result is:
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Here it is possible to show, that a simplified model provides almost the same result.
With the simplification, the reciprocal of the fouling layer heat transfer coefficient is
added to the reciprocal of the clean overall heat transfer coefficient, the fouled overall
heat transfer coefficient results in:
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This result is due to the very thin fouling layer, compared to the  inner diameter of
the tube.
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Discussion

It could be shown that even a very thin fouling layer results in considerable
reduction of the overall heat transfer coefficient. The reduction calculated in this
example is 27 %, this is a realistic value. But also in titanium tubes without a fouling
the corrosion resistant oxide layer already reduces the overall heat transfer coeffi-
cient by 6 to 8 %.

In practice, the thickness of fouling layers cannot exactly be measured. Further the
determination of the thermal conductivity is rather difficult as the layers can have
different thermal conductivities in dry and wet condition. Values for fouling resis-
tances R

V
 collected in numerous tests, are used to take into account the influence of

fouling when calculating the fouled overall heat transfer coefficients  k
V
.

k
V
 = (1/k + R

V
)–1.

EXAMPLE 2.6: Insulation of a steam pipe

In a steel pipe of 100 mm internal diameter and 5 mm wall thickness, hot steam with a
temperature of 400 °C flows. In the tube the heat transfer coefficient is 1000 W/(m2 K).
The pipe must be protected with an insulation layer and with a 0.5 mm thick aluminum
shell. The thermal conductivity of steel is 47 W/(m K), of aluminum 220 W/(m K) and
of the insulator 0.08 W/(m K). According to the security requirements the
temperature on the outer surface shall no exceed 45 °C at 32 °C room temperature and
15 W/(m2 K) outside heat transfer coefficient.

Find

The required thickness of the insulation, if the material is available with different
thicknesses in 10 mm steps and check which simplification could made.

Solution

Schematics See sketch.

Assumptions

• The thermal conductivity of the layers is constant.
• The wall temperatures of the layers are constant.

Analysis

The temperature of outermost wall surface can be calculated with Equation (2.32).
From there the overall heat transfer coefficient at which the outer surface temperature
does not exceed the 45 °C can be determined.
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100
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With Equation (2.32) the diameter of the insulation can be calculated.
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the unknown value is d

3
. This equation cannot be solved analyti-

cally. Either an equation solver or an iteration delivers a result. The solution for d
3
 is

294 mm. An outer diameter of 300 mm was selected, with which an overall heat
transfer coefficient of  0.511 W/(m2 K) results.

The possible simplification can be demonstrated on the basis of the wall tempera-
tures, calculated with Equation (2.33):
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The temperature drop in the metal walls and in the fluid is only 1.65 K. A calcula-
tion of the insulation layer with 400 °C inner and 45 °C outside temperature would
provide an acceptable result. However,  an iteration is still required.

Discussion

If in a wall consisting of several layers one of the layers has, compared to the other
layers, a very low heat transfer coefficient, almost the total temperature drop occurs
in this layer. The overall heat transfer coefficient is in this case only slightly smaller
than that of the layer with the lowest heat transfer coefficient.

2.1.5 Thermal conduction in a hollow sphere

The determination of the heat rate in hollow spheres (Figure 2.6) is similar to that of
the hollow cylinder. The surface area A for the heat flux changes with the radius
adequate to the sphere surface area  A = 4 . π . r2.
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The solution of this differential equation is:
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Figure 2.6: Thermal conductivity in a hollow sphere

The heat transfer coefficient related to the outer surface area is:
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The overall heat transfer coefficient of a hollow sphere that wall consists or mul-
tiple layers of different thicknesses and thermal conductivities is calculated as:
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The wall temperatures of the layers can be calculated with Equation (2.38).
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It is noteworthy that the heat rate of a hollow sphere with increasing wall thickness
do not reach the value of zero. In plane and cylindrical walls the heat rate reaches zero
with increasing wall thickness. The heat rate in a hollow sphere according to Equa-
tion (2.35) does not reach zero when the outer diameter goes to infinite.
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More precisely, the heat transfer coefficient goes to zero but the surface area A =
π  . d2 goes to infinity and thus the heat flux has the value as given in Equation (2.39).
This means that a sphere surface does always transfer heat to an infinite environment
by heat conduction, as long as a temperature difference exists.

EXAMPLE 2.7: Insulation of a sphere-shaped tank

A spherical steel tank for carbon dioxide with 1.5 m outside diameter, 20 mm wall
thickness shall be insulated. The temperature in the tank is –15 °C. The isolation shall
be designed such that at an outside temperature of 30 °C the heat rate into the tank
remains under 300 W. The inside and outside heat transfer resistances can be
neglected. The insulation has a thermal conductivity of  0.05 W/(m K) and the steel 47
W/(m K).

Find

The required thickness of the insulation.

Solution

Assumptions

• The thermal conductivity of the tank wall and insulation is constant.
• The process is stationary.

Analysis

For not exceeding the given heat rate a corresponding small overall heat transfer
coefficient is required. In this specific case it is useful to select the inner wall as
reference surface, as the outer surface first after the determination of the insulation
layer thickness will be known. The requested overall heat transfer coefficient related
to the inner wall surface is:
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The neglecting of the fluid heat transfer resistances means, that the according
heat transfer coefficients are assumed as infinite and inserted in Equation (2.36). With
consideration of the relation of the heat transfer coefficient to the inner wall Equation
(2.35) results in the following relations:
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With the two equations we receive:
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The overall heat transfer coefficient is the term in the brackets in the above equa-
tion. Its value is known and the equation can be solved for d

3
.
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Discussion

For some specific problems it is convenient not to relate the heat transfer coeffi-
cients to the outer surface area. If not all required temperatures are given, connecting
the rate equations for different layers can deliver the required solution.

2.1.6 Thermal conduction with heat flux to extended surfaces

To extend the heat transfer surface area of heat exchangers fins can be installed. Also
support rods and feet can transfer heat to or from tanks. Fins discussed here have a
constant cross-section. If the side walls would be ideally insulated we would have
the case of thermal conduction in a plane wall, in which a linear temperature gradient
would develop, constant thermal conductivity provided. The fins and rods discus-
sed here have no insulated side walls, thus they are transferring heat form or to their
environment. The heat rate in the fins is not constant. It is changing according to the
transferred heat through the side walls. This is a two-dimensional phenomenon. A
plane wall with constant cross-section, kept to a constant temperature ϑ

0
 at the base

(fin foot) and with heat transferred through the side surfaces can be handled as one-
dimensional problem if  the temperature in each cross sectional area can be assumed
as constant. Figure 2.7 shows a fin with constant square cross-section installed on a
surface with a constant temperature ϑ

0
, from where a constant heat rate enters the fin.
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Figure 2.7: Thermal conduction in a fin

The fin is in contact with a fluid of lower temperature ϑ
u
 and transfers heat to the

fluid. The heat transfer coefficient in the fluid is α
u
.

Now the task is to determine the temperature distribution and heat rate in the fin.

2.1.6.1 Temperature distribution in the fin

The heat rate at the location x that enters the volume element b . s . dx through the
surface area  A = s . b is:

dx

d
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ϑ
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At the location  x + dx the following heat rate leaves the volume element:
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The change in the heat rate is:

dx
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d
AQQQ xdxxx ⋅⋅⋅−=−= + 2

2ϑ
λδ (2.42)

This change in heat rate must equal the heat rate which leaves the volume element
at its side walls according to the first law of thermodynamics. The heat rate through
the side wall element U . dx is determined by the heat transfer coefficient and tempera-
ture difference.

dxUQ UUx ⋅−⋅⋅=− )( ϑϑαδ (2.43)

The circumference of the fin is U. Equations (2.42) and (2.43) deliver the following
differential equation:
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Assuming a constant outside temperature ϑ
u
, constant heat transfer coefficient α

u

and constant thermal conductivity λ, the first term on the right side of Equation (2.44)
can be replaced by the constant m2. With substituting ϑ  – ϑ

U
 by Δϑ, the following

differential equation results:
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Solving the differential equation results in:

xmxm eCeC ⋅⋅− ⋅+⋅= 21ϑΔ (2.46)

The constants C
1
 and C

2
 must be determined with the boundary conditions. The

boundary conditions can be obtained on both ends of the fin.
At x = 0 the temperature difference is Δϑ

0
.

If the heat rate at the end of fin may be neglected i.e. at x = h the heat rate is zero,
the temperature gradient has the value (dϑ / dx) = 0.

With these two boundary conditions we receive:
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From Equation (2.48) the relationship between C
1
 and  C

2
 is:
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Equation (2.49) inserted in Equation (2.47), delivers for C
2
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Equation (2.50) inserted in Equation (2.49), determines C
1
:
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We receive for the temperature difference Δϑ:
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For an infinitely long fin the negative exponential functions have the value of zero
and Equation (2.51) delivers:

xmex ⋅−⋅= 0)( ϑΔϑΔ (2.53)

For finite long fins in Equation (2.52) the exponential functions can be replaced by
hyperbola functions.
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Figure 2.8 shows the relative temperature Δϑ/Δϑ
0
 versus the relative length x/h

with characteristic term of fins m . h as parameter.
For large values of  m . h the temperature of the fin changes rapidly. In fins with low

heat conductivity and large outside heat transfer coefficients, a large change of  tem-
perature occurs.
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Figure 2.8: Relative temperature versus relative length

2.1.6.2 Temperature at the fin tip

The temperature at the fin tip is:
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2.1.6.3 Heat rate at the fin foot

One of most important terms is the heat rate at the fin foot, because it is the total heat
rate transferred from or to the fin. We determine it with Equation (2.40), using the
spacial temperature gradient in the fin at  x = 0.
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As the heat rate at the fin foot is the same as that transferred through the total fin
surface, it can also be determined by using the temperature difference from Equation
(2.54) in Equation (2.43) and integrating the resulting equation from x = 0 to x = h.

2.1.6.4 Fin efficiency

Fins are installed to extend the heat transfer surface area. To have an effective
extension of the surface area, the temperature in the fin should only be subject to a
small temperature change. As the fin reaches the temperature of the surroundings the
heat rate decreases, thus the material is not used as efficiently as closer to the base.
The temperature in an ideal fin would not change, i.e. the heat transfer would occur
always at the largest temperature difference Δϑ

0
. In this ideal case the heat rate would

be:

0ϑΔα ⋅⋅⋅= Uideal hUQ (2.57)

The ratio of the real heat rate to the ideal one, according to Equation (2.57), is the
fin efficiency η

Ri
. The real heat rate is given by Equation (2.56).

hm

hm
hm

hU

mA

Q

Q

Uideal

x
Ri

⋅

⋅
=⋅⋅

⋅⋅

⋅⋅
== = )tanh(

)tanh(0

α

λ
η (2.58)

Figure 2.9 demonstrates the fin efficiency versus characteristic fin term m . h.
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Figure 2.9: Fin efficiency versus m . h

As already shown in Figure 2.8, the fin temperatures underlie a larger change with
higher m . h. This is the reason for the dropping of the fin efficiency.

The fin efficiency decreases with increasing fin height h and heat transfer
coefficient α

U
 and circumference to cross-section ratio, with increasing

thermal conductivity of the fin, its efficiency is also increasing.

Fins are economical, if the additional costs for the fins result in lower total cost of
the heat exchanger. As a rule of thumb, the fin efficiency should be larger than 0.8.
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Short fins with high conductivity and high ratio of circumference to cross-section
leads to high fin efficiency. Finned surfaces mainly are selected at low heat transfer
coefficients, witch are familiar to gases.

2.1.6.5 Applicability for other geometries

Here the rules were developed for a square shaped fin with constant cross section.
They are applicable without any restriction for fins with a constant cross section e.g.
round rods, T-rods etc. Finned tubes will be discussed in Chapter 3.3.

EXAMPLE 2.8: Enlargement of the heat exchanger surface area by fins

A boiler has plane steel walls. To extend the surface area cylindrical steel fins of the
same material with 25 mm height and 8 mm diameter are installed. The fins are welded
to the steel plate and have a squared arrangement with 8 mm gaps between the fins.
The heat transfer coefficient of the flue gas is 50 W/(m2 K). The thermal conductivity
of the fins is 17 W/( m K). The temperature of the wall is 100 °C, that of the flue gas
1000  °C.

Find

a) Extension of the surface area.
b) The heat flux with and without fins.
c) The temperature at the fin tip.

Solution

Schematics See sketch.

Assumptions

• The thermal conductivity in the fins is constant.
• At the end of the fins no heat is transferred.
• The temperature in the fins changes only in axial direction.
• The fins have metallic contact with the steel plate.

Analysis

a) For the installation of one fin a surface area of square shape, with a side length
from fin center to fin center, which is 16 mm, is used. Per fin, a surface area of 256 mm2

is required, thus 3906 fins can be installed on a surface area of 1 m2. The total heat
transfer surface area is the surface area A of the plate reduced by the  cross-sections
of the fins A

0
 plus the surface area of the fins A

Ri
. The specific increase of the surface

area is:

8

8

25

a

ø8
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2
0

2 2
1

4
tot Ri Ri RiA A A A d d h

A A a a

π
π

− + ⋅
= = − ⋅ + ⋅ = 3.258

b) The heat flux to the plate without the fins is:

0 2

W
( ) 50 (1000 100) K

m Kwithout U Uq α ϑ ϑ= ⋅ − = ⋅ ⋅ − ⋅ =
⋅ 2

kW
45  

m

With the installation of the fins the surface area of the plate is reduced, but addi-
tional heat will be transferred by the fins. The heat rate transferred by the fins can
either be calculated with Equation (2.56) or with using the fin efficiency. Both meth-
ods will be shown.

0
0 02

2
0

02 2

1
( )

(1 ) ( ) tanh( )
4

with U U

QRiRi
U U

A A
q Q

A a
A md

m h
a a

α ϑ ϑ

λ Δϑπ
α ϑ ϑ

−
= ⋅ − + ⋅ =

⋅ ⋅ ⋅
= − ⋅ ⋅ ⋅ − + ⋅ ⋅

2
0

0 02 2
( ) 1 ( )

4
Ri Ri Ri Ri

with U U Ri U U

A A A d d h
q

A a a

η π
α ϑ ϑ π η α ϑ ϑ

− + ⋅ ⋅
= ⋅ ⋅ − = − ⋅ + ⋅ ⋅ ⋅ ⋅ −

For both equations the value of m is required.

1
2 2

4 4 50 4
38.35  m

17 0.008 m
U U Ri U

QRi RiRi

U d
m

A dd

α α π α

λ λλ π
−⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = = = =
⋅ ⋅⋅ ⋅ ⋅ ⋅

Fin efficiency:   
tanh( )

0.776Ri

m h

m h
η

⋅
= =

⋅

The upper equation gives the heat rate as:

2 2
0

2

[ 0.25 / (1 tanh( ))] ( )

[50 3906 / 4 0.008 (50 17 38.35 tanh(38.35 0.025))] 900

wih U Ri Uq d a m m hα π λ ϑ ϑ

π

= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ − =

= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ =
2

kW
121.8  

m

The lower equation delivers:

( )

( )

2

2

kW
1 ( / 4 45

m
kW

1 3906 0.008 (0.002 0.025 0.776 45
m

with Ri Ri Riq n d d hπ η

π

= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ = 2

kW
121.8  

m

The ratio of  heat flux with and without fins is:

/mit ohneq q = 2.708

c) With Equation (2.51) the fin tip temperature can be determined.
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0

1 900 K
( ) ( ) 1000 C

cosh( ) cosh(38.35 0.025)U Uh
m h

ϑ ϑ ϑ ϑ
⋅

= + − ⋅ = ° − = °
⋅ ⋅

398  C

Discussion

By installing the fins the heat transfer surface area is increased by a factor of 3.258,
the heat flux by a factor of 2.7. The non-proportional increase of the heat flux is due to
the temperature change in the fins. Consequently, the heat flux decreases along the
fins. To determine the heat flux, two different calculation methods were demon-
strated, both yielding the same result.

EXAMPLE 2.9: Heat transfer through a fixation rod

A tank for hot steam is fixed with rectangular steel rods of 20 mm x 40 mm. The rod’s
length is 400 mm. The tank is coated with a 100 mm insulator, e.g. the first 100 mm of
the rod is within the insulation. It can be assumed that this heat insulation is ideal.
The ambient heat transfer coefficient of the air, outside the insulation, has the value
of  5 W/(m2 K). The tank surface has a temperature of 150 °C, the air 20 °C. The thermal
conductivity of the rod is 47 W/(m K).

Find:

a) Temperature distribution along the rod.
b) Insulation thickness, to avoid rod temperatures outside the insulation

exceeding 90 °C.

Solution

Schematics See sketch.

Assumptions

• The thermal conductivity in the rod is constant.
• At the fin tip no heat transfer occurs.
• In the rod the temperature changes only in axial direction.
• Between rod and tank there is a metallic contact.

Analysis

a) From the part of the rod (the first 100 mm) which is surrounded by the insulation,
no heat is transferred through the side walls. Therefore, this part can be treated as a
plane wall with the thickness s, the remaining part of the rod is a fin with the height h.
According to Equation (2.6) the heat rate in the plane wall is:

ϑ

ϑ0

W

100

400

20
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)( 0ϑϑ
λ

−⋅⋅= WA
s

Q

This heat rate enters the fin and its value can be calculated with Equation (2.56).

)tanh()()tanh( 00 hmmAhmmAQ U ⋅⋅⋅−⋅⋅=⋅⋅⋅⋅⋅= ϑϑλϑΔλ

The temperature ϑ
0
 at the beginning of the fin is not yet known. From both equa-

tions ϑ
0
 can be determined.

1)tanh(

)tanh(
0

+⋅⋅⋅

⋅⋅⋅⋅+
=

hmms

hmmsUW ϑϑ
ϑ

First the value of m must be calculated.

1
2

2 ( ) 10 2 (0.02 0.04)
5.649  m

47 0.02 0.04 m
U UU a b

m
A a b

α α

λ λ
−⋅ ⋅ ⋅ + ⋅ ⋅ +

= = = =
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The temperature ϑ
0
 we receive is:

1

0 1

150 C 20 C 0.1 m 5.649 m tanh(5.649 0,3)
105.07 C

0,1 m 5.649 m tanh(5.649 0.3) 1
ϑ

−

−

⋅ ° + ⋅ ° ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = °

⋅ ⋅ ⋅ ⋅ ⋅ +

In the first 100 mm of the rod the temperature drops linearly from 150 to 105.07 °C.
Outside of  the insulation the temperature along the rod can be determined by Equa-
tion (2.54):

[ ]
)cosh(

)(cosh
)()( 0 hm

xhm
x UU

⋅

−⋅
⋅−+= ϑϑϑϑ

The following values were calcu-
lated:

x ϑ(x)
m  °C

0.00 150.00
0.10 105.07
0.13 92.76
0.16 82.53
0.19 74.11
0.22 67.25
0.25 61.74
0.28 57.44
0.31 54.22
0.34 51.98
0.37 50.66
0.40 50.23
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The diagram shows the temperature distribution along the rod.

b) To determine the insulation thickness required to not exceed a rod surface
temperature of 90 °C outside the insulation, the equation used for the calculation of
the temperature at the beginning of the fin can be used. The value of the length s is
the unknown quantity. The height h of the fin, which is now h = l – s, will be inserted.

1)](tanh[

)](tanh[
0

+−⋅⋅⋅

−⋅⋅⋅⋅+
=

slmms

slmmsUW ϑϑ
ϑ

This equation cannot be solved analytically, but it converges fast. A simple itera-
tion procedure results in: 179 mm.

Discussion

The heat rate transferred outside the insulation from the rod determines the tem-
perature change in the insulated part. Outside the insulation there is a rather slow
change in temperature. At the end of the rod the temperature is 55.2 °C, i.e. 35 K higher
than the ambient temperature.

2.2 Transient thermal conduction

2.2.1 One-dimensional transient thermal conduction

2.2.1.1 Determination of the temporal change of temperature

Putting a body with the starting temperature ϑ
A
 into an environment with another

temperature, a temporal and spacial change of the temperature distribution in the
body will occur. The body experiences a process of transient thermal conduction.
As an example, we investigate an infinite plane plate with the thickness 2 s, which has
the starting temperature ϑ

A
 at the time t = 0, and will be brought into a fluid with a

lower temperature ϑ
∞
 (Figure 2.10). At the surface of the plate heat will be transferred

to the surrounding fluid.
The heat rate from the plate surface are is determined by the heat transfer coeffi-

cient α of the fluid and the temperature difference between the plate surface and the
fluid. With cooling of the surface a spacial temperature gradient will be generated in
the plate, driving a heat flux. The transient and spacial temperature distribution in the
plate is not yet known. The temperature change shown in Figure 2.10 shows only that
the temperature decreases from the middle to the surface of the plate and that - with
time - the temperatures decreases and converges asymptotically towards the tem-
perature of the surroundings ϑ

∞
. The latter is reached at infinity only.

The change of the heat rate in a volume element of the plate is due to the change
of the spacial temperature gradient. The heat rate causes a decrease of the enthalpy
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(heat content) and consequently that of the temperature. The tangent of the tempera-
ture gradient at the plate surface matches the temperature ϑ

∞
 in a distance of λ/α .

ϑϑ
oo λ / α

-ϑ ϑ
O oo

t = t 3

x

x x + dx

4

t = oo

t = t

2 s

ϑ A

t = t 2

t = 0

t = t 1

Figure 2.10: Temperature development due to outside cooling of a plane plate

As the side dimensions of the plate are infinite, only heat transfer in x direction is
possible. The heat rate to a volume element in x direction can be defined by the
following differential equation:

x
AQx

∂

∂ϑ
λ ⋅⋅−= (2.59)

At the location x + dx the heat rate is:

dx
x

A
x

Adx
x
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∂

ϑ∂
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∂ϑ
λ

∂

∂
(2.60)

We receive for the change of the heat rate:

dx
x

AQQQd xdxxx ⋅⋅⋅−=−= + 2

2

∂

ϑ∂
λ (2.61)

As only heat transfer in x direction is possible, the transient change of the heat
rate is equivalent to the change of the enthalpy of the volume element, which  is
defined as:

t
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∂
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ρδ ⋅⋅⋅⋅−= (2.62)
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With Equation (2.61) and Equation (2.62) we receive the differential equation for
the temporal and spacial temperature distribution in the plate.

2

2
with

p

a a
t cx

∂ϑ ∂ ϑ λ

∂ ρ∂
= ⋅ =

⋅ (2.63)

The term a is the thermal diffusivity of the material. Its unit is m2/s. As the differ-
ential equation shows, the thermal diffusivity is the only material characteristic which
determines the transient and spacial temperature distribution when a material is
cooled or heated from outside. The transient thermal conduction in a material is go-
verned only by the thermal diffusivity and temperature differences. As metals and ga-
ses have similar thermal diffusivities they are cooled or warmed almost in the same
time. Liquids and non-metallic solids have lower thermal diffusivities, thus have lon-
ger cooling and warming times.

The generally applicable three-dimensional differential equation for transient heat
conduction is:

ϑ
∂

ϑ∂

∂

∂ϑ 2
2

2

∇⋅=⋅= a
r

a
t (2.64)

The solution for a three-dimensional temperature distribution is possible only for
a few simple examples. Therefore, numerical solution procedures are used for complex
geometries. One-dimensional analytical solutions can be given for geometrically
simple problems in the form of so called Fourier series. For the one-dimensional plate
one generally applicable solution is:

[ ] tCa

n

exBCxBCtx ⋅⋅−
∞

=

⋅⋅⋅+⋅⋅= 3

1
21 )sin()cos(),(ϑ (2.65)

For the corresponding boundary conditions the constants B and C can be deter-
mined. In the case of infinitely large heat transfer coefficients in the surroundings, i.e.
the surface of the plate having the temperature of the surroundings, we receive the
following solution:

2 2

24

1

4 1
sin with 1,3,5...

2

n a t
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n x
e n

n s

π
ϑ ϑ π

ϑ ϑ π

⋅ ⋅ ⋅∞ −
∞ ⋅

=∞

− ⋅ ⋅
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− ⋅
(2.66)

Fourier series show a rapid convergence but the calculation of the series is time-
consuming. In Figures 2.11 to 2.13 solutions for a plane plate, cylinder and sphere are
presented. With the diagrams, local temperatures at the surface and in the center as
well as the caloric average temperatures of the body can be determined.

In the diagrams the following dimensionless characteristics are used:

dimensionless temperature Θ :
∞

∞

−

−
=

ϑϑ

ϑϑ
Θ

A

(2.67)

Fourier number Fo: 2/ staFo ⋅= (2.68)
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Biot number Bi: λα /sBi ⋅= (2.69)

The dimensionless temperature is the ratio of the difference between local and
ambient temperature ϑ − ϑ

∞
 to the largest temperature difference in the process,

which is ϑ
A
 − ϑ

∞
.

The Fourier number is  a dimensionless time. It is the ratio of heat rate to the
temporal change of the enthalpy.

The Biot number is the ratio of the conduction heat transfer resistance in the
body and the convection heat transfer resistance between body and surrounding
liquid.

In the diagrams 2.11 to 2.13 the dimensionless temperature is given as a function
of the Fourier and Biot  number. The index O is for the surface temperatures of the
body and m stands for the center of the body. The dimensionless caloric medium
temperature Θ  is the integrated mean temperature of the body. In the diagrams, X
is half of the plate thickness, R is the radius of the cylinder and sphere.

The temperature reached after a certain time can be determined with the  Fourier
and Biot number. The time required for a certain temperature change can be
calculated with the Fourier number, received with the dimensionless temperature
and Biot number. Heat transfer coefficients, required for a certain temperature
change in a given time, can be determined with the Biot number, obtained with the
dimensions-less temperature and the Fourier number from the diagrams.

2.2.1.2 Determination of transferred heat

With the mean temperature the transferred heat in a given time to or from a body
can be determined:

( ) ( )A p AQ H H m h h m c ϑ ϑ= − = ⋅ − = ⋅ ⋅ − (2.70)
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Figure 2.11: Temperature development of transient thermal conduction in a plate
[2.1]
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Figure 2.12: Temperature development of transient thermal conduction in a circular
cylinder [2.1]
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Figure 2.13: Temperature development of transient thermal conduction in a sphere  [2.1]
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EXAMPLE 2.10: Cooling of a plastic sheet

A plastic sheet of 4 mm thickness and 1 m width leaves a roll with a temperature of
150 °C. It is cooled with an air fan. After some distance it is cut into pieces of 2 m
length. To avoid plastic deformation during the cutting process, the temperature in
the middle of the sheet must be below 50 °C. The air temperature is 25 °C  and the heat
transfer coefficient 50 W/(m2 K). The material properties of the plastic are:

ρ = 2
 
400 kg/m3, λ = 0.8 W/(m K) c

p
 = 800 J/(kg K).

Find

a) The speed of the plastic sheet.
b) Which heat rate is removed from the sheet.

Solution

Schematic See sketch.

Roll
5 m

= 150 °CϑA

Cutting device

Assumptions

• The material properties in the sheet are constant.
• Heat transfer from the side can be neglected.
• The speed of the sheet is constant.

Analysis

a) With the time required to cool the sheet from 150 °C to 50 °C the speed can be
determined. The time can be determined using the Fourier number. As it is a function
of the dimensionless temperature and the Biot number, first these two parameters
must be calculated. The dimensionless temperature according to Equation (2.67) is:

50 25
0.2

150 25
m

m
A

ϑ ϑ

ϑ ϑ
∞

∞

− −
Θ = = =

− −

The Biot number is determined with Equation (2.69):

2

50 W 0.002 m m K
0.125

m K 0.8 W

s
Bi

α

λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

The central diagram in Figure 2.11 delivers the Fourier number value Fo = 15. To
calculate the required time, first the thermal diffusivity must be determined.
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3 2
70.8 W m kg K m

4.17 10
m K 2400 kg 800 J sp

a
c

λ

ρ
−⋅ ⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

With the Fourier number and Equation (2.68) we find for the required time:

2 2 2

7 2

15 0.002 m s
144 s

4.17 10 m

Fo s
t

a −

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

This time is required to cool the sheet when traveling the 5 m distance to the cutter.
The velocity is x/t = 0.0347 m/s = 2.08 m/min.

b) To determine the heat rate, first the specific heat removed per kg from the
sheet must be known. This can be calculated with Equation (2.70). For this calcula-
tion from the bottom diagram in Figure 2.11 the dimensionless mean temperature Θ
can be estimated. With the Fourier number of 15 and Biot number 0.125 we receive:
Θ = 0.17. The mean temperature of the sheet after 5 m is:

( ) 25 C (150 25) K 0.17 46.25 CAϑ ϑ ϑ ϑ∞ ∞= + − ⋅Θ = ° + − ⋅ ⋅ = °

After dividing both sides of Equation (2.70) by the mass, we receive the specific
heat q, removed per kg mass. The heat rate is the specific heat multiplied by the mass
flow rate. The latter  can be determined by the well-known equation of fluid mechan-
ics.

32 0.0347 m/s 2 400 kg/m 2 0.002 m 1 m 0.333 kg/sm c s bρ= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

We receive for the heat rate:

( ) 0.417 kg/s 800 J/(kg K) (150 46.25) Kp AQ m q m c ϑ ϑ= ⋅ = ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 27.67  kW

Discussion

Many technical problems can easily be calculated with the diagrams presented in
the book. However, more effects often have to be considered. In our example the air
would be blown in counterflow to the motion of the sheet and its temperature would
not remain constant. Taking into account the temperature rise of the air, a step-by-
step calculation could be performed. However, a computer code would be required
for such a procedure. Our calculation is valid only when the temperature rise of the air
is not too large.

EXAMPLE 2.11: Cooling of beer cans

For a barbecue, beer cans should be cooled from 30 °C to 4 °C mean temperature in a
refrigerator. The cans have a diameter of 65 mm. The temperature in the refrigerator
has the constant value of 1 °C, the heat transfer coefficient is 10 W/(m2 K). The mate-
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rial of the can can be regarded as ideal heat conductor. The material properties of beer
are:

ρ = 1
 
020 kg/m3, λ = 0.64 W/(m K) c

p
 = 4

 
000 J/(kg K).

Find

The required cooling time.

Solution

Assumptions

• The material properties of the beer are constant.
• The can is assumed infinitely long.
• The temperature and heat transfer coefficient in the refrigerator are constant.
• The beer in the can does not flow.

Analysis

To determine the Fourier number and from there the time, first the dimensionless
mean temperature and Biot number must be calculated.

2

4 1 10 W m K 0.0325 m
0.103 0.51

30 1 m K 0.64 WA

R
Bi

ϑ ϑ α
Θ

ϑ ϑ λ
∞

∞

− − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = = = = =

− − ⋅ ⋅ ⋅

The Fourier number is determined from the bottom diagram in Figure 2.12 as Fo =
2.5. To determine the time, the thermal diffusivity must be calculated.

3 2
70.64 W m kg K m

1.57 10
m K 1020 kg 4000 J sp

a
c

λ

ρ
−⋅ ⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The Fourier number according to Equation (2.68) delivers the time.

2 2 2

7 2

2.5 0.0325 m s

1.57 10 m

Fo r
t

a −

⋅ ⋅ ⋅ ⋅
= = = =

⋅ ⋅
16834  s 4.7  h

Discussion

This analysis was performed with a lot of assumptions. In reality during the cool-
ing, temperature and heat transfer coefficients change and beer is a liquid and due to
the temperature differences and gravity forces a flow will occur in the can. The as-
sumed infinite length of the can is also doubtful. The material of the can itself is really
negligible. Despite the assumptions, the calculated time is close to reality. A test I
carried out at home resulted in a time of approximately 5 hours. This is a very long time
to wait for a cold beer, isn’t it!
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EXAMPLE 2.12: Cooling of a wire in an oil bath

A wire of 4 mm diameter is drawn from hot steel and cooled in an oil bath of 30 °C
temperature. When entering the bath the wire has a temperature of 600 °C. The heat
transfer coefficient in the bath is 1

 
600 W/(m2 K). The traveling time of the wire in the

bath is 5 s. The material properties of the wire are:

ρ = 8
 
000 kg/m3, λ = 40 W/(m K), c

p
 = 800 J/(kg K).

Find

The temperatures in the middle and on the surface of the wire, when leaving the bath.

Solution

Schematic See sketch.

Assumptions

• The material properties of the wire are constant.
• The temperature and heat transfer coefficient in the bath are constant.

Analysis

To find the temperatures, the  Fourier and Biot number have to be calculated. For
the Fourier number we need the thermal diffusivity.

3 2
640 W m kg K m

6.25 10
m K 8000 kg 800 J sp

a
c

λ

ρ
−⋅ ⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Fourier number:                
6 2

2 2 2

5 s 6.25 10 m
7.8

s 0.002 m

t a
Fo

r

−⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

Biot number:               2

1600 W 0.002 m m K
0.08

m K 40 W

r
Bi

α

λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

The dimensionless surface temperature can be obtained from the top diagram, the
temperature in the center from the center diagram in Figure 2.11. We receive: Θ

O
 = 0.26

and Θ
m
 = 0.27.

The temperatures are:

( ) 30 C (600 30) K 0.26O A Oϑ ϑ ϑ ϑ∞ ∞= + − ⋅Θ = ° + − ⋅ ⋅ = °178.2 C

( ) 30 C (600 30) K 0.27m A mϑ ϑ ϑ ϑ∞ ∞= + − ⋅Θ = ° + − ⋅ ⋅ = °183.9 C

Wire

ϑA

Oil bath
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Discussion

In the diagrams we had to use, the reading accuracy is rather poor. Both tempera-
tures obtained have almost the same value. The temperatures can be determined with
an accuracy of only ± 20 °C.

EXAMPLE 2.13: Boiling eggs

Eggs are boiled by steam condensing on their surface at 100 °C. At the start of
boiling, the eggs have a temperature of 20 °C. The heat transfer at condensation was
measured with 13

 
000 W/(m2 K). The eggs are assumed to be spheres of homogen-

eous consistence. The eggs’ material properties are:
ρ = 1

 
050 kg/m3, λ = 0.5 W/(m K) c

p
 = 3

 
200 J/(kg K).

Find

a) The temperature in the center reached after 5 minutes of boiling.
b) The time required to reach the same temperature in the center at 2

 
500 m above sea

level, where the condensation temperature drops to 80 °C.

Solution

Schematic See sketch.

Assumptions

• The eggs’ material properties are constant.
• The eggs are regarded as spheres of homogeneous consistence.
• The temperature and heat transfer coefficient of condensation are constant.

Analysis

a) To receive the temperature, the Fourier, Biot number and thermal diffusivity
must be determined.

3 2
70.5 W m kg K m

1.49 10
m K 1050 kg 3200 J sp

a
c

λ

ρ
−⋅ ⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Fourier number:                
7 2

2 2 2

300 s 1.49 10 m
0.071

s 0.025 m

t a
Fo

r

−⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

Biot number:                2

13000 W 0.025 m m K
650

m K 0.5 W

r
Bi

α

λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

Sphere= 20 °CAϑ

oo

α

ϑ

= 13000 W / (m   K)    

= 100 °C
2
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The central diagram in Figure 2.13 delivers the dimensionless temperature in the
center of the egg with  Θ

m
= 0.75. The temperature is:

( ) 100 C (20 100) K 0.75m A mϑ ϑ ϑ ϑ∞ ∞= + − ⋅Θ = ° + − ⋅ ⋅ = °40 C

b) To determine the time at which the eggs reach a temperature of 40 °C at 80 °C
ambient, the dimensionless temperature is needed.

40 80
0.67

20 80
m

m
A

ϑ ϑ

ϑ ϑ
∞

∞

− −
Θ = = =

− −

In the central diagram in Figure 2.13 the Fourier number result as Fo = 0.115. The
boiling time is proportional to the Fourier number.

0.115/0.071 5  min .t = ⋅ = 8 1  min

Discussion

Despite the quite simplifying assumptions applied, like sphere shape and homog-
enous consistence, the results are rather close to reality. Egg white starts to solidify
at 42 °C. After 5 minutes of boiling the eggs are still liquid in the center and solidifying
to the surface, as a well-boiled egg should be!

EXAMPLE 2.14: Heating up a chipboard

On one side of a chipboard of 20 mm thickness, a veneer is to be glued on. This
requires that the surface side, the side the veneer is glued on, is heated up to 150 °C.
The chipboard will come into contact with hot air of 200 °C temperature on this side.
The other side is placed on an insulator which can be assumed as ideal. At the start
of the heating the chipboard has a temperature of 20 °C. The heat transfer coefficient
of the air blown with a fan is 50 W/(m2 K). The material properties of the chipboard are:

ρ = 1
 
500 kg/m3, λ = 1.0 W/(m K) c

p
 = 1

 
200 J/(kg K).

Find

a) The time to reach the 150 °C surface temperature.
b) The savings achieved by heating with the insulation on one side.

Solution

Schematic See sketch.
Insulator

Chipboard
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Assumptions

• The material properties of the chipboard are constant.
• On the insulated side of the chipboard no heat is transferred.
• In the air the temperature and heat transfer coefficient are constant.

Analysis

a) On the thermally insulated side of the chipboard no heat transfer occurs.
Therefore, the temperature gradient there is zero. The temperature profile is the same
as that in one half of a plate with double thickness, heated from both sides. To find
the heating time, the Fourier number needs to be determined. The dimensionless
surface temperature and Biot number, calculated with doubled thickness, are
required. For the dimensionless surface temperature we receive:

150 200
0.28

20 200
O

O
A

ϑ ϑ
Θ

ϑ ϑ
∞

∞

− −
= = =

− −

Biot number:  2

2 50 W 0.02 m m K
1

m K 1 W

s
Bi

α

λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

The Fourier number from the top diagram in Figure 2.11 is  Fo = 1.25. To find the
time, first the thermal diffusivity has to be calculated.

3 2
71 W m kg K m

5.56 10
m K 1500 kg 1200 J sp

a
c

λ

ρ
−⋅ ⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The Fourier number, Equation (2.68), delivers the time:

2  2 2

7 2

(2 ) 1.25 0.02 m s

5.56  10 m

Fo s
t

a −

⋅ ⋅ ⋅ ⋅ ⋅
= = = =

⋅ ⋅
900  s 15  min

b) The heat received from the chipboard per square meter is:

)(
)(

Ap
Ap cs

A

cm

A

Q
ϑϑρ

ϑϑ
−⋅⋅⋅=

−⋅⋅
=

From the bottom diagram in Figure 2.11 we determine the dimensionless mean
temperature with Bi = 1 and Fo = 1.25 : 0.41Θ = . The mean temperature is:

( ) 200 C (20 200) K 0.41 126.2 CAϑ ϑ ϑ ϑ Θ∞ ∞= + − ⋅ = ° + − ⋅ ⋅ = °

The heat  received per square meter we calculate as:

3

/ ( )

0.02 m 1500 kg/m 1200 J/(kg K) (126.2 20) K

p AQ A s cρ ϑ ϑ= ⋅ ⋅ ⋅ − =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 23823.2  kJ / m
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For the chipboard heated on both sides, the Fourier and Biot number must be
calculated with half of the board thickness. The Biot number is then Bi = 0.5. The
Fourier number from the diagram results in Fo = 2.6. The heat up time would be
shortened to 468 s.The dimensionless mean temperature is: 0.31Θ = , i.e. the mean
temperature and the heat per square meter: ϑ  = 144.2 °C and Q/A = 4471.2 kJ/m2.

Discussion

A plane plate insulated on one side can be handled as a plate of double thickness.

2.2.1.3 Special solutions for short periods of time

In Figure 2.10 it can be seen that at time t = t
1
 the temperature in the middle of the plane

plate still has its starting value. In the diagrams 2.11 to 2.13 it can also be seen that
with Fourier numbers smaller than 0.01 no change of temperature in the middle of the
body happens. For a short period of time we receive a special solution of the differen-
tial Equation (2.63):

* 2 * * 2* ( ) ( ) * *( ) 1 ( )x x Bierf x e e erf x Bi− +Θ = + ⋅ ⋅ − − (2.71)

The Gauß error function is erf (error function), x* a dimensionless distance to the
wall related to (a . t)0,5 and Bi* the Biot number, built with the above wall distance x*.

The dimensionless distance to wall distance x* and the Biot number Bi* have the
following definitions:

λ

α ta
Bi

ta

x
x

⋅⋅
=

⋅⋅
= **

2
(2.72)

Gauß error function:

⋅⋅= −

z
x dxezerf

0

22
)(

π
(2.73)

The integral can be solved only numerically. The result is shown in Figure 2.14.
For short periods of time the temperature ϑ

m
 in the middle of the body remains the

starting temperature ϑ
A
. The surface temperature ϑ

O
 we receive at x* = 0 is:

2* *1 ( )Bi
O e erf BiΘ = ⋅ − (2.74)

*

1

Bi
O

⋅
=

π
Θ (2.75)

The errors when using the error function solution are less than 1 % if compared to
an exact solution for short periods of time.
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Figure 2.14: Gauß error function

The surface temperatures for Bi* reaching infinite values, is the limit of  Equation
(2.71):

⋅⋅
==

ta

x
erfxerfO

2
)( *Θ (2.76)

The heat flux through the surface is:

)()()( OA

p

OAO
t

c

ta
tq ϑϑ

π

ρλ
ϑϑ

π

λ
−⋅

⋅

⋅⋅
=−⋅

⋅⋅
= (2.77)

The heat transferred through the surface until time t can be determined by integrat-
ing Equation (2.77) from zero to t.

)(
2

)()(
0

OA

t

OO
ta

tA
dttqAtQ ϑϑ

π

λ
−⋅

⋅⋅

⋅⋅⋅
=⋅⋅= (2.78)

With an energy balance equation the heat transferred in the time t can be deter-
mined with Equation (2.70).

)( ϑϑρ −⋅⋅⋅= ApcVQ (2.79)

With the combination of the above equations the mean temperature results in:

)(
2

)(
2

)( OAOA

p

A
V

taA

tacV

tA
ϑϑ

π
ϑϑ

πρ

λ
ϑϑ −⋅

⋅

⋅⋅⋅
=−⋅

⋅⋅⋅⋅⋅

⋅⋅⋅
=− (2.80)

The surface area to volume ratio of a plane plate is 1/s (considered that s is the half
of the plate thickness), of the cylinder 4/d and of the sphere 6/d. With these values
and the surface temperature determined by Equation (2.76), the mean  temperature
can be determined.

Equations (2.76) to (2.80) are valid only if the Biot number has large values.
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2.2.2 Coupled systems

If two bodies of different temperature are suddenly brought into contact (Figure
2.15), a contact temperature ϑ

K
 occurs.

Both bodies may have different material properties. As the surface area for heat
transfer for both bodies is of the same size, the heat rate in both bodies is the same.
Equation (2.77) delivers:

)()( 22221111 AKpKAp cc ϑϑρλϑϑρλ −⋅⋅⋅=−⋅⋅⋅ (2.81)

ϑ

2
λ  ,ρ  ,1 cp1

A1

ϑA

pλ  ,ρ  ,c2 2
ϑK

2

Figure 2.15: Contact of two bodies with different temperatures

Transforming this equation yields the contact temperature ϑ
K
 :

1

111

222
2

111

222
1 1

−

⋅⋅

⋅⋅
+⋅⋅

⋅⋅

⋅⋅
+=

p

p
A

p

p
AK c

c

c

c

ρλ

ρλ
ϑ

ρλ

ρλ
ϑϑ (2.82)

With Equation (2.82), it can be demonstrated why we feel different bodies of the
same temperature differently “warm” or “cold”. The contact temperatures are gover-
ned by the ratio of the heat penetration coefficient (λ . ρ . c

p
)0.5 of both bodies. A

copper plate has a much higher heat penetration coefficient than the human hand.
Therefore we feel almost the full temperature of the copper plate. With a styrofoam
plate it is the contrary: we feel the temperature of our hand.

As long as the temperature change does not reach deeper areas of the body, the
contact temperature remains constant. If deeper areas are reached, a temperature
homogenization starts. This can be illustrated by touching a very thin hot aluminum
sheet: In the first moment, the contact temperature develops, this is the temperature
of the aluminum sheet. However, as the sheet is very thin and has a very small
mass, the temperature homogenization starts rapidly and the contact temperature
does not prevail. The small thermal energy stored in the small mass of the thin
aluminum sheet is not able to increase the temperature of the skin as deep as the
nerves would feel the hot temperature.

Touching a thicker aluminum plate of the same temperature, we would feel the
hot temperature and burn our fingers.
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EXAMPLE 2.15: Felt temperatures

A thick styrofoam and copper plate have the same temperature of 0 °C. They are
touched by a human hand. Material properties:

Styrofoam: ρ = 15 kg/m3 λ = 0.029 W/(m K) c
p
 = 1

 
250 J/(kg K)

Copper: ρ = 8
 
300 kg/m3 λ = 372 W/(m K) c

p
 = 419 J/(kg K)

Hand: ρ = 1
 
020 kg/m3 λ = 0.5 W/(m K) c

p
 = 2

 
400 J/(kg K)

Find

The contact temperatures.

Solution

Analysis

The contact temperatures will be determined with Equation (2.82). First the heat
penetration coefficient will be calculated for all materials and named ξ.

Styrofoam: 15 1250 0.029 23.3styrofoam pcξ ρ λ= ⋅ ⋅ = ⋅ ⋅ =

Copper: 8300 419 372 35968copper pcξ ρ λ= ⋅ ⋅ = ⋅ ⋅ =

Hand: 1020 2 400 0.5 1106hand pcξ ρ λ= ⋅ ⋅ = ⋅ ⋅ =

The contact temperature between styrofoam and hand is:

, ,
,

( / )

1 ( / )

36 C (23.3 1106) 0 C

1 23.3 1106

A hand styrofoam hand A styrofoam
K styrofoam hand

styrofoam hand

/

/

ϑ ξ ξ ϑ
ϑ

ξ ξ
−

+ ⋅
= =

+

° + ⋅ °
= = °

+
35.26 C

The contact temperature between copper and hand is:

, ,
,

( / )

1 /

36 C (35968 1106) 0 C

1 35968 1106

A hand copper hand A copper

K copper hand
copper hand

/

/

ϑ ξ ξ ϑ
ϑ

ξ ξ
−

+ ⋅
= =

+

° + ⋅ °
= = °

+
1.07 C

Discussion

Because of the very low thermal penetration coefficient of styrofoam, the tempera-
ture of  0 °C is felt as hand-hot, the copper is felt as ice-cold.
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2.2.3 Special cases at Bi = 0 and Bi = ∞

At a very small Biot number (near zero), i.e. the outer heat transfer coefficient is very
small or the body has a very large thermal conductivity, the temperature in the body
is independent of the location: it is only a function of time.

t,xϑ = ϑ(         )

ϑ

Bi =

ϑ

ϑ   = ϑ

x

O

4t = t

ϑ

t =
ϑ

x

t = t 3

t = t 2

t = t 1

ϑ A
t = 0

t =

ϑ

ϑ

t = t 4

ϑ   = ϑ   = ϑ

x

Bi = 0 O m

t =

t = t 4

t = t 2

t = t 3

t = t

t =
Aϑ

1

0

t = t 3

Aϑ

1

t = t 2

t = 0

t = t

Figure 2.16: Temperature distribution in special cases

At very large Biot numbers, i.e. very large outside heat transfer coefficients or
very low thermal conductivity of the body, the surface temperature ϑ

O 
has the value

of the temperature of the surroundings ϑ
∞
.

This is illustrated in Figure 2.16. The left figure shows the temperature distribution
for Bi = ∞. The surface temperature is equal to the temperature of the surroundings.
The right figure is for Bi = 0, the temperature in the body changes only with time. The
figure in the center represents the temperature distribution at finite Biot numbers.

2.2.4 Temperature changes at small Biot numbers

In many technical processes not the temperature distribution but the change of
the mean temperature during cooling or heating is of interest. As the diagrams in
Figures 2.11 to 2.13 show, with small Biot number – i.e. the outside heat transfer
coefficient is much lower than that inside the body – the temperature difference
between the mean temperature and that in the center of the body is rather small. For
Biot numbers smaller than 0.5, the mean temperature of the body may be assumed as
the spacial uniform  temperature (lumped capacitance method).

For Biot numbers smaller than 1, the lumped capacitance method is possible, but is
a rather rough approximation.
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2.2.4.1 A small body immersed in a fluid with large mass

A small body with the mass of m
1
, specific heat capacity c

p1
 and temperature ϑ

A1
 is

immersed in a fluid with the temperature ϑ
A2

 (Figure 2.17).

α

ϑ
2A

ϑA1

c
m1

p1

Figure 2.17: A small body immersed in a fluid of large mass

The fluid mass and therefore its heat capacity, can be assumed as large, if the
temperature change of the fluid is negligible when immersing the small body . The
heat transfer coefficient on the fluid side of the surface of the body is α. The wall of
the container of the fluid is insulated. The heat rate transferred from the body to the
fluid is the transient change of the enthalpy of the body.

1
1 1p

ddH
Q m c

dt dt

ϑ
= − = − ⋅ ⋅ (2.83)

The heat rate can also be determined with the rate equation.

)( 21 AAQ ϑϑα −⋅⋅= (2.84)

Both equations deliver the differential equation.

)( 21
11

1
A

pcm

A

dt

d
ϑϑ

αϑ
−⋅

⋅

⋅
−= (2.85)

 With the temperature ϑ1 substituted by ϑ1 – ϑ
A2, we receive after separation of

the variables:

dt
cm

Ad

pA

A ⋅
⋅

⋅
−=

−

−

1121

21 )( α

ϑϑ

ϑϑ
(2.86)

Assumed constant heat transfer coefficients and material properties, the equation
can be integrated.

t
cm

A

AAA
pe

⋅
⋅

⋅
−

⋅−=− 11)()( 2121

α

ϑϑϑϑ (2.87)

Figure 2.18 shows the transient temperature change of the body, which is reaching
asymptotically the fluid temperature.
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ϑ

ϑA2

ϑA1

ϑ1

Figure 2.18: Temperature progression of a cooled body

For a generalized description, it is convenient to work with dimensionless param-
eters. The  dimensionless temperature Θ  and dimensionless time τ can be given as:

τ

ϑϑ

ϑϑ
Θ −−=

−

−
= e

AA

A 1
21

11       with:      1 1
0

0

pm c t
t

A t
τ

α

⋅
= =

⋅

The time t
0
 is the time in which the immersed body changes its temperature by 1K

with a heat rate produced by the heat transfer at 1 K temperature difference.  Figure
2.19 shows the dimensionless representation of the temperature progression.
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Figure 2.19: Dimensionless transient temperature progress

EXAMPLE 2.16: Quenching of steel parts

Cylindrical steel parts with a mass of 1.2 kg and surface area of 300 cm2 should be
cooled from 800 °C to 300 °C in an oil bath of 50 °C temperature. The heat transfer
coefficient is 600 W/(m2 K).

Material properties of steel: λ = 47 W/(m K), c
p
 = 550 J/(kg K).
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Find

The time required to reach the temperature of 300 °C.

Solution

Assumptions

• The material properties are constant.
• The temperature of the steel part has no spacial differences.
• The temperature and heat transfer coefficients of the oil bath are constant.

Analysis

First the value of the Biot number is determined.

/ 600 0.01 / 47 0.128Bi rα λ= ⋅ = ⋅ =

It is smaller than 0.5. Therefore  Equation (2.87) can be applied to determine the
time.

2
1 1 1 2

2
1 2

1.2 kg 550 J m K 800 50
ln ln

300 50kg K 600 W 0.03 m
p A A

A

m c
t

A

ϑ ϑ

α ϑ ϑ

⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ −
= = ⋅ =

⋅ − −⋅ ⋅ ⋅ ⋅ ⋅
40.2  s

Discussion

This calculation is rather simple. The exact value determined with the diagram in
Figure 2.12, is 46.8 s. The error is 14 %. It has to be checked if this error is acceptable
in view of the requirements of the quenching process.

2.2.4.2 A body is immersed into a fluid of similar mass

Figure 2.20 shows the dipping of a body into a fluid in an insulated basin. The fluid
mass is similar to the mass of the body. The fluid mass is m

2
 and its specific heat

capacity c
p2

. The mass of the body is m
1
 and its specific heat capacity c

p2
. At the

moment of immersing, the body's temperature is ϑ
A1

, that of the fluid ϑ
A2

.
Depending on the magnitude of  the product of mass and heat capacity m . c

p
 of the

body and the fluid, a change of the fluid temperature will occur.
The heat rate from the body is the transient change of its enthalpy.

dt

d
cmQ p

1
11

ϑ
⋅⋅=− (2.88)
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Figure 2.20: A body is dipped into a fluid of comparable mass

The heat rate equals the transient change of the enthalpy of the fluid:

dt

d
cmQ p

2
22

ϑ
⋅⋅= (2.89)

The heat rate is also defined by the rate equation.

)( 21 ϑϑα −⋅⋅= AQ (2.90)

With Equations (2.88) and (2.89) the change of the temperature difference between
body and fluid can be determined.

dt
cmcm

Qd
pp

⋅
⋅

+
⋅

⋅−=−
2211

21

11
)( ϑϑ (2.91)

From Equation (2.90) the heat rate can be inserted into Equation (2.91).

dt
cmcm

A
d

pp

⋅
⋅

+
⋅

⋅⋅=
−

−

221121

21 11

)(

)(
α

ϑϑ

ϑϑ
(2.92)

With the assumption that the masses, heat transfer coefficients, specific heat
capacities are constant, the differential equation can be solved.

t
cmcm

A
ppAA

⋅
⋅

+
⋅

⋅⋅−=
−

−

221121

21 11

)(

)(
ln α

ϑϑ

ϑϑ
(2.93)

The temperature difference between body and fluid is:

⋅
⋅

+
⋅

⋅⋅−⋅−=− t
cmcm

A
pp

AA
2211

2121

11
exp)( αϑϑϑϑ (2.94)
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With Equation (2.94), the temperature difference between body and fluid can be
determined, but neither that of the body nor that of the fluid. The temperature of the
body and of the fluid can be calculated with Equations (2.88) and (2.89). Assuming
constant masses and specific heat capacities, the heat transferred in the time t results
as:

)()(

)()(

2222

1111

Ap

Ap

cmtQ

cmtQ

ϑϑ

ϑϑ

−⋅⋅=

−⋅⋅=
(2.95)

Equation (2.95) delivers the temperature reached in infinite time.

2211

222111

pp

ApAp

cmcm

cmcm

⋅+⋅

⋅⋅+⋅⋅
=∞

ϑϑ
ϑ (2.96)

The combination of Equations (2.95) and (2.96) delivers for the temperatures:
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p

p
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A

A

A

cm

cm

⋅

⋅
=

−

−
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−

∞

∞

ϑϑ

ϑϑ

ϑϑ

ϑϑ
(2.97)

Equation (2.97) can be solved for ϑ
1
 or ϑ

2
 and inserted in Equation (2.94). For the

temperature of the body and of the fluid, we receive:

⋅
⋅

+
⋅

⋅⋅−⋅−=− ∞∞ t
cmcm

A
pp

A
2211

11

11
exp)( αϑϑϑϑ (2.98)

⋅
⋅

+
⋅

⋅⋅−⋅−=− ∞∞ t
cmcm

A
pp

A
2211

22

11
exp)( αϑϑϑϑ (2.99)

The temporal temperature distribution is illustrated in Figure 2.21.
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ϑ
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Figure 2.21: Temperature progress in the body and fluid
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This type of thermal conduction calculation is not very realistic, as it assumes
that there are no spacial temperature differences in fluid and body. This could only
be realized when both the body and the fluid would have infinite thermal conductivity.
However, for a few cases the calculation procedure described can deliver rough
estimates.

2.2.4.3 Heat transfer to a static fluid by a flowing heat carrier

Figure 2.22 shows a tank insulated to the environment, containing a fluid which is
heated or cooled by a flowing heat carrier.

p2c

ϑ2

m2

A
k

1ϑ

p1c
1ϑA

m1
.

Figure 2.22: Heating or cooling a fluid by means of a flowing heat carrier

Between the fluid and the heat carrier there is a thermally conducting wall, as-
sumed to have infinite thermal conductivity. The temperature of the fluid at the time
t = 0 is ϑ

A2
, that of the heat carrier is ϑ

A1
. The temperature of the heat carrier, when

leaving the fluid, is ϑ
1
. The heat carrier is heated or cooled by the fluid. The heat

transfer occurs with a constant heat transfer coefficient. After infinite time the fluid
will reach the inlet temperature of the heat carrier. From then on, the temperature of
the carrier will not change any more. Assumed that the mass flow rate of the heat
carrier, the overall heat transfer coefficient and the material properties are constant,
the temperature change of the fluid and the outlet temperature of the heat carrier can
be determined.
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EXAMPLE 2.17: Cooling of a wire in a water bath

A wire with 2 mm diameter and a temperature of 300 °C is cooled while traveling
through a water bath. The wire velocity is 0.5 m/s and its traveling length 5 meters.
The water has a mass of 5 kg and at the beginning of the process a temperature of
20 °C. Material properties of the wire: ρ = 8

 
000 kg/m3, λ = 47 W/(m K), c

p
 = 550 J/(kg K).

The heat transfer coefficient in the water is 1
 
200 W/(m2 K) and the specific heat

capacity c
p2

 = 4
 
192 (J/kg K).

Find

After which time the water must be changed, to avoid a wire temperature of more than
100 °C.

Solution

Assumption

• The material properties are constant.
• The inlet temperature of the wire is constant.
• The heat transfer coefficient oft the bath is constant.
• There are no spacial temperature differences in the water bath.

Analysis

With Equation (2.87) we can determine at what water temperature the wire tempera-
ture exceeds 100 °C. The wire is the flowing heat carrier. The temperature of the bath
at 100 °C wire temperature we calculate with Equation (2.87). The traveling time of the
wire in the water is 10 s. In Equation (2.87) it can be seen, that the length of the wire
has no influence with regard to cooling. In the exponent in the term A/m

1
 the length

can be eliminated. This is correct as long as the cross-section at the ends are irrel-
evant.
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With a given outlet temperature ϑ
1
 = 100 °C the temperature ϑ

A2
 can be deter-

mined.
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With Equation (2.100) the time required to heat the water from 20 °C to 99,14 °C can
be calculated. First the mass flow rate and the surface area has to be calculated.
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Discussion

This example shows that even solid bodies can have a mass flow rate when they
are moving. This calculation again assumes that in the water there is only a temporal
but no spacial temperature change. With the rather long time the result is close to
reality, because the traveling wire mixes the water and therefore minimizes the tem-
peratures. However, this is certainly not a solely conduction process.

2.2.5 Numerical solution of transient thermal conduction equations

In Chapter 2.2.1.1 the differential equation for transient thermal conduction (2.64) was
developed. A series of solutions for simple geometries, for which a one-dimensional
thermal conduction can be assumed, was presented. To determine the temperature
distribution in complicated geometries with multidimensional thermal conduction ,
numerical methods, implemented in computer codes, are used. Some of the basic
fundamentals of numeric solution, based on the finite difference method, are
discussed here.

2.2.5.1 Discretization

For the treatment we use the example of a cylindric rod with the start temperature of
ϑ

A
, adiabatic or ideally thermally insulated on the lateral surface and on one end. At
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the time t
0
 = 0 it is brought in contact with another body of the constant temperature

ϑ
∞
. Figure 2.23 illustrates the temperature distribution at points in time with t ≥ 0.

x, i

ϑ

t, j

ϑΑ

ϑ∞
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x1 x2  …        xix0
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tj

…
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ΔtΔx

Figure 2.23: Temporal development of the temperature distribution in an adiabatic rod

Instead of using the continuous temperature distribution ϑ(x,t) the discrete tempera-
tures ϑ(x

i
,t

j
) at a limited number of points in time and space can be determined. Such

points and the corresponding temperature values are also plotted in Figure 2.23. The
mathematical procedures needed for the determination of the temperatures in these
discrete points are substantially simpler than the analytical solution of the differential
equation of the transient thermal conduction, as will be shown hereafter.

For this first the differential equation must be transferred into a discretized form.
The mathematical base for this transfer is a Taylor series for a function f:

                               ( )
( )

0 !

nn

n
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f
f

n
ξ

Δξ
ξ Δξ
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∞

=

∂
+ =

∂   (2.101)

Writing this series up to the fourth term  for the left and right neighbor of ξ , we re-
ceive:
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′ ′′ ′′′+ = + + + +

′ ′′ ′′′− = − + − +
 (2.102)
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The addition of these two equations provides a formula for the second derivative,
which depends only on the values of the function at ξ and its direct neighbors:

( )
( )

2

( ) 2 ( ) ( )f f f
f

ξ Δξ ξ ξ Δξ
ξ

Δξ

+ − + −
′′ = (2.103)

Besides the addition, the series was terminated after the third term. This results in
a very simple approximation of the second derivative, but the termination creates also
an error. As the neglected term is proportional to (Δξ)², the error is diminishing quad-
ratically with Δξ. The above-mentioned approach is therefore being called a second
order accuracy approximation.

Terminating the first equation in (2.102) after the second term and resolving the
derivative of f, the arising term is again dependent of the value of function f in ξ and
in one neighboring point:

( )
( ) ( )f f

f
ξ Δξ ξ

ξ
Δξ

+ −
′ =  (2.104)

As the termination here happened after the second term, the error is decreasing
proportionally with the distance between the intervals. In this case we have an app
roximation of first order accuracy.

With the transfer of the differentials into difference quotients, an error occurs,
which is called discretization error. It will be reduced with smaller intervals
between the discrete points.

As in Equation (2.104) only the value of f in the neighboring point in positive ξ-
direction and the value of f at ξ are present, the expression is called  downwind
difference quotient. An upwind difference quotient can be given by transforming the
first version of equation (2.102) in a similar manner. The term in Equation (2.103) is
called central difference quotient, as here the value of the function at ξ as well as in
both neighboring points are included.

By now, the differential equation of transient thermal conduction as defined in
Equation (2.63)

       
2

2
a

t x

ϑ ϑ∂ ∂
= ⋅

∂ ∂

can be transformed into a set of discrete difference equations which is valid for
the rod discussed here by inserting the approximations according to Equations
(2.103) and (2.104):
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x t

t t t x x x x x
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ϑ Δ ϑ ϑ Δ ϑ ϑ Δ

Δ Δ
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= ⋅ (2.105)
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To achieve this difference equation, in Equations (2.103) and (2.104) the general
coordinate ξ  was replaced by the spacial coordinate x and the time t. Furthermore,
equal distances between all spacial points and also between all points in time are
assumed, which results in a so-called equidistant mesh. The index x given on the
left side of the equation and t on the right side, expresses that the temporal differ-
encing is done at point x and the spacial differencing is performed at time t.

2.2.5.2 Numerical solution

To be able to efficiently write and solve difference equation sets for a large
number of discrete points i, j, an index notation is implemented. The equidistant
spacial points  have the index i, the equidistant points in time the index j. The index
notification for the spatial distribution has the following appearance:

   ( ) ( ) ( )1 1i i i ix x x xϑ Δ ϑ ϑ ϑ ϑ+ +
′′ ′′+ = = =                  (2.106)

For the time domain only x is replaced by t and i by j. Equation  (2.105) in index
notification has the following appearance:

  ( )
, 1 , 1, , 1,

2

2i j i j i j i j i ja
t x

ϑ ϑ ϑ ϑ ϑ

Δ Δ

+ + −− − +
= ⋅      (2.107)

This equation can explicitly be solved for ϑ
i,j+1

:
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Δ

+ −
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− +
= ⋅ +                   (2.108)

A closer look reveals that the right hand side of this equation contains spacial
temperature values at time j only. If the spacial distribution of the temperature in
time plane j is known, the temperatures in the plane j + 1 can be calculated by the
given equation in the most simple manner. From a known starting distribution of
the temperature at j=0 with successively “moving forward” in time, the spacial
temperature distribution from one time plane to the next can be calculated. As the
difference quotient used in space is a central one, the process is well known as
FTCS-procedure (Forward Time Center Space).

Figure 2.24 shows a projection of the graph in Figure 2.23 on the t-x-plane, i.e. a
top-view of the diagram. The procedure for the determination of a temperature in
the next time plane is illustrated here. The presentation also reveals why the ex-
pression “calculation grid” is used, when discussing numerical solution procedures
of partial differential equations.
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Figure 2.24: Graphical representation of the FTCS-procedure

A partial differential equation can be transformed into a difference equation,
which can be solved with simple mathematical methods. The transformation
procedure is called discretization. The difference equation must be solved in
a large number of  points in time and space, which is usually done by using
computer codes.

The transfer of this method to multidimensional areas and geometries is relatively
simple. For this, only the spacial derivative in the additional directions y and z must be
added on the right hand side of Equation (2.63). With this, terms with the index  k and
l have to be added  in Equations  (2.107) and (2.108). The procedure for the determina-
tion of the spacial temperature distribution in the next time plane remains the same.

In contrast to analytical methods solving the differential equations of tran-
sient heat transfer, the numerical methods can be applied to complicated
multidimensional geometries too.

2.2.5.3 Selection of the grid spacing and of the time interval

Above it was shown that with the discretization an approximation error is caused in
the transient thermal conduction difference equation and in its numeric solution. The
This error can be minimized by reducing the grid spacing and the interval between
discrete points in  time.  However, there is an important relationship between grid
width and time interval, called stability criterion.



2 Thermal conduction in static materials 75
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If the time interval exceeds this value, the procedure will not provide useful solu-
tions, but will diverge. Therefore, the selection of a smaller spacing requires a smaller
time interval. This relationship is rigorously valid for the explicit Finite Difference
Method presented here.

There are methods, however, that reduce the requirements on temporal spacing.
Consider – as an example – the application of an upwind difference for the time
discretization. This will result in a implicit difference equation, i.e. the determination
of the spacial temperature distribution in the next time interval requires the solution of
an algebraic equation system.

This is possible mathematically, but more complicated than the method presented
here. Anyhow the implicit method is, because of it better stability and the resulting
larger time interval, implemented in commercial numerical computer codes. With this,
an efficient numerical solution is possible for large areas with a huge number of grid
nodes.

There exists a large number of other methods for the spacial and temporal
discretization and for solving the created equation systems. Examples are the Finite
Elements Method (FEM) and the Finite Volume Method  (FVM). With these methods
the disadvantages of the  Finite-Difference-Method can be circumvented.



  



3 Forced convection

Forced convection is ruled by the temperature distribution and by a fluid motion,
caused by an outer pressure difference. The latter can be established by a pump or by
a fluid column. Forced convection is the type of heat transfer most commonly occur
in industrial applications. In the heat exchanger the heat is transferred between two
fluids separated by a wall. Our task in this chapter will be to determine the heat trans-
fer coefficients of heat exchangers as a function of flow conditions, geometry and
temperature differences.

Let us consider a fluid of the temperature ϑ
F
, that flows in a pipe with a wall tem-

perature ϑ
W
, the heat flux at any location is as defined in Chapter l.1.1.2:

)( WFq ϑϑα −⋅= (3.1)

Within this definition, the temperature of the fluid is a constant value over the
cross-section of the pipe but it can vary along the pipe. Experience shows (and
Fourier’s law for heat transfer requires) that a temperature profile develops close to
the wall. In turbulent flows close to the wall a thermal boundary layer exists [3.1], in
which the temperature varies from wall to fluid temperature (Figure 3.1).
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ϑ

Figure 3.1: Temperature profile in a turbulent pipe flow

The heat is transferred through the boundary layer by conduction. Keeping this in
mind and extending Equation (3.1) through building a balance at the wall surface, the
following equation results:

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_3, © Springer-Verlag Berlin Heidelberg 2012 
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Equation (3.2) shows that the heat transfer coefficient depends on the temperature
distribution in the flowing medium, and the heat conductivity. The temperature distri-
bution in the fluid is connected in a complex way with the velocity distribution.
However, a linearization of the temperature distribution close to the wall surface leads
to an approximation for the relationship between temperature drop in the boundary
layer, the heat transfer coefficient, the thermal conductivity and the boundary layer
thickness δ

ϑ
:
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δ α
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≈
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≈ =
(3.3)

Because of its small dimension, the thickness of the thermal boundary layer can-
not be measured directly in many technical applications. The boundary layer would
be disturbed by the measurement. Unfortunately, the boundary layer thickness can-
not be determined analytically in most cases. In all these cases, an indirect determina-
tion of the heat transfer coefficient, through measuring temperature distributions and
heat rates, is the only solution. To keep the complexity  and number of these experi-
ments in an acceptable range, analogy models and dimensionless numbers based on
similarity considerations are employed. These considerations show that differences
in  the heat transfer for different geometry, medium and state can be attributed to just
a few characteristic numbers. The following chapter will introduce these numbers and
explain their application in determining heat transfer coefficients.

In laminar flows, a completely different temperature profile is developed, which
can be determined analytically for simple geometries. The technical relevance of
these cases, however, is limited. Therefore we give the main results of the analytical
solutions in this book, although we do not show their derivation.

3.1 Dimensionless parameters

The transfer processes governing convective heat transfer can be described using
partial differential equations. Basically the velocity (three components), pressure and
temperature must be determined. For their determination we need five equations,
which we can derive from the conservation or balance equations:



3 Forced convection 79

• Conservation of mass – mass balance  – continuity equation
• Conservation of momentum – momentum  balance – equation of motion
• Conservation of energy – energy balance – energy equation

In the following paragraphs, we demonstrate in a simplified way how the important
characteristic dimensionless numbers are connected with these equations and in
which way they can be used to determine the heat transfer coefficients.

3.1.1 Continuity equation

First we consider a fixed cuboid  with the edge lengths dx, dy, dz in a Cartesian
coordinate system (see Figure 3.2).
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Figure 3.2: Derivation of the continuity equation

The mass flowing into the cuboid through the cross-section dy·dz is

x xm c dy dzρ= ⋅ ⋅ ⋅

and the mass leaving the cuboid through the adjacent cross-section is given by:

( )x
x dx x

c
m c dy dz dx dy dz

x

ρ
ρ+

∂ ⋅
= ⋅ ⋅ ⋅ + ⋅ ⋅

∂

For an incompressible fluid with the density ρ, the difference of both mass flow
rates will be:

x
x

c
dm dx dy dz

x
ρ

∂
= − ⋅ ⋅ ⋅

∂

With the analyses of the other spacial directions, with addition, rearranging and
division by  ρ · dx · dy · dz we receive:

0 yx z
cc c

x y z

∂∂ ∂
= + +

∂ ∂ ∂

This is the continuity equation for an incompressible fluid in Cartesian coordi-
nates. No characteristic dimensionless number can derived from this equation, as it
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does not include any specific parameters of a fluid or any geometric features. The
continuity equation is the first one of our required five equations.

3.1.2 Equation of motion

This equation results from a force balance on a mass element in a flowing fluid. In the
following section, s is a generalized space coordinate.

x x
outer

dc dc
dF dm dV

dt dt
ρ= ⋅ = ⋅ ⋅

This balance shows that the temporal change of the velocity, and the momentum
respectively,  is caused by an outer force. If forces caused by electric, magnetic or
gravitational fields are excluded, then the outer forces are only resulting from pres-
sure and viscous forces. The last one can be represented by the sheer stress τ, and
we receive:

outerdF dp dA d dAτ= − ⋅ + ⋅

Further, when we take into account, that dV = dA·ds and c
x
= f(s,t), i.e. the velocity

is a general function of space and time, we can write:

  
x x xdc c c s p

dt t s t s s

τ
ρ ρ

∂ ∂ ∂ ∂ ∂
⋅ = ⋅ + = − +

∂ ∂ ∂ ∂ ∂

The sheer stress is given by Newton's law as τ = η  . dc
x
/ds. With this we receive for

a steady state flow:
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ρ η

∂ ∂∂
⋅ = − + ⋅

∂ ∂ ∂

or, for a flow with a single velocity component in x direction, c
x
 = f(x,y):
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2
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x

c cp
c

x x y
ρ η

∂ ∂∂
⋅ = − + ⋅
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With some manipulation of this equation, all parameters representing fluid proper-
ties, state and geometry of the specific flow, can be condensed into one number. The
usual way to start the manipulation is to transfer it in a dimensionless form. This is
done by correlating all variables to characteristic parameters.

• correlated length L: x = x*·L
• correlated velocity c: c

x
 = c

x
* · c

• correlated pressure ρ ·c²: p = p* · ρ · c²
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The variables with *,  x*, c
x
* and p* are therefore dimensionless spacial coordi-

nate, dimensionless velocity component and dimensionless pressure. Later on, we
will see which correlation parameters L, c can be applied. Inserting the dimensionless
variables into the equation of motion we receive:

2

2

* **
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* * *
x x

x

c cp
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x x c L y

η

ρ

∂ ∂∂
= − + ⋅

∂ ∂ ⋅ ⋅ ∂

The reciprocal in front of the differential in the third term is called  Reynolds
number. It is the ratio of the force of inertia to the frictional force.

L

c L c L m L
Re

A

ρ

ν η η

⋅ ⋅ ⋅ ⋅
= = =

⋅
(3.4)

The mean velocity of the flow is c, the characteristic length L, the kinematic viscos-
ity of the fluid ν  and η  is the dynamic viscosity. Usually the Reynolds number has an
index representing the characteristic length L. All problem-specific parameters in the
motion equation are condensed into Re. Therefore, for the same Reynolds number we
will always receive identical results for the dependent variables. Conversely, we can
conclude: Different solutions of the differential equation for different fluids, state or
geometry are caused only by different Reynolds numbers. With building equations
of motion for the other space directions we receive three additional equations for the
five unknown variables, i.e. we need only one more, which will be introduced now.

3.1.3 Equation of energy

The Reynolds number contains the velocity, viscosity and the characteristic
length. From the previous paragraphs we know that for the heat transfer further
parameters, like the thermal conductivity and heat capacity, are relevant. Therefore
we will derive the equation for energy, introduce dimensionless variables and try to
identify further characteristic dimensionless numbers.

x
x

c
dm dx dy dz

x
ρ

∂
= − ⋅ ⋅ ⋅

∂

We start from the differential equation of the temperature distribution in a static
fluid as derived from an energy balance in Chapter 2.2.1:

2 2 2

2 2 2
a

t x y z

ϑ ϑ ϑ ϑ∂ ∂ ∂ ∂
= ⋅ + +

∂ ∂ ∂ ∂

For a flowing fluid on the left-hand side the temperature change due to enthalpy
transfer must be added. Concerning this, we replace the partial differential of the
temperature by the total differential  and consider that dx/dt = c

x
, dy/dt = c

y
 and dz/

dt = c
z
. With this we receive:
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   2 2 2
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The variables in this equation can be replaced by dimensionless variables. The
parameters required in addition are:

• correlated temperature difference (ϑ
F
–ϑ

W
): ϑ = ϑ* . (ϑ

F
–ϑ

W
)+ϑ

F

• correlated time L / c: t = t*·L/c

With inserting the dimensionless variables and rearranging, we receive the follow-
ing dimensionless differential equation for the temperature distribution:
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The first term on the right-hand side of the equation can be rearranged as follows:

                                            
1 1a a

c L c L Re Pr

ν

ν
= ⋅ = ⋅

⋅ ⋅

Beside the Reynolds number, a new dimensionless number occurs, called Prandtl
number.

pc
Pr

a

ν ρν

λ

⋅ ⋅
= = (3.5)

It can be assumed as the ratio of the expansion of the laminar flow boundary layer
to the expansion of the temperature boundary layer. Gases have a Prandtl number of
approximately 0.7, that of the liquids variates in a larger range and is mainly depend-
ent on the temperature.

We have now derived five equations for five dependent variables. From those
equations, we extracted two characteristic dimensionless numbers for the  convec-
tive heat transfer. Now we bring Equation  (3.2) in a dimensionless form:

* 1

*

* L
r

L
Nu

r

α ϑ

λ =

⋅ ∂
= − =

∂ (3.6)

The dimensionless heat transfer coefficient is called Nußelt number. It is the ratio
of the characteristic length L and the thickness of temperature boundary layer δ

ϑ 
.

At the same time the derivation shows that the dimensionless heat transfer coeffi-
cient only depends on the dimensionless temperature distribution! The latter we re-
ceive as a solution of the system of equations derived above. This solution however,
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is characterized by the Reynolds and Prandtl number and by the flow geometry.
Therefore, Nußelt numbers can generally be given in the following form:

( , ,Geometry, / )L L WNu f Re Pr ϑ ϑ= (3.7)

The last term takes into account the direction of the heat flow rate. This particular-
ity will be discussed later. Nußelt numbers in the form mentioned above were experi-
mentally determined for different geometries, fluids and flow conditions. Functions
which represent the experimental data with best accuracy were published from many
authors. One of the most comprehensive presentations of Nußelt functions are pre-
sented in VDI-Heat Atlas [3.4].

The determination of the heat transfer coefficients can be reduced to the
determination of the Nußelt number appropriate for the actual problem. The
heat transfer coefficient is then calculated according to the above given defi-
nition for Nu.

The following chapters will describe this procedure for several technically impor-
tant applications and will illustrate it by numerous examples.

3.2 Determination of heat transfer coefficients

As already mentioned, the Nußelt number is a function of Reynolds number, material
properties, geometry and the direction of heat flux. The influence of material pro-
perties is considered by the Prandtl number. The heat transfer coefficient will be
determined with the Nußelt number as defined by Equation (3.4).

3.2.1 Flow in a circular tube

For flows in circular tubes the characteristic length is the internal diameter d
i
 of the

tube. The Nußelt numbers for laminar flow can be analytically determined. For
turbulent flows empirical correlations were found. Laminar and turbulent heat
transfer coefficient will be discussed separately.

3.2.1.1 Turbulent flow in circular tubes

The temperature profile in turbulent flow in a circular tube is shown in Figure 3.1.
The temperature of the fluid is assumed as the temperature in the center of the tube.
The state of the art empirical correlation for the Nußelt number, which has best fit
with experimental results, is [3.3]:

  , 1 22/3

( / 8)

1 12.7 / 8 ( 1)
i

i

d

d turb

Re Pr
Nu f f

Pr

ξ

ξ

⋅ ⋅
= ⋅ ⋅

+ ⋅ ⋅ −
(3.8)
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Therein ξ is the hydraulic friction factor:

2[1.8 log( ) 1,5]
idReξ −= ⋅ − (3.9)

The material properties have to be determined with the temperature of the fluid in
the center of the tube.

Equation (3.8) demonstrate the fact that there is a fundamental correlation between
heat transfer and hydraulic friction. The higher the hydraulic friction factor ξ, the
higher the Nußelt number and the heat transfer coefficient. The higher hydraulic
friction requires more power to maintain the flow and the higher heat transfer coeffi-
cient results in a smaller heat exchanger. Therefore, the engineers’ task is to find an
optimum solution with regard to power consumption and heat exchanger size.

The function f
1
 considers the influence of tube length and  f

2
 that of the direction

of the heat flux. The tube length influences the heat transfer coefficient because at
the tube inlet the temperature profile and the boundary layer are not developed. At
the inlet the thickness of the boundary layer is zero and subsequently the heat
transfer is infinite.

The thickness of the thermal boundary layer increases with the tube length and
the local heat transfer coefficients decrease until the thermal boundary layer is fully
developed. Usually for the design of heat exchangers not the local but the mean heat
transfer coefficient of the entire tube is of interest. The higher heat transfer coeffi-
cients at the tube inlet increases the mean heat transfer coefficient. The integration
over the tube length results in function f

1
, which considers the influence of the tube

length on the mean heat transfer coefficient.

2/3 2/3
1

0

1 1
1 ( / ) 1 ( / )

3

l

i if d x dx d l
l

= ⋅ + ⋅ = + (3.10)

The term in square brackets is the function for the local heat transfer coefficients.

l

(x = 0)
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0

α
α x

ϑ
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F
ϑ
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x

δ
ϑ

(x)F
ϑ

Figure 3.2: Influence of tube length on heat transfer coefficient
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The direction of heat flux (heating or cooling) influences the heat transfer coeffi-
cients because the temperature in the boundary layer is different from that in the tube
center, which is used for determination of the Reynolds and Prandtl number with the
temperature dependent material properties. For the function f

2
 two different equa-

tions are proposed, one for gases and one for liquids.

0,11

2 0,45

( / ) for liquids

( / ) for ases
W

W

Pr Pr
f

T T g
= (3.11)

The validity range of Equations (3.8) to (3.11) is:

1/

1010 64

>

<<

i

d

dl

Re
i

In heat exchanger tubes the temperatures of the fluid and the wall are not constant.
The fluid properties have to be determined with the mean temperature of the fluid in
the tube ϑ

m
 = (ϑ

in
 + ϑ

out
) / 2. Assuming a constant wall temperature the heat rate can

be calculated with the log mean temperature difference as given with Equation (1.15).
It is calculated with the temperatures at the inlet and outlet of the tube and the
temperature of the wall.

mAQ ϑΔα ⋅⋅= (3.12)

In the case of a parallel-flow or counterflow outside the tubes, the heat rate can be
calculated with the overall heat transfer coefficient and the log mean temperature
difference. The mean wall temperature can be estimated as:

m
a

maWam
ai

i
miWi

k

d

dk
ϑΔ

α
ϑϑϑΔ

α
ϑϑ ⋅−=⋅

⋅

⋅
+= (3.13)

For rough estimates, instead of Equation (3.8) a simplified exponential equation,
which allows an accuracy of 5 %, can be used.

0,8 0,48
1 20.0235 ( 230)

i id dNu Re Pr f f= ⋅ − ⋅ ⋅ ⋅ (3.14)

To consider the influence of the direction of heat flux some additional correlations
are published in VDI-Heat Atlas [3.4].

3.2.1.2 Laminar flow in circular tubes at constant wall temperature

In this book only the case of laminar heat transfer at constant wall temperature is
discussed. In [3.4] correlations for heat transfer with constant heat flux are published.
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At laminar flow in very long tubes (thermally and hydraulically completely devel-
oped temperature profile) the heat transfer coefficient is independent of Reynolds-
and Prandtl number. The Nußelt number then has a constant value.

, 3.66
id lamNu = (3.15)

In shorter tubes the boundary layer is not yet developed and the following rela-
tionship was analytically determined:

3
, 0.644 /

i id lam d iNu Pr Re d l= ⋅ ⋅ ⋅ (3.16)

With increasing tube length the cross-over to fully developed flows is asymptotic
and the Nußelt number can be determined with the following equation:

3 3 3/ 23
, 3.66 0.644 ( / )

i id lam d iNu Pr Re d l= + ⋅ ⋅ ⋅ (3.17)

Equation (3.17) is valid for Reynolds numbers below 2300. Figure 3.3 shows the
Nußelt numbers for Pr = 1 versus Reynolds number for different tube lengths.
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Figure 3.3: Jumps of the Nußelt number at the transition from laminar to turbulent

3.2.1.3 Equations for the transition from laminar to turbulent

As shown in diagram in Figure 3.3 at the transition from laminar to turbulent flow
there are unsteady jumps in the functions for the Nußelt numbers. These jumps can-
not be observed in a single experiment, but are the result of correlating the results of
many different experiments. The flow in the region between Re = 2300 and Re = 104 is
called transitional flow, i.e. it is in a transition between laminar and fully turbulent.
Equation (3.8) is always valid for Re > 104 and only below Re = 2300 the flow is laminar.
For the transition zone 2300 < Re

di
 < 104 following interpolation has been proposed by

Gnielinski [3.4]:
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( ) 4
, ,1 ( 2300) ( 10 )

2300
with  

7700

i i id d lam d turbNu Nu Re Nu Re

Re

γ γ

γ

= − ⋅ = + ⋅ =

−
= (3.18)

Figure 3.4 shows the interpolated Nußelt numbers.
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Figure 3.4:  Nußelt versus Reynolds number for different d
i
 / l  at Pr = 1

EXAMPLE 3.1: Heat transfer coefficient in a circular pipe

To demonstrate the magnitude of heat transfer coefficients of different fluids they
shall be determined in a tube with 25 mm internal diameter. The temperature of the
tube wall is 90 °C, that of the fluid 50  °C. Velocities and material properties are listed
below:

velocity kin. viscosity thermal conductivity Pr Pr
Wi

m/s 10-6 m2/s W/(m K)
Water 2 0.554 0.6410 3.570 1.96
Air 1 bar 20 18.250 0.0279 0.711
Air 10 bar 20 1.833 0.0283 0.712
R134a 10 bar 2 0.146 0.0751 3.130 3.13

Find: The heat transfer coefficients

Solution

Assumptions

• Temperature of tube wall and fluid are constant.
• The influence of the tube length can be neglected.
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Analysis

As will be seen, the Reynolds number is always grater than 104, therefore all heat
transfer coefficients can be calculated with Equation (3.8).

Re
di

ξ f
2

Nu
di,turb

α
W/(m2 K)

Water 90 253 0.0182 1.068 432.1 11 079.5
Air    1 bar 27 397 0.0238 0.949 63.9 71.3
Air  10 bar 272 777 0.0146 0.949 377.0 426.8
R134a 342 466 0.0140 1.000 1 166.0 3 502.6

Discussion

The calculations show that the heat transfer coefficients of liquids are much larger
than those of the gases, although the latter have a much higher velocity. The smaller
heat transfer coefficients are caused by the higher kinematic viscosity and lower
thermal conductivity. Because of its high thermal conductivity, water has a special
position. The heat transfer coefficient of air increases with pressure due to the
decrease of kinematic viscosity. The influence of the tube was neglected as it is not
relevant for the comparison of different material properties.

EXAMPLE 3.2: Heat transfer coefficients of a heat exchanger

In a heat exchanger with tubes of 1 m length, 15 mm outer diameter and 1 mm wall
thickness water flows with 1 m/s velocity. On the outer wall of the tubes, Freon R134a
condenses at 50  °C. The freon heat transfer coefficient is 5

 
500 W/(m2 K). The thermal

conductivity of the tube material is 230 W/(m K). The water enters the tubes with a
temperature of  20  °C.

Material properties of water:
ρ  c

p
λ ν Pr

kg/m3  J/(kg K) W/(m K) m2/s -
20  °C:  998.2 4 184 0.598 1.003  .  10-6 7.00
30  °C: 995.7 4 180  0.616  0.801  .  10-6 5.41
40  °C: 992.3 4 178 0.631 0.658  .  10-6 4.32

Find

The heat transfer coefficient of  the water flow, the outlet temperature of the water and
the heat rate.
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Solution

Schematic See sketch.

Assumption

• The mean heat transfer coefficient is constant.

Analysis

The outlet temperature of the water is not known, therefore the mean temperature
required for the determination of the material properties must be assumed. The outlet
temperature can be determined when the heat transfer coefficient and heat rate are
calculated. Initially an outlet temperature of 30 °C is assumed. The mean water tem-
perature then is 25  °C. The interpolated material properties of water are:

ρ = 997.0 kg/m3, c
p
 4182 J/(kg K), λ = 0.607 W/(m K), Pr = 6.21, ν = 0.902  .  10-6 m2/s.

The Reynolds number is: 
6 2

1 m 0.013 m s
14412

s 0.902 10 m
ic d

Re
ν −

⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

Hydraulic friction factor (3.9): 2[1.8 log( ) 1.5] 0.0279
idReξ −= ⋅ − =

The Nußelt number can now be calculated with Equations (3.8), (3.10) and (3.11).
To determine the influence of the direction of heat flux with Equation (3.11) the
Prandtl number at wall temperature is required. As for its determination, the overall
heat transfer coefficient must be known and iteration must be performed. The value of
f
2
 is initially assumed as 1. The function f

1
 is:

2/3 2/3
1 1 ( / ) 1 (0.013 m /1) 1.055if d l= + = + ⋅ =

The Nußelt number calculated with Equation (3.8):

, 1 22/3

2/3

( / 8)

1 12.7 / 8 ( 1)

0,0035 14412 6.21
1.055 118.3

1 12.7 0.0035 (6.21 1)

i

i

d

d turb

Re Pr
Nu f f

Pr

ξ

ξ

⋅ ⋅
= ⋅ ⋅ =

+ ⋅ ⋅ −

⋅ ⋅
= ⋅ =

+ ⋅ ⋅ −

For the heat transfer coefficient we receive:

2/ 118.3 0.607 W/(m K)/(0.013 m) 5524 W/(m K)d i iNu dα λ= ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅

The overall heat transfer coefficient calculated with Equation (2.27) is:

1
0

ϑ '

ϑ

ϑ

l
x

α

ϑ ϑ2

1
' c

2

ϑ1''

a

1ϑ ''
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1

1

2

1
ln

2

1 0.015 15 15 W
ln 2529  

5500 2 230 13 13 5524 m K

a a a

a R i i i

d d d
k

d dα λ α

−

−

= + ⋅ + =
⋅ ⋅

= + ⋅ + =
⋅ ⋅ ⋅

With the overall heat transfer coefficient and the log mean temperature the wall
temperature can be determined. The log mean temperature is:

1 1

2 1

2 1

(30 20) K
24.66  K

50 20
lnln

50 30

m

ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

′′ ′− − ⋅
= = =

−′−

−′′−

The wall temperature according to Equation (3.13) is:

2529 13
25 C 24.66 K  34.8 C

5524 15
i

W m m
i a

k d

d
ϑ ϑ Δϑ

α

⋅ ⋅
= + ⋅ = ° + ⋅ ⋅ = °

⋅ ⋅

The linearly interpolated Prandtl number at 34.8 °C is 4.89.

Equation (3.11) delivers for f
2
: 0.11 0.11

2 ( / ) (6.21/ 4.89) 1.027Wf Pr Pr= = =

The Nußelt number and also the heat transfer coefficient will be 3 % larger. For α
i
,

k and ϑ
W
 the following values were determined: α

i
 = 5671 W/(m2 K), k = 2565 W/(m2

K), ϑ
W

=  34.7  °C. Pr
W
 is then 4.901 and f

2
 = 1.0263. With these values  α

i
 and k can be

determined again:

α
i
 = 5670 W/(m2 K)          k = 2564 W/(m2 K)

With the rate equation the heat rate can be determined.

22564 W/(m K) 0.015 m 1 m 24.66 K 2980 W

m a mQ k A k d lΔϑ π Δϑ= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

With the energy balance equation the water outlet temperature is calculated. First
the mass flow rate of water in the pipe has to be determined.

2 2 20.25 1 m/s 0.25 0.013 m 997 kg/s 0.132  kg/sim c dπ ρ= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

1 1

2980 W
20 C 25.4 C

0.132 kg/s 4182 J/(kg K)p

Q

m c
ϑ ϑ

⋅
′′ ′= + = ° + = °

⋅ ⋅ ⋅ ⋅ ⋅

The mean temperature of the water is not as assumed 25 °C but 22.7 °C. The whole
calculation procedure must be repeated with the following material properties:
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ρ = 997.5 kg/m3, c
p
 4182 J/(kg K), λ = 0.607 W/(m K), ν = 0.948  .  10-6 m2/s,

Pr = 6.53.

The calculations will not be shown in detail, only the results are listed below.

Re
di

α
i

k Δϑ
m

ϑ
W

f
2 Q ϑ''

1

W/(m2 K) W/(m2 K) K   °C kW   °C
13706 5 525  2 530  27.22 33.49 1.0297

5 544 2 534 27.22 33.47 1.0298
5 543 2 534 3.251 25.87

13778 5 559 2 538 26.96 33.60 1.0295
5 557 2 537 26.96 33.60 1.0295

5 557 2 537 3.223 25.82

As the differences of the last values are below 0.2 %, the iteration was terminated.

Discussion

Iteration procedures are generally necessary for the determination of heat transfer
coefficients of heat exchangers. In this example the iteration could have been termi-
nated after the first run. The heat rate was already determined with 1 % accuracy.
Normally computer codes are developed for the design of heat exchangers, in which
the heat transfer equations and material properties are programmed. In many cases it
is sufficient to give the material properties at two temperatures and use linear
interpolation. Anyhow, always it must be checked if the required accuracy is reached.

EXAMPLE 3.3: Design of a power plant condenser

In a power plant condenser a heat rate of 2
 
000 MW has to be transferred to the

cooling water. The condenser is equipped with titanium tubes of 24 mm outer dia-
meter and 0.5 mm wall thickness. The cooling water velocity is 2 m/s. Titanium has a
thermal conductivity of 16 W/(m K). The steam condenses at the saturation tem-
perature of  35 °C, the heat transfer of condensation outside the tubes is given as
13

 
500 W/(m2 K). The cooling water is heated from 20 °C to 30 °C. At 25 °C the water

has following material properties:
ρ = 997.0 kg/m3, c

p
 = 4182 J/(kg K),  Pr = 6.2, λ = 0.607 W/(m K),

ν  = 0.902  .  10-6 m2/s.
The influence of the direction of heat flux can be neglected.
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Find

a) the required number of tubes
b) the required tube length
c) the condensation temperature, if the heat transfer coefficient drops 10  % due to

fouling.

Solution

Schematic See sketch.

Assumptions

• The mean heat transfer coefficient is constant.
• The influence of the direction of the heat flux can be neglected, i.e.  f

2
 = 1.

Analysis

a) With the energy balance equation the mass flow rate of the water can be
determined.

6

1 1

2000 10 W kg K kg
47824  

( ) 4182 J (30 20) K sp

Q
m

c ϑ ϑ

⋅ ⋅ ⋅ ⋅
= = =

′′ ′⋅ − ⋅ ⋅ − ⋅

As the water velocity is given, the mass flow rate in one tube can be calculated.

2 2 2
1 0.25 2 m/s 0.25 0.023 m 997 kg/s 0.828  kg/stube im c dπ ρ= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

To have a mass flow rate of 47
 
824 kg/s 57

 
727 tubes are required.

b) To calculate the Nußelt number with Equation (3.8) the function f
1
 is needed.

It takes into account the influence of the tube length, which is not yet known. For the
first calculation it is assumed:  f

1
 = 1.

Reynolds number:  6 2

2 m 0.023 m s
50998

s 0.902 10 m
ic d

Re
ν −

⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

Hydraulic friction factor (3.9): 2[1.8 log( ) 1.5] 0.0206
idReξ −= ⋅ − =

, 2/3 2/3

( / 8) 0.00257 50998 6.2
321.3

1 12.7 / 8 ( 1) 1 12.7 0.00257 (6.2 1)
i

i

d

d turb

Re Pr
Nu

Pr

ξ

ξ

⋅ ⋅ ⋅ ⋅
= = =

+ ⋅ ⋅ − + ⋅ ⋅ −

For the heat transfer coefficient in the tubes we receive:
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2/ 321.3 0.607 W/(m K)/(0.023 m) 8481  W/(m K)i d i iNu dα λ= ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅

and for the overall heat transfer coefficient with Equation (2.27):

1 1

2

1 1 0.024 24 24
ln ln

2 13500 2 16 23 23 8481

4366 W/(m K)

a a a

a R i i i

d d d
k

d dα λ α

− −

= + ⋅ + = + ⋅ + =
⋅ ⋅ ⋅ ⋅

= ⋅

With the overall heat transfer coefficient and the log mean temperature difference
the required heat transfer surface area can be determined. The log mean temperature
difference is:

1 1

2 1

2 1

(30 20) K
9.102 K

35 20
lnln

35 30

m

ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

′′ ′− − ⋅
= = =

−′−

−′′−

The required surface area is calculated with the rate equation.

6 2
22000 10 W m K

50325  m
4366 W 9.102 Km

Q
A

k Δϑ

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

For this area the following tube length is required:

250325 m
11.562  m

57 727 0.024 ma

A
l

n dπ π

⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅

With this tube length we receive for the function f
1
 = 1.016. Therewith the transfer

coefficient is 1.6  % higher and the overall heat transfer coefficient increases 1.43  %,
the tube length decreases correspondingly. We receive it with 11.460 m. The next
iteration delivers 11.465 m.

c) The flow rate of the steam to the condenser will not change with fouling, thus
the heat rate and also the cooling water outlet temperature remain the same as with
the clean condenser tubes. To be able to maintain the heat rate, according to the rate
equation with the reduced overall heat transfer coefficient the log mean temperature
difference must  increase correspondingly. As the cooling water temperatures do not
change, the condensation temperature will increase. The log mean temperature differ-
ence with the “fouled” overall heat transfer k

v
 coefficient is:

9 2

2

2 10 W m K
10.114  K

49901 m 4 403 0.9 Wm
v

Q

A k
Δϑ

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅

With Equation (1.15) the changed condensation temperature can be determined.
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1 1

1 1

1 1
2

1

m

m

e

e

ϑ ϑ

Δϑ

ϑ ϑ

Δϑ

ϑ ϑ
ϑ

′′ ′−

′′ ′−

′ ′′− ⋅
= = °

−

35.93 C

Discussion

At the stage of condenser design the tube length has to be determined, therefore
the function f

1
 is not known and an iteration is necessary.

The condensation temperature increases by the reduced overall heat transfer
coefficient, caused by fouling. To be able to keep the heat rate with the reduced
overall heat transfer coefficient, the log mean temperature difference must increase.
As the cooling water temperature does not change, the condensation temperature
must increase. This is a real problem in power plants, as with the increased con-
densation temperature the condenser pressure is increasing and consequently the
power output decreases. In this example the condenser pressure increases from 56 to
59 mbar. This decreases the power output by 0.053  %, which in the case of such a
large condenser power, is approximately 5.3 MW.

3.2.1.3 Flow in tubes and channels of non-circular cross-sections

In tubes and channels of non-circular cross-section for turbulent flows the Nußelt
number can be calculated with the same equations as used for circular tubes. Instead
of the tube diameter the characteristic length will be the hydraulic diameter of the
flow channel, with which the Reynolds and Nußelt number can be determined.

The hydraulic diameter is defined as:

4 4 flow cross-sectional area

wetted circumference
CS

h

A
d

U

⋅ ⋅
= = (3.19)

For laminar flows in channels of non-circular cross-section the equations used for
circular tubes are not valid. For a few simple geometries solutions for the heat transfer
coefficients can be found in literature.

For annuli (Figure 3.5) with turbulent flow a further correction is required. The
ratio of annulus diameter has an influence on heat transfer. For annuli where heat
transfer occurs only to or from the inner tube, the following correction is proposed
[3.4, 3.5]:

0.16/ 0.86 ( / )
hAnnulus dNu Nu D d= ⋅ (3.20)
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Figure 3.5: Annulus

EXAMPLE 3.4: Design of a counterflow heat exchanger

The heat exchanger of a district heating system in a house consists of an inner tube
with 18 mm outer diameter and 1 mm wall thickness. It is installed in the center of an
outer tube with 24 mm inner diameter. The flow velocity as well in the inner tube and
in the annulus is 1 m/s. The annulus is entered by the heating water with 90 °C. The
service water in the tube should be heated from 40 °C to 60 °C. The thermal conduc-
tivity of the inner tube material is 17 W/(m K). The outer tube is ideally insulated to
the environment. To simplify calculation the functions  f

1
 and f

2
 shall have the value

of 1. The material properties are:

density kin. viscosity heat conductivity Pr c
p

kg/m3 10-6 m2/s W/(m K) J/(kg K)
Service water 998.1 0.553 0.6437 3.55 4179
Heating water 971.8 0.365 0.6701 2.22 4195

Find

The required length of the heat exchanger.

Solution

Schematic  See sketch.
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Assumptions

• No heat transfer to the environment.
• The perpendicular flow at the in- and outlet of the annulus is neglected.
• The influence of tube length and direction of heat flux are neglected.

Analysis

To calculate the required surface area the heat transfer coefficients and the log
mean temperature difference are required. For the latter, first the heating water outlet
temperature must be determined with the energy balance equation. We calculate first
the mass flow rate in the inner tube and in the annulus.

2 2 2 3
1 1 1 10.25 1 m/s 0.25 0.016 m 998.1 kg/m 0.2007  kg/sm c dπ ρ= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

2 2 2 2
2 2 2 10.25 ( ) 1 0.25 (0.024 0.018 ) 971.8 0.1923  kg/sm c D dπ ρ= ⋅ ⋅ ⋅ − ⋅ = ⋅ ⋅ ⋅ − ⋅ =

With the energy balance equation the heat rate to the service water can be deter-
mined.

1 1 1 1( ) 0.2007 kg/s 4179 J/(kg K) (60 40) K 16.773  kWpQ m c ϑ ϑ′′ ′= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ =

This heat rate comes from the heating water. The outlet temperature results from
the energy balance equation.

2 2
2 2

16773 W
90 C 69.21 C

0.1923 kg/s 4195 J/(kg K)p

Q

m c
ϑ ϑ

⋅
′′ ′= − = ° − = °

⋅ ⋅ ⋅ ⋅ ⋅

Log mean temperature:

(30 29.21) K
29.60  K

ln( / ) ln(30 / 29.21)
gr kl

m
gr kl

ϑ ϑ
ϑ

ϑ ϑ

− − ⋅
= = =

The heat transfer coefficient in the tube will be calculated with Equation (3.8) and
with  f

1
 =  f

2
 = 1.

1

1 1
6 2

1

1 m/s 0.016 m
28933

0.553 10 m /sd

c d
Re

v −

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

Hydraulic friction factor (3.9):
2[1.8 log( ) 1.5] 0.0234

idReξ −= ⋅ − =

, 2/3 2 3

( / 8) 0.00293 28933 355
157.4

1 12.7 / 8 ( 1) 1 12.7 0.00293 3.55 1
i

i

d

d turb /

Re Pr
Nu

Pr ( )

ξ

ξ

⋅ ⋅ ⋅ ⋅
= = =

+ ⋅ ⋅ − + ⋅ ⋅ −
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Heat transfer coefficient in the inner tube:

2/ 157.4 0.6437 W/(m K)/(0.016 m) 6333 W/(m K)i d i iNu dα λ= ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅

To calculate the heat transfer coefficient in the annulus first the hydraulic diame-
ter must be determined with Equation (3.19).

2 2
2

2
2

4 ( )
6 mm

( )
CS

h

A D d
d D d

U D d

π

π

⋅ ⋅ −
= = = − =

⋅ +

The heat transfer coefficient can be calculated with Equations (3.8) and (3.20).

2
6 2

1

1 m/s 0.006 m
16 438

0.365 10 m /sh

h
d

c d
Re

v −

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

Hydraulic friction factor (3.9):  2[1.8 log( ) 1.5] 0.0270
hdReξ −= ⋅ − =

0.16

, 2/3
2

0.16

2 3

( / 8)
0.86

1 12,7 / 8 ( 1)

0.00337 16 438 2.22 24
0.86 73.0

181 12.7 0.00337 (2.22 1)

h

h

d

d turb

/

Re Pr D
Nu

dPr

ξ

ξ

⋅ ⋅
= ⋅ ⋅ =

+ ⋅ ⋅ −

⋅ ⋅
= ⋅ ⋅ =

+ ⋅ ⋅ −

Heat transfer coefficient in the annulus:

2
2 / 73 0.6701 W/(m K)/(0.006 m) 8155  W/(m K)

ha d hNu dα λ= ⋅ = ⋅ ⋅ ⋅ ⋅ = ⋅

Overall heat transfer coefficient (2.27):

1

2 2 2

1 1

1

2

1
ln

2

1 0.018 18 18 W
ln 2 758  

8155 2 17 16 16 6332 m K

a R i

d d d
k

d d

 

α λ α

−

−

= + ⋅ + =
⋅ ⋅

= + ⋅ + =
⋅ ⋅ ⋅

The required heat exchanger surface area is calculated with the rate equation:

2
216773 W m K

0.205 m
2758 W 29.6 Km

Q
A

k Δϑ

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

To have the above surface area the following length is required:

2

A
l

dπ
= =

⋅
3.63  m
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Discussion

In heat exchangers with water flow the heat transfer coefficients are rather high
and large heat rates can be transferred in exchanger with small surface areas.

Without the simplifying assumptions to neglect the influence of tube length and
the direction of heat flux, iterations would be required with three times the amount of
time needed for the calculations. The exact surface area would be 1.0 % smaller.

3.2.2 Flat plate in parallel flow

In technical applications heat transfer of a fluid flowing along a flat plate is rather
rare. The determination of the heat transfer coefficients is more simple than that of
many other bodies and is therefore often discussed in books to demonstrate the cor-
relation between heat transfer and hydraulic resistance. In this book only the cor-
responding formula will be given. The characteristic length is the length L of the wall
in flow direction.

For the laminar flow we receive the same formula as for the tube:

53
, 0.644 for 10L lam L LNu Pr Re Re= ⋅ ⋅ < (3.21)

The empiric correlation for the turbulent flow is:

0.8
5 7

, 30,1 2/3

0.037
for 5 10 10

1 2.443 ( 1)
L

L turb L
L

Re Pr
Nu f Re

Re Pr−

⋅ ⋅
= ⋅ ⋅ < <

+ ⋅ ⋅ −
(3.22)

As the Reynolds number uses the length of the plane plate no further correction
function for the length is required. Function f

3
 is a correction function taking into

account the influence of heat flux direction. It is given as:

0.25

3

( / ) for liquids

1 for gases
WPr Pr

f = (3.23)

The range of Reynolds number from 105 to 5 . 107 is not covered with the two
equations. The transition from laminar to turbulent is asymptotic and the following
equation is proposed for the range 10 < Re

L
 > 107.

2 2 7
, , for 10 10L L lam L turb LNu Nu Nu Re= + < < (3.24)
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3.2.3 Single bodies in perpendicular cross-flow

In many applications the external cross-flow in shell and tube heat exchangers or
cylindrical temperature gauges is normal to the axis of the tubes. Tube bundles will be
discussed in Chapter 3.2.4, but their laws are based on the laws of single bodies. As
is known from fluid mechanics, when a body is hit by a flow at the stagnation point,
first a laminar boundary layer develops, which then, depending on the flow velocity
and geometry, transits to a turbulent flow. Further on flow detachment and vortex
shedding may occur. The flow processes and therefore also the heat transfer
phenomena are very complex. Similar to the tube flow, empiric correlations were
found to determine the Nußelt number as a function of geometry, Reynolds and
Prandtl number.

For the Reynolds and Nußelt number the characteristic length is the so-called
flow length L', which is the heat transfer surface area divided by the projected circum-
ference of the body.

projUAL /=′ (3.25)

The projected circumference U
proj

 is the circumference of the active heat transfer
surface area projected in the direction of the flow. For example, for a pipe with perpen-
dicular cross-flow  the projected circumference is twice the length of the tube, for a
plane plate the width of the plate and for a sphere its circumference.

Figure 3.6 shows the heat transfer surface areas and the projected circumference
of a few bodies.

d d

U    =    d

π d
2

d L

L' =

A =    d  L.π

Tube

. U   = 2 L
proj

.
.

Flat plate

A = L  b.

L

proj

L' = L

b

U   = b

b

A = 2 (a + b) L

Square-shaped rod

.

a

. U   = 2 L.

L' = a + b
proj

L

A =    dπ
2.

L = dSphere

.π
proj

Figure 3.6: Heat transfer surface area and projected circumference of selected bodies

From the surface of a sphere or a cylinder even if the Reynolds number reaches
zero, heat transfer to the surrounding fluid happens. For a sphere with the inner dia-
meter d, the heat transfer coefficient with an infinite outside diameter (static sur-
roundings) was found in Chapter 2 as (2.36):
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d

λ
α

⋅
=

2
0 (3.26)

From there the Nußelt number is:

,0 2 for 0.1L LNu Re′ ′= < (3.27)

For a cylinder the derivation is not so simple and therefore only the result will be
presented here.

,0 0.3 for  0.1L LNu Re′ ′= < (3.28)

For a flat plate at Re
L
 = 0 the  Nußelt number Nu

L',0
 is zero.

For spheres or cylinders with dimensions smaller than the thickness of the bound-
ary layer at Reynolds numbers smaller than 1, the Nußelt numbers of spheres and
cylinders should be determined using the following formulae:

3
,0

3
,0

Sphere: 1.001 for 0.1 1

Cylinder: 0.75 for 0.1 1

L L L

L L L

Nu Re Pr Re

Nu Re Pr Re

′ ′ ′

′ ′ ′

= ⋅ ⋅ < <

= ⋅ ⋅ < <
(3.29)

For Reynolds numbers between 1 and 1000 the same equation as for flat plates can
be used.

3
, 0.664 for 1 1000L lam L LNu Pr Re Re′ ′ ′= ⋅ ⋅ < < (3.30)

For Reynolds between 105 and 107 the following equation was found [3.4]:

0.8
5 7

, 40.1 2/3

0.037
for 10 10

1 2.443 ( 1)
L

L turb L
L

Re Pr
Nu f Re

Re Pr
′

′ ′−
′

⋅ ⋅
= ⋅ < <

+ ⋅ ⋅ −
(3.31)

In this range also the following simplified exponential equation can be used, how-
ever its accuracy is a little less.

0.8 0.48 5 7
, 40.037 for 10 10L turb L LNu Re Pr f Re′ ′ ′= ⋅ ⋅ ⋅ < < (3.32)

The range of Reynolds number between 103 and 105 is not defined. As the Nußelt
number approaches the values of Equations (3.25) to (3.29) asymptotically, the fol-
lowing equation can be given:

2 2 7
,0 , , for 10 10L L L lam L turb LNu Nu Nu Nu Re′ ′ ′ ′ ′= + + < < (3.33)

The function f
4
 considers the influence of the direction of the heat flux.

0.25

4 0.121

( / ) for liquids

( / ) for gases
W

W

Pr Pr
f

T T
= (3.34)



Figure 3.7 shows the Nußelt number of a cylinder in a perpendicular cross-flow.
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Figure 3.7: Nußelt number of cylinder in perpendicular cross-flow

For non-perpendicular cross flow, the heat transfer coefficients will decrease. Fig-
ure 3.8 shows the ratio of Nußelt number in an angular cross-flow vs. the impact
angle.
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Figure 3.8: Ratio of Nußelt number of cylinders with angular to perpendicular cross-flow

A cylinder with parallel flow can be calculated as flat plate. However, if the diam-
eter of the cylinder is close to or smaller as the thickness of the boundary layer, the
following equation can be applied.
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0.5
, (1 2.3 ( / ) )L Zyl L LNu L d Re Nu−= + ⋅ ⋅ ⋅ (3.35)

L is the length of the cylinder and  Nu
L
 the Nußelt number of a plain wall.

EXAMPLE 3.5: Temperature measurement with a platinum resistor

With a platinum resistor in a cylindrical shell of 4 mm diameter the temperature of hot
air with 100 °C temperature is measured. The temperature function of the platinum
resistor is: R (ϑ) = 100 Ω + 0.04 Ω/K . ϑ. The measurement requires a constant current
of 1 mA through the resistor. This heats the resistor and thus falsify the measure-
ment. The heated length of the resistor is 10 mm. The material properties of the air are:
λ = 0.0314 W/(m K), ν = 23.06 . 10-6 m2/s, Pr = 0.701.

Find

The temperatures measured at the perpendicular cross-flow velocities of
0.01, 0.1, 1, 10 and 100 m/s

Solution

Schematic  See sketch.

Assumptions

• The temperature in the resistor is constant.
• The air temperature is constant.
• Effects at the end of the resistor are negligible.

Analysis

The current through the resistor produces the following heat rate:

)/K 0,04 010(22 ϑ⋅+⋅=⋅= iRiQ

The temperature ϑ is the one measured by the resistor, which has to be calculated
here. Due to the heat rate produced by the resistance it is higher than the air
temperature. Heat is transferred to the air as given by the rate equation:

)( ∞−⋅⋅= ϑϑα AQ

The energy conservation requires that the two heat rates have the same value.

/K040

 010
2

2

⋅⋅−⋅

⋅⋅+⋅
= ∞

,iA

Ai

α

ϑα
ϑ

Heated length

10 mm

4 mm

coo



3 Forced convection 103

For the different flow velocities the Reynolds number is calculated with Equation
(3.44). The characteristic length is:

6.28  mm
2 2proj

A d l d
L

U l

π π⋅ ⋅ ⋅
′ = = = =

⋅

The results of the calculations are presented in the table below:

c Re
L'

Nu
L',lam

Nu
L',turb

Nu
L'

α ϑ
m/s W/(m2 K)   °C
0.01 2.66 0.962 0.068 1.265 6.320 100.131
0.10 26.60 3.044 0.431 3.374 16.860 100.050
1.00 266.00 9.624 2.719 10.301 51.480 100.016

10.00 2
 
662.00 30.435 17.154 35.236 176.092 100.005

100.00 2
 
6

 
624.00 96.244 108.233 145.136 725.311 100.001

Discussion

The current through the resistor heats it up. The error in the measurement at a flow
velocity of 0.1 m/s is less then 0.05 K. With state-of -the-art measuring devices the
required current can be kept below of 1 mA. In static air the Nußelt number is: Nu

L',0

= 0,3. The value of the heat transfer coefficient is 1.5 W/(m2 K) and the deviation
0.5 K. Reduction of the current to 0.1 mA reduces the deviation by 100 times.

3.2.4 Perpendicular cross-flow in tube bundles

In industry, heat exchanger tube bundles with perpendicular flow are common
practice. Already in a single row of tubes the velocity is higher than with a single
tube. Therefore, in the first row of tube bundle the laws for a single tube are already
not valid. In the case of multiple tubes rows in the flow direction flow separation and
vortex shedding occur. The calculation procedures for tube bundles use the Nußelt
numbers of the single tubes and correction functions, which take into account the
tube arrangements and bundle geometry. Figure 3.9 shows different possibilities of
tube arrangements.

The distance of two tubes perpendicular to the flow direction is s
1
, the distance of

the tube rows s
2
. The arrangement of the tubes is characterized by the dimensionless

tube distance a = s
1
/d and the dimensionless tube row distance b = s

2
/d.

/dsa 1= (3.36)

/dsb 2= (3.37)
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Figure 3.9: Different arrangements of tubes in a tube bundle

The Reynolds number is determined with the mean velocity in the hollow (free)
space c

ψ
. The ratio of the hollow space or porosity is ψ. In Figure 3.9 the determina-

tion of the hollow volume ratio is presented. Depending on the value of the dimen-
sionless tube row distance two different equations are given for the determination of
the hollow volume ratio.

2

1

1 1 1 for 1
4 4

festV d l
b

V s d l a

π π
Ψ

⋅ ⋅
= − = − = − >

⋅ ⋅ ⋅ ⋅
(3.38)

2

1 2

1 1 1 for 1
4 4

festV d l
b

V s s l a b

π π
Ψ

⋅ ⋅
= − = − = − <

⋅ ⋅ ⋅ ⋅ ⋅
(3.39)

The velocity in the Reynolds number is:

ΨΨ /0cc = (3.40)

The Reynolds number:

ν
Ψ

Ψ

Lc
Re L

′⋅
=′, (3.41)
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With this Reynolds number the Nußelt number of a single tube is determined. For
the different arrangements of tubes two further geometry functions are defined to
take into account the arrangement of the tubes. The first function f

A
 takes into ac-

count the arrangement of tubes in the bundle the second function  f
n
 the number of

tube rows.

                     1.5 2

0.7 ( / 0.3)
1

( / 0.7)A

b a
f

b a

⋅ −
= +

Ψ ⋅ +
    aligned arrangement (3.42)

                                 
2

1
3Af

b
= +

⋅
               staggered arrangement (3.43)

Compared to a single tube the heat transfer coefficients in the first row are larger,
but they are smaller than in the following rows. With separation of flow and vortex
generation the turbulence increases and so also the heat transfer coefficients. This
so called first row effect must be considered additionally. Tube bundles are often
calculated from tube row to tube row, for this the local heat transfer coefficient of
every tube row is separately calculated with the corresponding flow velocity, material
properties and the tube row correction factor. In Figure 3.10 on left side the local tube
row correction function f

j
 for the j-th row is given. Equation (3.44) calculates the

corrector function f
j
 and Equation (3.45) that for the total bundle with n tube rows.

With Equation (3.46) the Nußelt number Nu
j
 of the j-th row and with Equation (3.47)

that of the bundle Nu
Bundle

 can be determined.

nNumber of tube rowsjNuber of tube row
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Figure 3.10: Correction function for the first row effect (left local, right integral)

2

2 4 3 2

0.6475 0.2 0.0215 if 5

1 1/ ( ) 3 (2 1) / ( 2 ) if 4
j

j j j
f

j j j j j j j

+ ⋅ − ⋅ <
=

+ + + ⋅ ⋅ − − ⋅ + >
(3.44)

[ ]

20.74423 0.8 0.006 if 6

0.018 exp 0.0004 ( 6)) 1 if 5n

n n n
f

n n

+ ⋅ − ⋅ <
=

+ ⋅ − − > (3.45)

/j L A jN u L N u f fα λ ′′= ⋅ = ⋅ ⋅ (3.46)

/bundle L A nNu L Nu f fα λ ′
′= ⋅ = ⋅ ⋅ (3.47)
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EXAMPLE 3.6: Design of a nuclear reheater bundle

For a nuclear steam turbine unit a reheater bundle with U-tubes shall be designed.
The mass flow rate of the steam through the bundle is 300 kg/s and the inlet pressure
8 bar. The working steam shall be  heated from 170.4 °C to 280 °C by heating steam
condensing at a temperature of 295 °C. The heat transfer coefficient in the tubes is
12

 
000 W/(m2 K). The outside diameter of the tubes is 15 mm, wall thickness 1 mm and

thermal conductivity 26 W/(m K). To keep the pressure drop in an acceptable range,
the steam velocity to the bundle shall not exceed  6 m/s. The heating steam chamber
is a hemisphere welded to the circular tube sheet. The tubes shall fill a rectangular
space, i.e. the height of the bundle shall be approximately the same as its width. The
U-bends of tubes are not in contact with the steam i.e. they do not participate in the
heat transfer and therefore only the straight tube part between tube sheet and last
support plate exchange heat. The tubes are arranged in 60° triangles and have a
distance of 20 mm. The sketch shows the arrangement of the tube bundle and that of
the tubes. At the bundle inlet the steam density of steam is: 4.161 kg/m3.
The other steam properties at 225.2 °C are:

ρ = 3.581 kg/m3, λ = 0.038 W/(m K), ν = 4.76 . 10-6 m2/s, Pr = 0.99,
c

p
 = 2206 J/(kg K).

Find

Number and length of the tubes.

Solution

Schematic  See sketch.

s

H

c

l

0

B
c0

s

s0 2

1

s0

c0

s
1

1.5

Assumptions

• Effects at the bundle periphery can be neglected.
• The mean heat transfer coefficients in- and outside of the tubes are constant.
• The temperature in the tubes is constant.
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Analysis

To determine the number and length of the tubes, the number of tube rows n, the
number of the tubes per row i and the heat transfer surface area A has to be deter-
mined. There are three unknowns, therefore three equations are required.

The condition that the height and width of the bundle must have the same dimen-
sion, defines the relationship between the number of tube rows n and number of
tubes per row i and deliver the first equation.

2 1 2 1( 1.5) from we receive: ( 1.5)B n s H i s B H n s i s= ⋅ = + ⋅ = ⋅ = + ⋅

The given flow velocity at the bundle inlet determine the flow cross-sectional area
at bundle inlet.

0
0 1 0( 1.5)

m m
c

H l i s lρ ρ
= =

⋅ ⋅ + ⋅ ⋅ ⋅

The heat exchanger surface area can be calculated with the rate equation.

m
a k

Q
ldniA

ϑΔ
π

⋅
=⋅⋅⋅⋅=

With the energy balance equation the heat rate can be determined.

1 1( ) 300 kg/s 2206 J/(kg K) (280 170.4) K 72533  kWpQ m c ϑ ϑ′′ ′= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ =

The log mean temperature difference is calculated with the given temperatures:

1 1

2 1

2 1

(280 170.4) K
51.77  K

295 170.4
lnln

295 280

m

ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

′′ ′− − ⋅
= = =

−′−

−′′−

To determine the heat transfer coefficient first the influence of the bundle geo-
metry has to be given. The dimensionless tube distances a and b are:

1 0 13 3 20  mm 34.64  mm / 34.64 /15 2.309as s a s d= ⋅ = ⋅ = = = =

2 0 2/ 2 10  mm / 10 /15 0.67as s b s d= = = = =

As b < 1 the hollow volume ratio is calculated with Equation (3.39).

1 1 1 0.490
4 4 4 2.309 0.67a b a b

π π π
Ψ = − = − = − =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The flow length of the tube is: / 2 23.562 mmaL dπ′ = ⋅ =

Due to the temperature rise, the density of steam in the bundle is smaller than at the
inlet. This has to be considered in the determination of the velocities. The steam
density is the one at the main steam temperature. With Equation (3.40) we receive:
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0 0 6 4.161 m m
14.23  

3.581 0.490 s s

c
cΨ

ρ

ρ Ψ

⋅ ⋅
= = ⋅ =

⋅ ⋅

Reynolds number with Equation (3.41):

  , 6 2

14.23 m 0.02356 m s
70 448

4.76 10 m sL

c L
Re Ψ

Ψ
ν

′ −

′⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

The Nußelt number is determined with Equations (3.31) to (3.33), whereas it is
assumed that the steam side heat transfer coefficient is rather small and therefore a
wall temperature of 270 °C is near to reality.

3 3
, 0.664 0.664 0.99 70448 175.7L lam LNu Pr Re′ ′= ⋅ ⋅ = ⋅ ⋅ =

0.8 0.8

, 0.1 2/3 0.1 2/3

0.037 0.037 70 448 0.99
278.3

1 2.443 ( 1) 1 2.443 70 448 (0.99 1)
L

L turb
L

Re Pr
Nu

Re Pr
′

′ − −
′

⋅ ⋅ ⋅ ⋅
= = =

+ ⋅ ⋅ − + ⋅ ⋅ −

2 2 0.121
,0 , , ( / ) 325.9L L L lam L turb WNu Nu Nu Nu T T′ ′ ′ ′= + + ⋅ =

The function  f
A
 is calculated with Equation (3.43).

2 2
1 1 2

3 3 0.67Af
b

= + = + =
⋅ ⋅

For the function f
n
 it is first assumed that more than 15 tube rows would be re-

quired, resulting in  f
n
 = 1.03. The Nußelt number of the bundle with Equation (3.47):

325.9 2 1.03 671.2bundle L A nNu Nu f f′= ⋅ ⋅ = ⋅ ⋅ =

For the heat transfer coefficient outside the tubes we receive:

2

671.2 0.038 W W
1082.6  

0.02356 m m K m K
bundle

a

Nu

L

λ
α

⋅ ⋅ ⋅
= = =

′ ⋅ ⋅ ⋅ ⋅

The overall heat transfer coefficient is:

1

2

1 W
ln 942.4  

2 m K
a a a

a R i i i

d d d
k

d dα λ α

−

= + ⋅ + =
⋅ ⋅ ⋅

To check the assumption made for the wall temperature, it is calculated now.

/ 225.2 C 51.77 K 942.4/1082.6 270.3 CW m m akϑ ϑ Δϑ α= + ⋅ = ° + ⋅ ⋅ = °

A further correction is not necessary as the difference is less than 0.05 %. The
required surface area is:
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6 2
272.533 10 W m K

1486.7  m
942.4 W 51.77 Ka

m

Q
A i n d l

k
π

Δϑ

⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ = = =

⋅ ⋅ ⋅ ⋅

From the equation for the steam velocity at the inlet of the bundle we receive:

3

1 0 0

300 kg s m
( 1.5) 346.88  m

0.03464 m 6 m 4.161 kg s

m
i l

s c ρ

⋅ ⋅ ⋅
+ ⋅ = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

With the condition, that the height and width of the bundle have approximately
the same dimension, the following equation was given:

2 1( 1.5) /i n s s+ = ⋅

The last two equations combined deliver:

1 2 346.88 m 0.03464 / 0.010 346.89 m 1201.63 mn l s / s⋅ = ⋅ = ⋅ =

With required surface area the number of tubes per rows can be determined. For
the number of tubes we receive:

1 2( 1.5) /n i s s= + ⋅ = 96

The tube length is: 1201.67 ml / n= = 12.498  m

Discussion

The heat transfer coefficient in the bundle is higher than on a single tube. This is
due to the higher velocity and subsequently higher Reynolds number and due to the
flow separation and vortex formation which are considered by the functions  f

A
 and f

n
.

This example shows, that the design of a heat exchanger requires not only the
knowledge of the heat transfer coefficient, but also knowledge of the mechanical
design and pressure drop (the given flow velocity is a result of a pressure drop
calculation).

3.2.5 Tube bundle with baffle plates

Often the tubes in bundles are not hit by the flow perpendicularly or at a given angle,
due to so-called baffle plates. As shown in Figure 3.11, the flow in the bundle
changes its direction, directed by the baffle plates. Areas with perpendicular and
parallel flow exist and these two flow modes can be calculated for the perpendicular
flow as shown in the chapter before and for the parallel flow as discussed in Chapter
3.2.13. this calculation is only a rough approach as close to the baffle plate ends
neither parallel nor perpendicular flow exist. Furthermore at the baffle plates by-
passes and leakages occur. These effects can be considered by correction functions,



110 3 Forced convection

whose discussion would go beyond the scope of this book. Literature can be found
e.g. in VDI Heat Atlas [3.4, 3.6].

Figure 3.11: Tube and shell heat exchanger with baffle plates

3.3 Finned tubes

By installing fins, transfer areas of heat exchangers gain extended surfaces. This is a
fairly cost-efficient solution, as for the extended surface area no pressure piping is
required. Fins are normally always installed on the side of lower heat transfer coeffi-
cients. The benefit of the fins is as greater, the lower the heat transfer coefficients are.

In the following calculations a perfect thermal contact between the fins and the
base wall is assumed. In any case, this is an absolute requirement for manufacturing
finned surfaces. The calculation procedures discussed here are not generally exact,
as in reality no analytical calculation methods have been found yet to predict the heat
transfer coefficients for all types of finned surfaces. For exact calculations either
numerical simulations, tests or reports of tests, performed in similar conditions, are
required.

For plain plates with fins of constant cross-sections the overall heat transfer coeff-
icients can be determined as given in Chapter 3.2.2.

Figure 3.12 shows the arrangement and fin shapes of typical finned heat transfer
surface areas.

In this chapter only finned tubes will be discussed in detail. The heat transfer
coefficients are related to the outer surface area A of the non-finned tube. Therefore,
the heat rate of a finned tube is given as:

m a mQ k A k d lΔϑ π Δϑ= ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ (3.48)

The overall heat transfer coefficient related to the outer surface area of the non-
finned tube A is determined as follows: The heat transfer coefficient at the fin surface
A

Ri
 and at the surface A

0 
of the tubes between the fins is α

a
. The related temperature

is that of the outer surface of the tube. The changed temperatures on the fin surface
are considered by the fin effectiveness η

Ri
. The fin surface area  A

Ri
 is that of the fin

walls whereas the surface area of the fin tip is neglected. This results in the following
overall heat transfer coefficient:
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ii

a

i

a

R

a

aRiRi d

d

d

dd

AA

A

k αλαη

1
ln

2

11

0

⋅+⋅
⋅

+⋅
⋅+

= (3.49)

Figure 3.12: Typical finned surfaces [3.4]

The fin efficiency shown in Chapter 2.1.6.4 is only valid for fins with a constant
cross-section. Due to the not constant cross-section of finned tubes, a new correla-
tion for the fin efficiency is needed. They will be given below.

X

X
Ri

tanh
=η (3.50)

The dimensionless value X is calculated as:

2

2
a a

Ri

d
X

s

α
ϕ

λ

⋅
= ⋅ ⋅

⋅ (3.51)

The correction function for different geometries is ϕ. For conical fins the thickness
of fin s is the average value of the thickness at the fin foot s'' and fin tip s'.

( ) / 2Ris s s′′ ′= + (3.52)

The following correction functions ϕ are given below:
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Annular fins:

[ ]( / 1) 1 0.35 ln( / )a aD d D dϕ = − ⋅ + ⋅ (3.53)

Square fins and circular tubes

[ ]( 1) 1 0.35 ln with 1.28 ( / ) / 0.2R a R Rb d l bϕ ϕ ϕ ϕ′ ′ ′= − ⋅ + ⋅ = ⋅ ⋅ − (3.54)

Continuous fins and circular tubes

For fins with aligned tubes Equation (3.54) can be used. For staggered tubes the
fin receives a hexagonal surface and the function ϕ' is inserted in Equation (3.54):

1.27 ( / ) / 0.3R a R Rb d l bϕ′ = ⋅ ⋅ − (3.55)

Straight fins on plain surface

adh /2 ⋅=ϕ (3.56)

The thickness s of trapezoid fins is defined as:

0.75 0.25Ris s s′′ ′= ⋅ + ⋅ (3.57)

Needle fins on flat surface area

adh /2 ⋅=ϕ (3.58)

The thickness s of needle fins is defined as:

/ 2 at blunt, 1.125 at sharp finsRi N Ri Ns d s d= = ⋅ (3.59)

3.3.1 Annular fins

The determination of the surface areas of annular fins with constant fin thickness is
discussed below. For rectangular and continuous fins the procedure is similar. Figure
3.13 shows a circular tube with annular fins of constant thickness.

t

d
h

Dd a

RisRi

Figure 3.13: Annular fins of constant thickness
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The surface area A of the non-finned tube is:

ldA a ⋅⋅= π (3.60)

The surface area A0 of the tube between the fins is:

0 (1 / )a Ri RiA d l s tπ= ⋅ ⋅ ⋅ − (3.61)

Surface area of the fins A
Ri

:

2 22 ( )
4Ri a

Ri

l
A D d

t

π
= ⋅ ⋅ − ⋅ (3.62)

The ratio of the fin surface area to that of the unfinned tube is:

2 2 ( ) 2
( / ) 1 (1 / )

2
Ri a a

a a
Ri Ri a R

A d h d h h
D d h d

A t t d t

⋅ ⋅ + ⋅
= − ⋅ = = ⋅ +

⋅ ⋅ (3.63)

Heat transfer coefficients for tube bundles as shown in the previous chapter can
not be applied for finned tubes. Therefore here a correlation for tube bundles with
finned tubes is given, which reproduce a large number of test values with an accuracy
of 10 to 25  %  [3.6].

[ ]
0.150.6 1/3

0 4( ) /
a ad d Ri nNu C Re A A A Pr f f

−
= ⋅ ⋅ + ⋅ ⋅ ⋅ (3.64)

The constant C for aligned tube arrangement is C = 0.22 and for shifted C = 0.38.
The characteristic length for Nußelt and Reynolds number is the outside diameter of
the tube.

The Reynolds number is determined with the velocity in the narrowest gap be-
tween the tubes.

The narrowest gap is dependent on the arrangement of the tubes as demonstrated
in Figure 3.14. At the determination of the narrowest gap, the obstruction by the fins
has to be considered.

s
s

s 1 s 1

sNarrowest
gap

2 Narrowest
gap

s 1

Narrowest2
gap

2

Figure 3.14: Determination of the narrowest gap

For the two left-hand arrangements in Figure 3.14 the velocity in the narrowest gap
results as:



1

0
1

21
(1 ) Ri

e
Ri

s h
c c

a s t

−

⋅ ⋅
= ⋅ − −

⋅
(3.65)

For the arrangement on the right-hand side we receive:

1

2
0

1

42
1 (2 / ) Ri

e
Ri

s h
c c b a

a s t

−

⋅ ⋅
= ⋅ + ⋅ − −

⋅
(3.67)

More exact correlations for low finned tubes are proposed by Briggs and Young
[3.7], based on a large number of tests.

EXAMPLE 3.7: Reheater bundle with finned tubes

A reheater bundle with finned tubes has to be designed for the same thermal and
geometrical conditions as given in Example 3.6. The fins have an outside diameter of
5/8". The height of the fins is 1.27 mm, the thickness 0.3 mm and their distance 1 mm.
The thermal conductivity of tube and fin material is 27 W/(m K), the tube wall
thickness 1 mm, the distance between the tubes 13/16".

Find

The number and the length of the tubes.

Solution

Schematic See sketch.

Assumptions

• The effect at bundle periphery can be neglected.
• All mean heat transfer coefficients are constant.
• The condensation temperature in the tubes is constant.

Analysis

The procedure is the same as for the tube bundle with non-finned tubes in Example
3.6. First the dimension given in U.S. unit are converted to SI units.

05 / 8" 25.4 mm 15.875  mm 13 /16" 25.4 mm 20.6375  mmD s= ⋅ ⋅ = = ⋅ ⋅ =

The required geometrical values are:

5/8"

0,3 mm

5/8"

13/16"

c0

1,27 mm
1 mm

114 3 Forced convection
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1 0 2 0

1 2

2 (15.875 2 1.27) mm 13.335  mm 11.335  mm

3 35.7452  mm / 2 10.31875  mm

/ 2.681 / 0.77381

a i

a a

d D s d

s s s s

a s d b s d

= − ⋅ = − ⋅ ⋅ = =

= ⋅ = = =

= = = =

The velocity is determined with the steam density in the bundle using Equation
(3.66) .

1

20
0

1

1
2

42
1 (2 / )

m 4.161 2 4 0.3 1,27 m
6 1 (2 0.7738 / 2.681) 19.05  

s 3.581 2.681 35.7452 1 s

Ri
e

Ri

s h
c c b a

a s t

ρ

ρ

−

−

⋅ ⋅
= ⋅ ⋅ + ⋅ − − =

⋅

⋅ ⋅
= ⋅ ⋅ ⋅ + ⋅ − − =

⋅

 The Reynolds number is calculated with this velocity and the outer tube dia-
meter.

6

19.05 0.013335
53371

4.76 10a

e a
d

c d
Re

ν −

⋅ ⋅
= = =

⋅

Before the Nußelt number can be calculated with Equation (3.64), first the surface
areas and correction functions have to be calculated. For f

4
 and f

n
 the values used in

Example 3.6 are inserted.

2 2 1.27
(1 / ) (1 1.27 /13.335) 2.7819

1
Ri

a
R

A h
h d

A t

⋅ ⋅
= ⋅ + = ⋅ + =

0 1 / 0.7R

A
s t

A
= − =

0.6 0.15 1/3
0 4

0.6 0.15 1/3

0.38 [( ) / ]

0.38 53371 3.4819 0.99 0.99 1.03 219.7
a ad d Ri nNu Re A A A Pr f f−

−

= ⋅ ⋅ + ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

The heat transfer coefficient outside the tubes is:

2/ 626.2  W/(m K)
aa d aNu dα λ= ⋅ = ⋅

For the determination of the overall heat transfer coefficient the fin efficiency has
to be calculated with Equations (3.50), (3.51) and (3.53).

15.875 15.875
( 1) 1 0.35 ln ) 1 1 0.35 ln 0.2021

13.335 13.335a a

D D

d d
ϕ = − ⋅ + ⋅ = − ⋅ + ⋅ =
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2

2 0.013335 m 2 626.2 W m K
0.2021 0.540

2 2 27 W 0.0003 m m K
a a

Ri

d
X

s

α
ϕ

λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ = ⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

tanh tanh 0.540
0.913

0.540Ri

X

X
η = = =

1

2

1 1 0.013335 13.335 13.335 1
ln

0.7 2.7819 0.913 626.2 2 27 11.335 11.335 12 000

W
1580.7  

m K

k
−

= ⋅ + ⋅ + ⋅ =
+ ⋅ ⋅

=
⋅

The required heat exchanging surface area is:

6 2
272.533 10 W m K

886.37  m
1580.7 W 51.77 Ka

m

Q
A i n d l

k
π

Δϑ

⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ ⋅ = = =

⋅ ⋅ ⋅ ⋅

With the given inlet velocity we receive:

3

1 0 0

300 kg s m
( 1.5) 336.17  m

0.0357452 m 6 m 4.161 kg s

m
i l

s c ρ

⋅ ⋅ ⋅
+ ⋅ = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

From the ratio of the bundle height to width results:

2 1( 1.5) /i n s s+ = ⋅

The combination of both equations deliver:

1 2336.17  m 336.17  m 35.7452 /10.31875 1164.52  mn l s / s⋅ = ⋅ = ⋅ =

From the surface area we receive the number of tubes per row.

2886.37  m

1164.52 m 0.013335 ma

A
i

n l dπ π
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
18

The number of tubes results as: 1 2( 1.5) /n i s s= + ⋅ = 68

1164.52  m /l n= = 17.125  m

Discussion

At a first glance it seems that with the finned tubes the surface area is 67 % smaller
than with the non-finned tubes. The finned tube surface area was calculated with the
outside diameter of the tubes. The total surface area with fins is 3.48 times larger and
is 3080 m2. The most important fact is, the bundle is smaller than the one with non-
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finned tubes. Instead of 1
 
262 only 612 U-tubes are required. The height and width of

the bundle is reduced from 1 m to 0.7 m. The tube lengths are indeed longer, they
increase from 12.5 m to 17.125 m. Manufacturing costs for longer bundles are lower,
as fewer tubes are needed. This reduces the effort for drilling the holes in the thick
tube sheet, welding and bending of the tubes.

It appears paradoxical, that the overall heat transfer coefficient is larger than that
of the steam. The heat transfer occurs on the tube surface between the fins and on the
fin surface. The overall heat transfer coefficient is related to the non-finned surface of
the tubes and is therefore larger.

For this type of so called “low finned tubes” a correlation reported by Briggs and
Young [3.8] may provide more exact results.



  



4 Free convection

Contrary to forced convection, in free convection the flow is generated only by the
temperature difference between wall and fluid. When a static fluid contacts a sur-
face (wall) which has a different temperature to the fluid, temperature differences
will be created in the fluid and subsequently the fluid density will change. Due to
gravity, fluid layers with higher temperature ascend, such with lower temperature
descend. Thermal and hydraulic boundary layers are generated by the temperature
and subsequent density difference.

The analysis of a huge number of test and flow models delivered empiric equa-
tions for the Nußelt number as a function of the Grashof and Prandtl number.

/ ( , Pr)lNu L f Grα λ= ⋅ =

The Grashof number is the ratio between the buoyancy and frictional forces. It is
describing the similar correlations as the Reynolds number for forced convection. It
is defined as:

3
0

2
0

( )Wg L
Gr

ρ ρ

ρ ν

⋅ ⋅ −
=

⋅
(4.1)

Herein L is the characteristic length, β the thermal expansion coefficient and ν the
kinematic viscosity. The index W is for the state at the wall, 0 that of the static fluid.

For ideal gases the thermal expansion coefficient is only a function of the absolute
temperature of the gas.

0/1 T=β (4.2)

For very small values of β  .   .   .   .   . (ϑ
W

-ϑ
0
)  << 1 the Grashof  number can be given as a

function of the density difference.

0
0

0

( )
( )W

W
ρ ρ

β ϑ ϑ
ρ

−
= ⋅ − (4.3)

2
0

3 )(

ν

ϑϑβ −⋅⋅⋅
= Wlg

Gr (4.4)

The mean temperature (ϑ
W
 – ϑ

0
)/2 is used to determine the material properties λ,

ν and Pr.
The characteristic length l in the Grashof and Nußelt number is:

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_4, © Springer-Verlag Berlin Heidelberg 2012 

119



120 4 Free convection

/ projL A U= (4.5)

The heat transfer surface area is A and the projected circumference in direction of
the flow U

proj
. For simplifying the equations, the Rayleigh number will be establi-

shed as a further similarity number. It is the product of Grashof and Prandtl number.

PrGrRa ⋅= (4.6)

Equations for the Nußelt numbers published in literature [4.1] are valid for con-
stant wall temperatures. However, in practice the deviation to a calculation with the
mean wall temperature is negligible.

4.1 Free convection at plain vertical walls

l ϑ
W

ρ
W

c
c = 0

0ϑ
0

ρ

boundary layer

Figure 4.1: Free convection at a plain vertical wall

At a heated plain vertical wall (Figure 4.1) of the height l, the density of the fluid
in the boundary layer close to the wall is lower, therefore it is subject to buoyancy
and an ascended flow develops. At a wall with cooling a descendent flow occurs. In
a stationary state the buoyant and frictional forces are balanced. The flow is first
laminar and after a certain length turbulent. In the boundary layer the temperature
changes with the wall distance and with it the density of the fluid. Therefore, the
buoyancy in the fluid layers are different. Because of this, generally applicable ana-
lytical solutions of the flow and energy equations have not yet been found. The
following empiric correlation delivers mean Nußelt numbers.

The characteristic length of the vertical wall is:

                           
b l

L l
b

⋅
= =

For plain vertical walls the following empirical correlation is proposed:

{ }
21/ 6

10.825 0.387 ( )lNu Ra f Pr= + ⋅ ⋅ (4.7)
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( )
8 / 279 /16

1 ( ) 1 0.671f Pr Pr
−−= + ⋅ (4.8)

The validity range of the above equations is:

0.001 < Pr < ∞
       0.1 < Ra < 1012

Equation (4.7) is valid for laminar and turbulent flow.

10

numberRaleigh
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Figure 4.2: Nußelt vs. Rayleigh number for Pr = 0.7

Figure 4.2 shows the Nußelt versus Rayleigh number. At Rayleigh numbers high-
er than 106 the Nußelt number is proportional to the third power of the temperature
difference.

EXAMPLE 4.1: Warming of a vertical wall

The 3 m high wall of a house is heated by a heat flux of 100 W/m2 originating from
sunlight. The temperature of the ambient air is 0 °C. The material properties of the
air are: λ = 0.0245 W/(m K), ν = 14 . 10-6 m2/s, Pr = 0.711.

Find

The temperature of the wall.

Solution

Schematic See sketch. 3 m qsunbeam
.
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Assumptions

• The warming of the wall from the inside is neglected.
• Radiation emitted from the wall is neglected.
• Only the steady state, i.e. the state at which the wall has reached its final tempe-

rature, shall be discussed here.

Analysis

In a steady state the heat flux emitted by sunbeams is equal to that transferred to
the environmental air by free connection.

0( )sun Wq α ϑ ϑ= ⋅ −

The heat transfer coefficient is calculated with the Nußelt number with Equation
(4.7).

{ }
21/ 6

1/ 0.825 0.387 ( ) /lNu l Ra f Pr lα λ λ= ⋅ = + ⋅ ⋅ ⋅

The Rayleigh number can be determined with the Grashof number from Equation
(4.3), whereas the thermal expansions coefficient is given by Equation (4.4).

2
0

0
3 )(

ν

ϑϑ

⋅

−⋅⋅
=

T

lg
Gr W

The Grashof number and subsequently the heat transfer coefficient are functions
of the wall temperature. For the determination of the wall temperature two methods
are possible: in the first one a wall temperature is estimated to calculate the heat
transfer coefficient and with it the wall temperature. The calculation procedure has
to be repeated until the required accuracy is reached. In the second method the
temperature difference is inserted as the ratio of the heat flux and heat transfer
coefficient in Equation (4.4) and the heat transfer can be calculated directly. The
second procedure delivers:

21/63
1/6

12
0

0.825 0.387 ( )
g l q

Pr f Pr
lT

λ
α

α ν

⋅ ⋅
= + ⋅ ⋅ ⋅ ⋅

⋅ ⋅

The exact solution must be calculated with an equation solver or by iteration. If
the right term in  the brackets is much higher than 0.825, the heat transfer coefficient
can be calculated directly. The function f

1
(Pr) is determined with Equation (4.7).

( ) ( )
8/27 8/ 279/16 9/16

1( ) 1 0.671 1 0.671 0.711 0.8384f Pr Pr
− −− −= + ⋅ = + ⋅ =

The numerical values inserted in Mathcad deliver:
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21/63
1/6

2 2
0

W
0.825 0.387 ( ) 4.1  

l m K
sung l q

Pr f Pr
T

λ
α

ν

⋅ ⋅
= + ⋅ ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅

The wall temperature we receive as:

0 /W qϑ ϑ α= + = °24.4  C

Discussion

Free convection is often generated by external influences in this example by
sunlight. If the wall temperature is not a given value, an iteration is required for its
determination. In the case of given heat flux or heat flow rate the temperature dif-
ference can be replaced by the ratio of heat flux and heat transfer coefficient.

EXAMPLE 4.2: Radiator

In a room with radiators of 1.2 m length, 0.45 m height and 0.02 m width a heating
power of 3 kW shall be established. The mean heater wall temperature is 48 °C, the
room temperature 22 °C. Material properties of air:

λ = 0.0268 W/(m K), ν = 16.05 . 10-6 m2/s, Pr = 0.711.

Find

The number of radiators required for 3 kW heat rate.

Solution

Schematic See sketch.

Assumptions

• The top and bottom wall with 20 mm width will not be considered.
• Radiation effects will not be considered.
• The wall temperature of the radiator is assumed as constant.

Analysis

The heat transfer surface area is:

2 22 ( ) 2 (0.45 1.2 0.45 0.02)  m 1.098  mA H L H B= ⋅ ⋅ + ⋅ = ⋅ ⋅ + ⋅ =

0.45 m

0.02 m

1.2 m
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The Rayleigh number is calculated with the Grashof number from Equation (4.3).
Rayleigh number will be determined with Equation  (4.4).

3 3 3 2
80

2 2 12 4 2
0

( ) 9.81 m 0.45 m (48 22) K s
0.711 2.173 10

295.15 K 16.05 10 m s
Wg H

Ra Pr
T

ϑ ϑ

ν −

⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅
= ⋅ = ⋅ = ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The function f
1
(Pr) can be calculated with Equation (4.8).

( ) ( )
8/ 27 8/ 279/16 9/16

1( ) 1 0.671 1 0.671 0.711 0.8384f Pr Pr
− −− −= + ⋅ = + ⋅ =

{ }

{ }

21/6
1

28 1/6

0.825 0.387 ( )

0.825 0.387 (2.173 10 ) 0.8384 77.10

HNu Ra f Pr= + ⋅ ⋅ =

= + ⋅ ⋅ ⋅ =

2

0.0268 W W
77.10 4.59  

0.45 m m K m KLNu
H

λ
α

⋅
= ⋅ = ⋅ =

⋅ ⋅ ⋅ ⋅

The heat flow rate delivered by each heating element is:

2 2
1 0( ) 4.59 W/(m K) 1.098 m (48 22) KWQ Aα ϑ ϑ= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 131.1 W

To produce 3 kW heat rate 23 heating elements are required.

Discussion

With known wall temperature the determination of the heat transfer coefficient
and heat flux is fairly simple. The calculated value is not realistic however, because
the heat transferred by radiation has not been considered. As will be shown in the
chapter “Radiation” that almost 50 % of the heat rate is additionally transferred by
radiation. At higher wall temperatures of the heater the portion of radiation
increases. This type of heating elements are therefore called radiators.

EXAMPLE 4.3: Wall temperature of a room

In a room with an in- and outside wall with a height of 2.8 m, the room temperature
is 22 °C, and the outer temperature 0 °C. The wall heat transfer coefficient has the
value of 0.3 W/(m2 K). Material properties of air:

inside: λ = 0.0257 W/(m K), ν = 15.11 . 10-6 m2/s, Pr = 0.713
outside: λ = 0.0243 W/(m K), ν = 13.30 . 10-6 m2/s, Pr = 0.711.

Find

The temperature inside and outside on the wall.
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Solution

Schematic See sketch.

Assumptions

• Radiation effects are neglected.
• The wall temperatures are assumed to be constant.

Analysis

In this case first the wall temperatures has to be estimated, the heat transfer coeffi-
cients calculated and wall temperatures determined. With received wall tempera-
tures the whole calculation has to be repeated until the required accuracy is reached.
The results will be presented tabularly. The following equations were applied:
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⋅

−⋅⋅
=
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3 )(
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( )
8/ 279/16

1( ) 1 0.671f Pr Pr
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                 { }
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αϑϑϑϑ /)( ⋅−+=

The values of function f
1
(Pr) are in the room 0.8386 and outside 0.8384.

ϑ
Wi

ϑ
Wa

Ra
i

Ra
a

α
i

α
a

k ϑ
Wi

ϑ
Wa

°C °C . 10-9 . 10-9 W/(m2 K) °C °C
20.00 2.00 5.880 4.909 1.960 1.750 0.227 19.46 2.85
19.46 2.85 7.467 6.995 2.113 1.956 0.232 19.59 2.60
19.59 2.60 7.085 6.381 2.078 1.901 0.230 19.56 2.67
19.56 2.67 7.173 6.553 2.086 1.917 0.231 19.57 2.65
19.57 2.65 7.144 6.504 2.084 1.912 0.231 19.57 2.65

Discussion

The magnitude of the heat transfer coefficients is determined by the temperature
differences. Therefore the wall temperatures must be determined by iteration. The
calculation of wall temperatures is important because they are relevant for  conver-
tibility and determine dew formation in the room, which should be strictly avoided.

Waϑ

ϑ

ϑ i

Wi

aϑ
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4.1.1 Inclined plane surfaces

At inclined plane walls the flows initiated by the temperature difference can be
com-pletely different from that at vertical walls. It depends whether surface is
heated or cooled and from which side (upper or lower) the heat is transferred. At
inclined heated plates at the lower side a stable boundary layer is generated which
does not separate from the wall, from the upper side the boundary layer separates
after a certain length. One has to distinguish between the following cases:

1. Heated surface with heat release from lower side: no boundary layer separation
2. Cooled surface with heat release from upper side: no boundary layer separation
3. Heated surface with heat release from upper side: boundary layer separation

possible
4. Cooled surface with heat release from lower side: boundary layer separation

possible.

If no boundary layer separation occurs  (1. and 2.) Equation (4.7) can be used but
the Rayleigh number must be multiplied by cosα, where α is the inclination angle to
the vertical.

             αα cos⋅= RaRa (4.9)
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Figure 4.3: Critical Rayleigh number
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In case of possible boundary layer separation (3. and 4.) the critical Rayleigh
number Ra

c
 (Figure 4.3) define, which equation has to be used. For  Rayleigh num-

bers lower than Ra
c
, Equation (4.7) applies and for higher Rayleigh numbers the

separation of the boundary layer has to be considered. For the separated boundary
layer the following Nußelt number is prosed:

1/4 1/3 1/30.56 ( cos ) 0.13 ( )l c cNu Ra Ra Raα= ⋅ ⋅ + ⋅ − (4.10)

EXAMPLE 4.4: Solar collector

A solar collector panel with an angle of 45° to the vertical is installed on a roof. It
has a length of 2 m and width of 1 m. The temperature of the collector is 30 °C, that
of the surrounding air 10 °C. Material properties of air.

λ = 0.0257 W/(m K), ν  = 15.11 . 10-6 m2/s, Pr = 0.713.

Find

The heat losses on the upper side of the collector.

Solution

Schematic See sketch.

Assumptions

• Radiation effects are not considered.
• The wall temperature of the collector is constant.

Analysis

The characteristic length of the panel: L = 2 m

3 3 3 2
100

2 2 12 4 2
0

( ) cos 9.81 m 2 m (30 10) K s 0.707
0.713 1.22 10

283.15 K 15.11 10 m s
Wg L

Ra Pr
T

ϑ ϑ α

ν −

⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
= ⋅ = ⋅ = ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

From Figure 4.3 at 45° the critical Rayleigh number is Ra
c
 = 1.2 . 107. It is higher

then the Rayleigh number of this case. The boundary layer separates, therefore the
Nußelt number has to be calculated with Equation (4.10).

1/ 4 1/3 1/3

7 1/4 10 1/3 7 1/3

0.56 ( cos ) 0.13 ( )

0.56 (1.2 10 0.707) 0.13 [(1.22 10 ) (1.2 10 ) ] 299.3

l c cNu Ra Ra Raα= ⋅ ⋅ + ⋅ − =

= ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅ =

45°

2 m
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2

299.3 0.0257 W W
3.84  

2 m m K m K
lNu

l

λ
α

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

The heat flow rate transferred from the upper side of the panel is:

2 1 2
0( ) 4.384 W m K 2 m (30 10) KWQ Aα ϑ ϑ − −= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 153  W

Discussion

Without taking the flow separation into account, the heat transfer coefficient
would be 3.28 W/(m2 K), i.e. smaller. On a vertical plate it would be with 3.45 W/
(m2 K), i.e. also smaller. The flow separation increases the heat transfer.

4.2 Horizontal plane surfaces

For heated horizontal plates transferring heat upwards, cooled surfaces receiving
heat on their lower side the following equations were found:

1/5 4
2 2

1/3 4
2 2

0.766 [ ( )] for ( ) 7 10

0.15 [ ( )] for ( ) 7 10

l

l

Nu Ra f Pr Ra f Pr

Nu Ra f Pr Ra f Pr

= ⋅ ⋅ ⋅ ≤ ⋅

= ⋅ ⋅ ⋅ > ⋅
(4.11)

( )
20/1111/20

2 ( ) 1 0.536f Pr Pr
−−= + ⋅ (4.12)

These correlations are valid for surfaces areas which are a part of an infinitely
large surface area, i.e. the boundary layer is not disturbed by sideway restrictions.

The characteristic length l is given by Equation (4.5). For a square surface with
the dimensions a and b, it is  l = a . b/2 (a + b) and for a circular surface l = d/4.

Surface areas with side restrictions, e.g. under-floor heating, the above equations
are not valid. Because the free convection on the side walls influence the heat trans-
fer of the horizontal floor.

4.3 Free convection on contoured surface areas

Free convection will occur an all bodies with a temperature difference to the static
surroundings without any restriction. The geometry influences the magnitude of  the
heat transfer. Here the Nußelt number will be given for a horizontal cylinder and for
a sphere.
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4.3.1 Horizontal cylinder

The Nußelt and Rayleigh number are determined with the same characteristic length
as for forced convection with L' = π . d/2. For the horizontal cylinder the following
equations apply:

21/6
' ' 30.752 0.387 ( )L LNu Ra f Pr= + ⋅ ⋅ (4.13)

9/16 8/27
3 ( ) (1 0.721 )f Pr Pr − −= + ⋅ (4.14)

EXAMPLE 4.5: Insulation of a steam pipe

A pipe with 100 mm outer diameter contains hot flowing steam with a temperature
of 400 °C. According to the rules of the employers mutual insurance association at
an air temperature of  30 °C. the surface temperature may not exceed 40 °C. It can be
assumed that the surface of the steel pipe has the same temperature as the steam. The
thermal conductivity of the insulation is 0.03 W/(m K). Material properties of the
air:

λ = 0.0265 W/(m K), ν = 16.5 . 10-6 m2/s, Pr = 0.711

Find

The diameter of the insulation.

Solution

Schematic See sketch.

Assumptions

• The tube wall and the steam have the same temperature.
• The temperature on the outer surface of the insulation is constant.

Analysis

The temperature can be calculated with Equation (2.29).

αϑϑϑϑ /)( 010 kW ⋅−+=

The heat transfer coefficient α is determined with Equation (4.14), the overall
heat transfer coefficient related to the outer surface area with Equation (2.27):

?

100 mm

Insulation

W

ϑ0

ϑ1

ϑ
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Both equations inserted in that of the insulation surface temperature deliver:
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The function f
3
(Pr) has the value of 0.83026. The above equation can only be

solved with an equation solver or iteration. With Mathcad the result is  D = 461 mm.

Discussion

The calculation requires a solver or an iteration procedure.

4.3.2 Sphere

The Nußelt and Rayleigh number are determined with the diameter of the sphere.

[ ]
0.25

0.56 / (0.864 ) 2dNu Pr Pr Ra= ⋅ + ⋅ + (4.15)

4.4 Interaction of free and forced convection

Often free and forced convection are interacting. For this case a combined Nußelt
number with the Nußelt numbers of free and forced convection is reported [4.2]. For
parallel-flow and counterflow of the forced convection, different equations are
prosed. For the parallel-flow the following equation applies.

3 33
, ,l l forced l freeNu Nu Nu= + (4.16)

For counterflow Equation 4.17 holds:

3 33
, ,l l forced l freeNu Nu Nu= − (4.17)



5 Condensation of pure vapors

When vapor comes into contact with a wall at a temperature below its saturation
temperature, condensate is generated on the wall surface. The condensate can either
build a film or droplets. A differentiation between film condensation and droplet
condensation has to be made. Droplet condensation reaches higher heat transfer
coefficients but requires special dewetting surfaces.

Condensation can occur with pure superheated, saturated or wet vapor but also
with gas mixtures like in dew formation. In this book, only the condensation of pure
vapors is discussed. At condensation the heat transfer coefficients are a function of
the geometry, material properties and the temperature difference between wall and
saturation temperature. At high vapor velocities the sheer forces of the vapor flow
influence the boundary layer and govern the heat transfer coefficients.

5.1 Film condensation of pure, static vapor

At film condensation of pure, static, saturated vapor a film is generated at the colder
wall, which flows downward due to gravity and its thickness increases with flow
length. The flow of the film is first laminar and with increasing film thickness  tur-
bulent flow occurs. Correlations for laminar and turbulent film condensation as well
as for the transition zone will be presented.

During film condensation of static vapor, vapor flows to the wall but its velocity
does not influence the heat transfer coefficients.

5.1.1 Laminar film condensation

5.1.1.1 Condensation of saturated vapor on a vertical wall

Nußelt [5.1] published in 1916 analytically developed heat transfer coefficients for
laminar film condensation on vertical walls with constant wall temperature. He de-
termined the thickness of a condensate film, forced downward by gravity and fed
with condensing vapor (water skin theory). The local heat transfer coefficient α

x
 at

location x of the wall is determined by the heat conduction through the film.

x

l
x

δ

λ
α = (5.1)
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Therein λ
l
 is the thermal conductivity of the condensate film and δ

x
 the film thick-

ness at location x. For the analysis a constant wall temperature ϑ
w
 is assumed. The

vapor has the saturation temperature ϑ
s
.

Vapor

b

x

xδ

x y

xc (y)

ϑw

ϑ

Vapor

s

y

Figure 5.1: Laminar condensation on a vertical wall

Figure 5.1 demonstrates the laminar condensation on a vertical wall.  Two forces
are acting in the film: The gravity force F

s
, generating the downward flow and the

frictional force F
τ
, acting against the gravity force. As in the film we have a steady

state flow, at each location x the temperature and velocity profile are also in steady
state.

At the location x in a distance of y from the wall the following gravity force dF
S

acts on the mass element dm:

          dxgybdmgdF xgls ⋅⋅−⋅⋅−=⋅= )()( δρρ (5.2)

The frictional force dF
τ 
, generated by the sheer stress τ, at the distance y acting on

the mass element is:

dxbAdF ⋅⋅=⋅= τττ (5.3)

Both forces have the same magnitude but contrary direction, so we receive:

gyxgl ⋅−⋅−−= )()( δρρτ (5.4)

In a laminar flow Newton defined the sheer stress τ
 
 as:

dy

dcx
l ⋅−= ητ (5.5)
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For the velocity gradient at the location x we receive the following differential
equation:

dyy
g

dc x
l

gl
x ⋅−⋅

−⋅
= )(

)(
δ

η

ρρ
(5.6)

With the boundary condition that at the wall (location y = 0) the velocity is zero,
the integration delivers:
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−⋅
= δ
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ρρ
(5.7)

The mass flow rate at the location x in the film can be determined by integrating
the flow velocity over the cross-section of the film and multiplying the integral with
the density of the condensate.
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(5.8)

Due to the condensing vapor on the film surface b . dx the mass flow rate of the
film in the flow direction x increases. From the heat balance and with the rate equa-
tion we receive:

xWs
x

l
Wsx mdrdxbdxbQ ⋅=⋅−⋅⋅=⋅−⋅⋅= )()( ϑϑ

δ

λ
ϑϑαδ (5.9)

The change of the mass flow rate is:

dx
r

b
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x

Wsl
x ⋅

⋅

−⋅⋅
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δ

ϑϑλ )(
(5.10)

The derivation of Equation (5.8) with respect to dδ
x
 determine also the change of

the mass flow rate.
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Equations (5.10) and (5.11) deliver following differential equation for the film
thickness:

xx
gl

lWsl ddx
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δδ
ρρ

νϑϑλ
⋅=⋅

−⋅⋅

⋅−⋅ 3

)(

)(
(5.12)

The integration from 0 to x delivers the thickness δ
x
 of the boundary layer at loca-

tion x:
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The local heat transfer coefficient α
x
 at location x:
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x s W l
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δ ϑ ϑ ν

⋅ ⋅ ⋅ −
= =

⋅ − ⋅ ⋅
(5.14)

For the design of heat exchangers not the local but the mean heat transfer coeffi-
cient is relevant. The mean heat transfer coefficient of a vertical wall with the length
l we receive by integrating equation (5.14) as:

0.253
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( )1
0.943

( )

x l
l l g
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s W lx

r g
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l x

λ ρ ρ
α α

ϑ ϑ ν

=
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⋅ ⋅ ⋅ −
= ⋅ ⋅ = ⋅

− ⋅ ⋅
(5.15)

The latent heat of evaporation r and the vapor density is determined at saturation
temperature of the vapor. The material properties of the condensate film have to be
determined at the mean temperature (ϑ

S
 + ϑ

W
)/2 of the film.

Heat transfer coefficients with the index x are local  values, that without index are
mean values.

EXAMPLE 5.1: Determination of film thickness and heat transfer coefficient

Determine the film thickness and heat transfer coefficient of water and Freon R134a
at a vertical wall at  x = 0.1 m and x = 1.0 m. For both fluids the difference between
saturation and wall  and saturation temperature is 10 K. The material properties are:

λ ρ
l

ρ
g

ν
l

r
W/(m K) kg/m3 kg/m3 106 m2/s kJ/kg

Water: 0.682 958.4 0.60 0.295 2
 
257.9

Freon R134a: 0.094 1
 
295.2 14.43 0.205 198.6

Solution

Assumptions

• The wall temperature is constant.
• The film flow is laminar.
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Analysis

The film thickness is calculated with Equation (5.13), the heat transfer coefficient
with Equation (5.14).
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l s W l
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λ ϑ ϑ ν
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ρ ρ
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x

l
x

δ

λ
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With the given date we receive following values:

δ
x = 0.1 m

α
x  = 0.1 m

δ
x  = 1 m

α
x  = 1 m

mm W/(m2 K) mm W/(m2 K)
Water: 0.078 8

 
690 0.140 4

 
887

Freon R134a: 0.075 1261 0.133 709

Discussion

For both fluids the film thicknesses are rather small and have almost the same
value. The lower heat transfer coefficients of Freon 134a results from the lower
thermal  conductivity of Freon compared to that of water.

Attention! The latent heat of evaporation r must be used with the unit J/kg and
not with kJ/kg!

5.1.1.2 Influence of the changing wall temperature

In practice, the assumed constant wall temperature would rarely be realized. In most
cases the heat released by condensation is absorbed by a fluid and its temperature
increases. Is the inlet temperature of the fluid ϑ

1
, that at the outlet ϑ

1
 and the overall

heat transfer coefficient k, the heat rate can be determined.

[ ])(/)(ln 11

11

ϑϑϑϑ

ϑϑ
ϑΔ

′′−′−

′−′′
⋅⋅=⋅⋅=

ss
m AkAkQ (5.16)

The heat rate released by the vapor can be calculated with a mean wall tempera-
ture Wϑ .

)(/ WSqAQ ϑϑα −⋅== (5.17)

With Equations (5.16) and (5.17) we receive for the mean temperature difference
between the saturation and wall temperature:

αϑΔϑϑ /)( kmWS ⋅=− (5.18)
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A large number of tests prove that the mean heat transfer coefficients calculated
with the mean temperature difference as given with Equation (5.18) result in high
accuracy. The temperature difference can be replaced by the flux q  in Equation
(5.17). For the heat transfer coefficient the result is:

1/ 4 1/33 3( ) ( )
0.943 0.925l l g l l g

l l

r g r g

q l q l

λ ρ ρ α λ ρ ρ
α

ν ν

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ −
= ⋅ = ⋅

⋅ ⋅ ⋅ ⋅
(5.19)

With known dimension of the vertical heat exchanging area A the heat flux
/q Q A= can be replaced by the heat rate. For a rectangular wall the heat exchang-

ing surface area is the product of length l and width b. For a heat exchanger consist-
ing of n vertical tubers the surface area is: A = b . l = n . π . d

a
 . l. For tube bundle with

vertical tube we receive:

1/33 ( )
0.925 l l g a

l

r g n d

Q

λ ρ ρ π
α

ν

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
= ⋅

⋅
(5.20)

With unknown heat rate, first the heat transfer coefficient is determined with an
assumed temperature difference and the final value must be determined by iteration.

5.1.1.3 Condensation of wet and superheated vapor

The heat transfer coefficient of condensing static vapor is not influenced by
the state of the pure vapor, i.e. the heat transfer coefficients of superheated,
saturated and wet vapor depends only on wall and saturation temperature.
The only condition is that the wall temperature is lower than the saturation
temperature of the vapor.

According to the enthalpy h
g
 = h (p,ϑ, x) of the vapor, the mass flow rate of

condensate and heat rate are determined. According to the energy balance equation
the heat rate is:

( ) saturated vapor

( ( , ) ) superheated vapor

( ) wet vapor
vapor

h h r

Q m h p h

x h h

ϑ

′′ ′− =

′= ⋅ −

′′ ′⋅ −
(5.21)

Wherein h' is the enthalpy of saturated condensate, h'' that of saturated vapor and
x the vapor quality. The mass flow rate of the produced condensate is the mass flow
rate of vapor multiplied by x, because the wet vapor carries some condensate with it,
which will not be condensed.
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5.1.1.4 Condensation on inclined walls

The gravity force is reduced on an inclined wall, correspondingly the heat transfer
coefficient is reduced with angel ϕ to the vertical.

0.25(cos )verticalα α ϕ= ⋅ (5.22)

5.1.1.5 Condensation on horizontal tubes

Most heat exchangers with condensation have horizontal tubes. In the equation for
heat transfer coefficients (5.15) the wall length is replaced be the tube diameter.

0.253 ( )
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l l g

s W l a
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λ ρ ρ
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ϑ ϑ ν

⋅ ⋅ ⋅ −
= ⋅

− ⋅ ⋅
(5.23)

Similarly as for a vertical wall the temperature difference can be replaced by the
heat flux and heat transfer coefficient. The heat transfer surface area is A = n . π  . d

a
.
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0.959 l l g
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r g n l
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λ ρ ρ
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= ⋅

⋅
(5.24)

5.1.2 Turbulent film condensation on vertical surfaces

On longer walls the thickness of the condensate film increases with the flow length
and the flow transits from laminar to turbulent. Analytic determination of the heat
transfer coefficients is not possible for the turbulent flow. The transition zone from
laminar to turbulent and fully turbulent condensation will be discussed with the
introduction of dimensionless similarity numbers.

5.2 Dimensionless similarity numbers

Similar to the convective heat transfer, those of condensation will be represented
with the Nußelt number as a function of dimensionless numbers [5.2]. For the Nu-
ßelt number the characteristic length L is defined as:

3

2

g
L lν

=′ (5.25)

Nußelt number:
l

L

L
Nu

λ

α ′⋅
=′ (5.26)

The second similarity number is the Reynolds number. It is defined as:
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l
lRe

η

Γ
= (5.27)

The parameter Γ is the mass flow rate per unit width. It is the mass flow rate of
produced condensate per width b of a vertical surface area, which is called the dis-
charge width.

lm

b
Γ = (5.28)

The mass flow rate of produced condensate multiplied by the latent heat of evapo-
ration is the heat rate. The mass flow rate per unit width can also be given as a
function of the heat rate.

br

Q

b

ml

⋅
==Γ (5.29)

The discharge width b is defined:

at vertical walls as the width of the wall: b = b
at vertical tubes as the sum of all tube circumferences: b = n . π . d

With this similarity numbers and definitions the local and mean Nußelt number
can be calculated.

5.2.1 Local heat transfer coefficients

The local Nußelt number for laminar flow is determined by inserting the dimension-
less similarity numbers into Equations  (5.14), (5.17) and (5.29):
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Herein  f
wave

 is a correction function taking into account the influence of the wavi-
ness of the film surface at higher Reynolds numbers. It is defined as:
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For the local turbulent Nußelt number the following empirical correlation holds:
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To cover the whole range of laminar and turbulent condensation as well as the
transit zone, the following equation was found, which is in best conformity with test
results:

η
λ

α
fNuNu

L
Nu turbLlamL

l

x
xL' ⋅+=

′⋅
= ′′

2
,

2
,, (5.33)

The correction function f
η
 treats the temperature dependence of the viscosity.

0.25( / )ls lWfη η η= (5.34)

5.2.2 Mean heat transfer coefficients

The mean heat transfer coefficient and Nußelt number are determined by integra-
tion over the length of the heat transfer surface area.

1/ 3
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0.925 g l
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Figure 5.2: Mean Nußelt number of condensing pure static vapor

5.2.3 Condensation on horizontal tubes

For condensation on horizontal tubes the similarity numbers inserted in Equation
(5.24) result in the mean Nußelt number:
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1/3
1 /

0.959 g l
L

l

Nu
Re

ρ ρ
′

−
= ⋅ (5.38)

 We have to pay attention to the fact that the discharge width b has to be deter-
mined with tube length l, i.e. b = n . l.

5.2.4 Procedure for the determination of heat transfer coefficients

In most cases heat exchangers with condensation are of the tube and shell type. This
chapter is limited to the discussion of apparatus in which condensation happens on
the outer surface of vertical and horizontal tubes. It has to be distinguished between
design and recalculation procedures.

For a design the thermal and also some geometry data (heat rate, saturation tem-
perature, vapor properties, tube diameter and materials) are given. The heat transfer
coefficient of the fluid to which the heat is transferred has to be known or calculated.
For these data the heat exchanger must be designed, i.e. the number of tubes and
their length is to be determined, such that the given thermal data can be reached with
a certain plausibility. Unknowns are: the number of tubes, length of tubes, differ-
ence between saturation and wall temperature and the mean temperature for the
determination of the material properties. A part of these unknowns has first to be
assumed and with iteration the calculation procedures must be repeated until the
required accuracy is reached. Furthermore, for example, the tube diameter may be
subject to optimization. In such a case the calculation for several diameters has to be
performed and the different solutions evaluated economically. The number of tubes
influences the condensation heat transfer coefficients but is normally determined by
the required flow velocity in the tubes. Therefore it will be assumed as a given value
as well as the tube diameter. For vertical rows with the number of tubes the dis-
charge width is known, for horizontal tubes the tube length has first to be assumed.
The material properties in the first step are calculated with an assumed mean tem-
perature. With these assumptions the heat transfer coefficients and the overall heat
transfer coefficient, the tube length and the wall temperature can be determined.
Now the material properties and the discharge width for horizontal tubes with the
received tube length can be determined. This procedure has to be repeated until the
required accuracy is reached. Figure 5.3 shows the flow diagram of the design pro-
cedure.

The recalculation is used for condenser already designed, i.e. the geometrical data
of the tubes as well as their number is known. Some of the thermal data (e.g. heat
transfer coefficients, mass flow rates, vapor properties and inlet temperature) of the
fluid in the tubes and also that of the vapor may change. For the changed conditions
the change of the other thermal data has to determined.
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Figure 5.3: Flow diagram for the design calculation procedure

At recalculations, for example, for a changed heat rate, the outlet temperature of
the cooling fluid can be determined. For the determination of the material properties
first a saturation temperature must be assumed. With it inside and outside heat trans-
fer coefficients, the overall heat transfer coefficient can be calculated and also the
required log mean temperature difference. From the latter the saturation temperature
and wall temperature can be determined.

EXAMPLE 5.2: Design of a power plant condenser

The condensation heat transfer coefficient of the condenser from Example 3.3 was
assumed. Now it can be calculated.

Find

The required length of the condenser tubes.
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Solution

Schematic See sketch.

Assumptions

• The mean heat transfer coefficients are constant.
• The influences of the vapor flow are negligible.

Analysis

The number of tubes were determined by the given flow velocity and the tempera-
ture rise of the cooling water by the given heat rate, therefore they can be used from
Example 3.3. The same applies for the cooling water heat transfer coefficients,
whereas here the influence of the direction of the heat flux will be considered addi-
tionally. The material properties of the condensate we determine at with an assumed
mean temperature, with the temperatures received in Example 3.3:

2 / 35 C 9.102 K 4 403 13500 32.0 CW m ak /ϑ ϑ Δϑ α= − ⋅ = ° − ⋅ ⋅ = °

The material properties of the condensate will be determined at 33.5 °C. The val-
ues from the vapor table in the Appendix A6:

ρ
l 
 = 995.5 kg/m3, ρ

g
 = 0.040 kg/m3, λ

l
 = 0.616 W/(m K),

η
l
 = 792.2 . 10-6 kg/(m s), r = 2417.9 kJ/kg, ν

l
 = 0.796 . 10-6 m2/s.

The mass flow rate per unit width we calculate with Equation (5.29):

6
32 000 10 W kg kg

1.239 10
2 417 900 J 57 727 11.562 m m s

Q

r n l
Γ −⋅ ⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Reynolds number (5.27): 
3
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1.239 10
/ 1.564

792.2 10l
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η

−

−

⋅
= = =

⋅

For the Nußelt number Equation (5.38) delivers:

1/3 1/31 / 1 0.04 / 995.5
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For the determination of the heat transfer coefficient we need the characteristic
length L given with Equation (5.25).

2 6 2 4 2 2 333 / (0.796 10 ) m s /(9.806 m s ) 0.04013 10  mlL gν − −′ = = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅
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ϑ '
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The heat transfer coefficient is:

3 2/ 0.8238 0.616 W/(0.04013 10 m K m) 12 682  W/(m K)L'Nu Lα λ −′= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅

It is somewhat smaller than the value of 13500 W/(m2 K), used in Example 3.3.
The heat transfer coefficient of the cooling water in Example 3.3 was calculated

as  8481 W/(m2 K). For the overall heat transfer coefficient we receive:

1

1

2

1
ln

2

1 0.024 24 24 W
ln 4 273  

12 682 2 17 23 23 8 481 m K

a a a

a R i i i

d d d
k

d dα λ α

−

−

= + ⋅ + =
⋅ ⋅

= + ⋅ + =
⋅ ⋅ ⋅

The overall heat transfer coefficient is smaller than calculated in Example 3.3,
consequently the tube length will be proportionally larger with 11.803 m. The tube
length increases in proportion to the decrease of the overall heat transfer coefficient.
For the iteration it is advisable to use the correction function f

2
 for the tube side heat

transfer coefficient. With the correction function the equation for the overall heat
transfer coefficient is:

⋅⋅⋅
+⋅

⋅
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ii
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i

a

R

a

a αλα

The Prandtl number of the cooling water at 30 °C has the value of 5.414. The wall
temperature inside the tube is:

immWi k αϑΔϑϑ /⋅+=

After the fifth repetition of the calculations the following values were found:

f
1
 = 1.016, f

2
 = 1.015, α

a
 = 12700 W/(m2 K), k = 4

 
348 W/(m2 K),

l = 11.611 m

The change of the material properties of the condensate was taken into account.

Discussion

The correction functions f
1
 and f

2
 are responsible for only a small change of 0.5 %.

The design of a large condenser requires a high accuracy, because on the one hand
the size of the heat transfer area determines the price and on the other hand in case of
not reaching the guaranteed values, high commercial penalties are the consequence.
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EXAMPLE 5.3: Design and recalculation of a condenser for Freon R134a

On the vertical tubes of a condenser 0.5 kg/s Freon R134a should be condensed at
50 °C. In the tubes water flows with a velocity of  1 m/s. The cooling water shall be
heated from 40 to 45 °C. The copper tubes have an outer diameter of 12 mm and
wall thickness of 1 mm; the thermal conductivity is 372 W/(m2 K).

Material properties of the cooling water at 42.5 °C:
ρ = 991.3 kg/m3, c

p
 = 4.178 kJ/(kg K), λ = 0.634 W/(m K), ν = 0.629  .  10-6 m2/s,

Pr = 4.1.
Material properties of  Freon 134a:
ρ

l 
= 1

 
102.3 kg/m3, ρ

g
= 66.3 kg/m3, λ = 0.071 W/(m K), hl = 142.7 . 10-6 kg/(m s),

r = 151.8 kJ/kg, ν
l
 = 0.132 . 10-6 m2/s, Pr

l
 = 3.14.

For simplification of the calculations it can be assumed that the influence of the
tube length and the direction of the heat flux are negligible.

Find

a) Number and length of the tubes.
b) Heat rate and heat transfer coefficients for an increased vapor mass flow rate of

0.65 kg/s. The change of material properties is negligeable.

Solution

Schematic Temperature gradient as in Example 5.2

Assumptions

• The mean heat transfer coefficients are constant.
• The influence of tube length and heat flux direction are negligible.
• The change of material properties in part b) is negligible.
• The vapor velocity has no influence on heat transfer.

Analysis

a) The mass flow rate of cooling water is calculated from the energy balance
equation of Freon and cooling water.

134 1 1( )R a CW pQ m r Q m c ϑ ϑ′′ ′= ⋅ = ⋅ ⋅ −

134

1 1

0.5 kg 151800 J kg kg
3.633

( ) 4 178 J 5 K kg s s
R a

CW
p

m r K
m

c ϑ ϑ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

′′ ′⋅ − ⋅ ⋅ ⋅ ⋅ ⋅

The number of tubes is determined with the given water velocity.
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3

2 2 2

4 4 3.633 kg s m
47

1 m 991.3 kg 0.01 m s
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CW CW i

m
n

c dρ π π

⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The wetting density is calculated with Equation (5.29).

134 0.5 kg kg
0.2822

47 0.012 m s m s
R a

a

m

n d
Γ

π π

⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Reynolds number (5.27): 6/ 0.2822 /142.7 10 1978l lRe Γ η −= = ⋅ =

The Nußelt number is calculated with Equations (5.31) to (5.37).
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The characteristic length L is calculated with Equation (5.25).

2 6 2 4 2 2 333 / (0.132 10 ) m s /(9.806 m s ) 0.01211 10  mlL gν − −′ = = ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅

The heat transfer coefficient is:

3 2/ 0.2079 0.071 W/(0.01211 10 m K m) 1 219  W/(m K)L'Nu Lα λ −′= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅

The heat transfer coefficient is calculated with Equation (3.8).
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The overall heat transfer coefficient is:
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The log mean temperature difference:
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For the required tube length we receive:

275900  W m K
.

992.6 W 7.123 K 47 0.012 mm a

Q
l

k n dΔϑ π

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
5 983  m

b) Due to the assumption of constant material properties the heat transfer coef-
ficient in the tubes does not change. The outlet temperature of the cooling water
rises by 6.5 K, i.e. the outlet temperature is now 46.5 °C. With the increased vapor
mass flow rate we receive for condensation and overall heat transfer:
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m K

To be able to discharge the higher heat rate, the log mean temperature difference
increases. Its value can be calculated with Equation (5.16).

298670 W m K
9.048  K

1032 W 47 0,012 m 5.983 mm
a

Q Q

k A k n d l
Δϑ

π

⋅ ⋅ ⋅
= = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The log mean temperature difference delivers the condensation temperature:

1

1 2 1 1 1
2

2 1

2.0564
1

me
ϑ ϑ

ϑ ϑ ϑ ϑ Θ ϑ
Θ Θ ϑ

ϑ ϑ Θ

′′ ′−
′ ′ ′′− − ⋅

= = = = = °
′′− −

52.65 C

Discussion

The design was performed with given material properties and needed therefore no
iteration. Taking into account the influence of the tube length and the material prop-
erties for both procedures iterations would be required.

5.2.5 Pressure drop in tube bundles

In tube bundles with horizontal tubes condensate drops from upper tubes and influ-
ences the film thickness of the tube underneath. Furthermore the sheer stress forces,
caused by vapor flow through the bundle has influence on the condensate film thick-
ness. Nußelt developed theoretical correlations for a horizontal tube row with tubes
arranged vertically one upon the other. According to this theory, the heat transfer
coefficients decrease proportionally to the fourth root of the number of tubes (n–1/4).
The reduction is due to the increasing condensate film thickness caused by the con-
densate dropping from the upper tubes. In many publications this law is proposed
for tube bundles with several tube rows. Tests, especially with a larger number of
tubes, showed that the reduction of the heat transfer coefficients is compensated by
the vapor velocity, thus the law for one tube can also be applied for tube bundles.

In large condenser bundles the vapor side pressure drop and accumulation of non-
condensable gases have an important influence. This was experienced with large
turbine condensers. In steam power plants with an electrical output of approxi-
mately 100 MW, condensers with circular arranged tubes in circular shells were
used successfully. In the late 1960 and in 1970 the electric power of steam power
stations raised over 1000 MW. The experience was made that the circular conden-
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sers have not reached the design value, i.e. the pressure was considerably higher
than the design value. With increasing bundle diameter the number of tubes and
with them the surface area increases by the square but the circumferences only lin-
early. The steam velocities entering the bundles on the circumference of the bundle
increased and with them the pressure drop. The pressure and consequently also the
saturation temperature in the bundle were lower than that outside the bundle. To be
able to condense all the steam discharged from the turbine the saturation tempera-
ture and with it the saturation pressure increase and deteriorate the turbine effective-
ness. The improvement measure, installing steam lanes in the bundle to enlarge the
circumference failed as in the branches between the lanes non-condensables were
collected and these areas were lost for the heat transfer.

On the flow path into a bundle by passing the tube rows, the mass flow rate of the
steam decreases due to the condensation and also the velocities decrease. At the
circumference of the bundle the largest velocities occur and thus also the largest
pressure drops. The tubes in the bundle see a lower pressure, subsequently the satu-
ration temperature lowers, resulting in a lower log mean temperature difference in
the bundle. To be able to condense all the steam, the saturation temperature increa-
ses. To establish a certain saturation pressure and temperature outside the bundle,
which is relevant for the turbine, a larger surface has to be installed. In literature no
useful publication exists which describes how to calculate the correct tube bundle
arrangement. The condenser bundle design is the know-how of the manufacturers.

Example 5.4 demonstrates the effect of pressure drop in simple model.

Tube arrangements of large condensers are established by model test and 3D-
flow modelling. Basically the circumference of the bundle is designed so that
the steam velocity in not to high to keep the pressure drop at acceptable low
levels. Further the bundle design should be such that only one isobar exists, in
which the noncompensable can be removed.

EXAMPLE 5.4: Influence of pressure drop on heat flux and surface area

The aim of this example is to show with a very simple model the influence of pres-
sure drop on heat flux as a function of the number of tubes of a circular condenser
bundle. The tube bundle has n tubes arranged in a 60° net of circular shape. The
tubes have 24 mm outer diameter and a distance of 32 mm. They should be arranged
as close as possible to the circular shape.  The heat transfer coefficient is assumed as
constant with 3500 W/(m2 K). The inlet temperature of the cooling water is 20 °C
and the outlet 30 °C. The saturation temperature outside the bundle is 35 °C. In the
model it is assumed that there is pressure drop of the vapor flow only in the cir-
cumference tube row and for all the inner tubes of the bundle the saturation pressure
and temperature is constant. The hydraulic resistance coefficient between the tubes
related to the velocity in the periphery tube gaps is 1.5.
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Find

The required additional surface to keep the saturation temperature outside the
bundle at 35 °C.

Solution

Schematic See sketch.

Assumptions

• The heat transfer coefficient is constant.
• Pressure drop occurs only in the first row.
• The tubes are inserted as close as possible into the circular area.

Analysis

To calculate the area of the bundle first the area A
1
, required for one tube, has to be

determined. One tube requires the area of two 60° triangles with the side length of s
1
.

2 2 2 3 2
1 1

3 3
32 mm 0.887 10  m

2 2
A s −= ⋅ = ⋅ ⋅ = ⋅

The bundle radius required for n tubes is:

1 1 1

3 3
16.801 mm

2 2

n n
R A s n s n

π π π
= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅

⋅

The steam flows into the bundle between the periphery tubes. The flow cross-
section A

0
 between the tubes is:

0 1 1
1

( ) 2 (1 / ) 0.026391 m
U l

A s d R l d s n l
s

π
⋅

= ⋅ − = ⋅ ⋅ ⋅ ⋅ − = ⋅ ⋅

To determine the steam volume flow rate, flow velocity, pressure drop and satura-
tion temperature, the material properties of vapor are required.

ϑ
s
 = 35 °C, p

s
 = 56.36 mbar, r = 2418 kJ/kg, ρ = 0.03961 kg/m3

The steam volume flow rate relevant for the design is defined by the heat transfer
coefficient and log mean temperature at 35 °C saturation temperature.

32 m
m

ø24 mm

Bundle radius
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⋅ ⋅

One part of the volume flow rate condenses at outer the tube half at 35 °C satura-
tion temperature. The remaining part condenses in the bundle at a lower saturation
temperature, caused be the pressure drop. This part is:

1 1

2

[1 / (2 )] [1 2 16.801  mm / (2 )]

0.02508 [1 1.6494 / ] m /s

Din D DV V U s n V n s n

n l n

π= ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ −

The flow velocity between the tubes is:

2

0

0.02508 [1 1.237 / ] m /s
0.950 [ 1.237]  m/s

0.019794  m
DinV n l n

c n
A n l

⋅ ⋅ ⋅ −
= = = ⋅ −

⋅ ⋅

The pressure drop:

2 2

2

/ 2 0.75 0.9025 [ 1.6494] 0.03961 Pa

0.04769 [ 1.649] Pa 0.02681 Pa

p c n

n n

ζ ρ= ⋅ ⋅ = ⋅ ⋅ − ⋅ =

= ⋅ − ≈ ⋅

With the pressure drop the saturation temperature can determined in the steam
tables. With the pressure decrease, caused by the pressure drop, the log mean tempe-
rature decreases so does the heat flux.

)()( nknq mϑΔ⋅=

As the heat rate remains constant, the surface area inside the bundle must be in-
creased proportionally to the decrease in heat flux. The changes in percents are:

0 0

0

1 100 % 1 100 % 1 100 %m

m

qA

A q

ϑ

ϑ

Δ
− ⋅ = − ⋅ = − ⋅

Δ

The calculated values are in the table below.
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n Δp p
s

ϑ
s

Δϑ
m

ΔA/A . 100
- Pa mbar °C K %

0 0.0 56.29 35.00 9.10 0.0
2000 49.8 55.79 34.84 8.93 2.0
4000 101.8 55.27 34.67 8.74 4.2
6000 154.2 54.75 34.50 8.55 6.5
8000 206.8 54.22 34.33 8.35 9.0

10000 259.5 53.70 34.15 8.15 11.6
12000 312.3 53.17 33.97 7.95 14.5
14000 365.2 52.64 33.79 7.75 17.5
16000 418.1 52.11 33.61 7.54 20.7
18000 471.1 51.58 33.43 7.33 24.2
20000 524.1 51.05 33.25 7.11 28.0

In this very simple model we do not consider the fact, that with the reduced satu-
ration temperature the warming of the cooling water decreases. This is contrary to
the decrease of the log mean temperature difference, which will be some less than
calculated. This error is more than compensated by the assumption that the pressure
drop only happens in the gap between the periphery tubes. In reality even larger
pressure drops were measured.

Discussion

The result of calculations shows that in large tube bundles the pressure drop
causes a requirement of additional surface areas. The experience is, that for smaller
bundles (less than 2000 tubes) the pressure drop can be neglected. Manufactures of
large condensers develop their bundle design by flow test and 3-D computer codes.

5.3 Condensation of pure vapor in tube flow

According to the flow direction of vapor and condensate (parallel- or counter-
flow), vapor velocity and orientation of the pipe (horizontal or vertical) different
equations for the heat transfer coefficients are required. At condensation of pure
vapor in a pipe with increasing length, the mass flow rate and with it the inlet veloc-
ity of the vapor is increasing, because of the fact, that with increasing pipe length the
surface area and the condensate production also increase. With the vapor flow an
additional force, caused by the sheer stress of the vapor flow, is acting on the con-
densate surface. At high vapor flow velocities, the influence of the gravity becomes
negligible compared to the sheer stress forces. In vertical tubes the influence of the
vapor flow is different for up- and downward vapor flow. Therefore different corre-
lations are required for the flow patterns and pipe orientation.
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Figure 5.4: Condensation in a tube at downward vapor flow [5.7]:
a) separated flow b) flow with entrainment and flooding

At small vapor velocities in vertical tubes a condensate film can be built over the
whole tube length (separated flow); at higher flow velocities droplets (entrainment)
can be thrown off the film and after a certain flow length the tube can be filled
completely with condensate (Figure 5.4). At upward vapor flow with smaller vapor
velocity a condensate film which flows contrary to the stream flow can occur. At
higher vapor velocity the vapor flow can transfer the condensate film upward and
entrainment and flooding my occur. In this case at the tube end sufficient excess
volume must remain, otherwise the condensate reverses the flow and slug and plug
flow occurs. With these flow types no steady operation is possible and due to con-
densate sub-cooling the tube can be subject to high cycle fatigue with consequent
damage of the hat exchanger.

In very short tubes, which have low vapor mass flow rates and velocities the cor-
relations as given with Equation (5.38) for horizontal tubes and Equation (5.37) for
vertical tubes can be applied, as long as they result in larger values than the correla-
tions proposed in the following chapters.

5.3.1 Condensation in vertical tubes

By the vapor flow a sheer stress acts additionally on the surface of the condensate
film  [5.3, 5.4]. For determination of the influence of the vapor flow between paral-
lel- and counterflow must be distinguished.
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5.3.1.1 Parallel-flow (vapor flow downward)

Vapor enters the upper inlet of a vertical tube and increases the velocity of the
downward moving condensate film on the wall. The sheer force applied on the film
surface influences the velocity profile in the film as well as the generation of turbu-
lence in the film. Depending on the vapor velocity also droplets and waves can be
generated. For the local Nußelt number the following correlation is proposed:

2
,,

2
,,

3/1**
, )()()1( xturbLturbxlamLlamZPxL NuCNuCNu ′′′ ⋅+⋅⋅+= τ (5.39)

The correction terms  C
lam

 and C
turb

 take into account the influence of the vapor
flow on laminar and turbulent heat transfer. The Nußelt numbers are calculated with
Equations (5.30) and (5.32). The dimensionless sheer stress of the two-phase flow
τ

ZP
∗ is a function of the dimensionless sheer stress of the pure gas flow in an empty

tube τ
g
∗.

2
* with

8
g g g g

g g
l

c

g

τ ζ ρ
τ τ

ρ δ +

⋅ ⋅
= =

⋅ ⋅
(5.40)

The sheer stress τ
g
 is that of the gas phase in an empty tube, ζ

g
 the hydraulic

resistance coefficient of the vapor, δ + the film thickness and gc the mean velocity of
the vapor in an empty tube.

22

44

igig

g
g

dn

xm

dn

m
c

⋅⋅⋅

⋅⋅
=

⋅⋅⋅

⋅
=

πρπρ (5.41)

The hydraulic resistance coefficient is determined with the Reynolds number of
the gas phase.

0,20.184 with g
g g g

g

c d
Re Reζ

ν
−

⋅
= ⋅ = (5.42)

The dimensionless sheer stress of the two phase flow τ
ZP

∗ is defined as:

])(5501[ *** a
ZPgZP F τττ ⋅⋅+⋅= (5.43)

The so-called flow parameter F is a function of the Reynolds number of the con-
densate as given by Equation (5.27), the ratio of the density and viscosity of the
phases.

0.5 0.9

0.9

max (2 ) ; 0.132l l gl

g lg

Re Re
F

Re

ρη

η ρ

⋅ ⋅
= ⋅ ⋅ (5.44)
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The exponent a takes into account the relation between sheer stress and gravity
force.

*

*

0.30 for 1

0.85 for 1

g

g

a
τ

τ

≤
=

>
(5.45)

The correction terms C
lam

 and C
turb

 are defined as:

0.56 * 0.08 *1 ( 1) tanh( ) 1 ( 1) tanh( )lam l ZP turb l ZPC Pr C Prτ τ= + − ⋅ = + − ⋅ (5.46)

The film thickness δ + is also a function of the flow parameter F.

6.59

1 1400

F

d F

δ + ⋅
=

+ ⋅
(5.47)

The dimensionless sheer stress as defined in Equation (5.43) must de determined
by iteration.

The recalculation of an existing heat exchanger or the design of a new one require
different procedures. In both cases the calculation has to be done in several steps.

At design calculation, the tube diameter, the mass flow rate of the produced con-
densate and the heat transfer coefficient outside the tube must be known. Nodes are
selected on which the local heat transfer coefficients are calculated and its mean
value is the one between two nodes. The nodes represent vapor qualities. At the start
of condensation the mass flow rate of condensate is 0 and the heat transfer coeffi-
cient infinite. Therefore, for the first node usually a very small condensate flow rate,
e.g. 1 % (x = 0.99), is selected. The heat transfer coefficients are determined with
mean vapor quality between the nodes (e.g. between nodes x = 1 and x  = 0.99
calculation with x

m
 = 0.995). The required tube length for the production of the

condensate between two nodes is calculated. The required total tube length is the
sum of the calculated partial tube lengths.

For the recalculation of an existing heat exchanger with an assumed condensate
mass flow rate, the same procedure is performed as for the design. The condensate
flow rate has to be varied as long as the given tube length is reached.

5.2.1.2 Counterflow (vapor flow upward)

The calculation is similar to that for parallel flow, but the dimensionless sheer stress
has a much higher value and is defined as:

* * *[1 1400 ( ) ]a
ZP g ZPτ τ τ= ⋅ + ⋅ (5.48)

At high vapor velocities the condensate can clog the tube and an oscillating flow
will occur, which normally does not allow continuous operation and must therefore
be avoided. The condenser must designed so that no clogging can occur. There
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exists a critical Weber number of We
c
 = 0.01, which should not be exceeded. The

Weber number is defined as:

l

lZP

l

ZP g
We

σ

δρτ

σ

δτ 2* )( ++ ⋅⋅⋅
=

⋅
= (5.49)

The two phase flow sheer stress τ ∗
ZP

 is given by Equation (5.43), δ + with Equation
(5.47), σ

l
 is the surface tension.

EXAMPLE 5.5: Design of the condenser of Example 5.3 with condensation in
the tubes

A condenser with the parameters as given in Example 5.3 is to be designed. The
number of tubes is 47. The heat transfer coefficient outside the tube is 6500 W/(m2

K), the dynamic viscosity of the vapor η
g

= 14.2 . 10-6 kg/(m s).

Find

The required tube length.

Solution

Schematic Temperature profile as in Example 5.3

Assumption

• The mean outside heat transfer coefficient is constant.

Analysis

The local heat transfer coefficients in the tubes are determined with Equation
(5.39). For the calculation five nodes are selected with: x = 0.99, 0.75, 0.5, 0.25, 0.0.
The local heat transfer coefficients are calculated with the mean vapor qualities bet-
ween the nodes. The calculated parameters are given as functions of the vapor quali-
ty x.  In the following formula the numeric values determined with mean vapor qua-
lity between the first and second node (x

1
 = 1, x

2
 = 0.99 x

m
 = 0.995) are given. Later

on the calculated parameters for the other nodes are tabulated.

134
6

(1 ) 0.5 (1 )
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l
l i l

m x x
Re x

n d

Γ

η π η π −
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The dimensionless two-phase flow sheer stress is determined with Equation
(5.43) by iteration.

* * *( ) ( ) [1 550 ( ) ( ( )) ] 3.612a
ZP g ZPx x F x xτ τ τ= ⋅ + ⋅ ⋅ =

0.56 *( ) 1 ( 1) tanh( ( ) 1.897lam l ZPC x Pr xτ= + − ⋅ =

0.08 *( ) 1 ( 1) tanh( ( ) 1.096turb l ZPC x Pr xτ= + − ⋅ =

The local Nußelt numbers of the laminar and turbulent condensate film are deter-
mined with Equations (5.30) and (5.34).
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0.693 0.340g lx
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The index x represents the length. The Nußelt numbers are also a function of the
vapor quality x and we receive:

* * 1/3 2 2
, , , , ,(1 ) ( ) ( ) 1.075L x ZP lam L lam x turb L turb xNu C Nu C Nuτ′ ′ ′= + ⋅ ⋅ + ⋅ =

In this tube section the local and overall heat transfer coefficients are given as:

*
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2

1 W
ln 2880  

2 m K
a a a

a R i i x

d d d
k

d dα λ α
= + ⋅ + =

⋅ ⋅ ⋅

In this first section the vapor quality x is reduced from 1 to 0.99, i.e. 1 % of the
vapor is condensed. The heat rate in this section is:

  W957)( 10134 =⋅−⋅= rxxmQ aR

The temperature of the cooling water can be given as a function of the vapor
quality.
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The mean log temperature difference in the section  x
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2
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In the first section the vapor quality changes from 1.0 to 0.99. The log mean tem-
perature in this section is 5.025 K. The surface area, respectively the tube length
required for the transfer of the heat rate, can be determined with overall heat transfer
coefficient and the log mean temperature.

( ) ( )
( ) 0.026  m

( )a m a

A x Q x
l x

n d k x n d

Δ Δ Δ
Δ Δ

π Δϑ π
= = =
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In the table below the numeric values of the calculations are presented.

x x
m

Rel Re
g

τ
g
* τ∗

ZP
Nu

L, lam
Nu

L, turb
Nu

L
Q Δϑ

m
k Δl l

10-3 W °C W/m2 K m m
1.00 0

0.995 11 8 8531 2.140 3.612 0.340 0.019 1.075 759 5.025 2880 0.026
0.99 0.026

0.870 274 7 7409 0.466 1.157 0.131 0.108 0.330 18 216 5.629 1 286 1.259
0.75 1.285

0.625 789 5 5610 0.126 0.688 0.096 0.175 0.282 18 975 6.856 1 133 1.223
0.50 2.508

0.375 1 315 33 366 0.031 0.302 0.083 0.219 0.271 18 975 8.109 1 095 1.070
0.25 3.578

0.125 1 841 11 122 0.002 0.041 0.075 0.252 0.268 18 975 9.361 1 085 0.935
0.00 4.513
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Discussion

The heat transfer in the tubes is increased by the vapor flow and therefore the
required tube length is reduced. The reduction in this example with 1.5 m is rather
considerable. With high vapor velocities the heat transfer coefficient could even be
doubled, this would require – or allow – shorter tubes.

5.3.2 Condensation in horizontal tubes

In very short horizontal tubes in which the vapor velocity can be neglected the
Nußelt number can be calculated as described in Chapter 5.1.1.5 with Equation
(5.23) wherein for the wall length the inner diameter of the tube has to inserted. In
longer tubes the mass flow rate of vapor increases and therefore the vapor inlet
velocity. With increasing vapor velocity the contribution of gravity force decreases
and the sheer stress determines the heat transfer coefficients. For the condensation
in horizontal tubes the Nußelt number in Equation (5.39) is modified to:

2
,,

2
,,

3/1**
, )()( xturbLturbxlamLlamgxL NuCNuCNu ′′′ ⋅+⋅⋅= τ (5.50)

The dimensionless sheer force is determined with the vapor velocity c
g
, which is

calculated with the vapor volume ratio ε as a function of the flow parameter F ac-
cording to Equation (5.44).

1
1

1
1

8.48 F

ε = −

+
⋅

(5.51)

With the vapor volume rate the condensate film thickness can be determined.

0.25 (1 ) dδ ε= ⋅ − ⋅ (5.52)

The vapor velocity c
g
 is calculated with the vapor flow area inside the condensate

film.
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The sheer stress is determined with Equations (5.40) to (5.42):
0.2

2
0.184

8
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g g g

Re
cτ ρ

−⋅
= ⋅ ⋅ (5.54)

The dimensionless sheer stress is determined with the film thickness as:

* (1 850 )g
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F
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τ

ρ δ
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(5.55)
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To determine the Nußelt number the procedure as described in Chapter 5.3.1.1 is
applied.

EXAMPLE 5.6: Design of a refrigerator condenser

In the condenser of a refrigerator the heat rate of 1.0 kW shall be transferred to the
air. Freon R134a is the refrigerant. The condensation temperature is 50 °C. The out-
side heat transfer coefficient related to the outer diameter of the finned tubes was
determined as 400 W/(m2 K). The ambient air temperature is 22 °C. The condenser
tube outer diameter is 8 mm, its heat conductivity 372 W/(m2 K) and the wall thick-
ness 1 mm. The sketch below shows the arrangement of the condenser. The tube
bends can be neglected. Material properties of Freon 134a:
ρ

l 
= 1

 
102 kg/m3, ρ

g
= 66.3 kg/m3, λ

l
 = 0.071 W/(m K), η

l
 = 142.7 . 10-6 kg/(m s),

η
g
 = 13.5 . 10-6 kg/(m s), Pr

l
 = 3.14, r = 151.8 kJ/kg.

Find

The required length of the tube.

Solution

Schematic See sketch.

Assumptions

• The mean heat transfer coefficients are constant.
• The tube bends can be neglected.
• The change in pressure is neglected.
• The temperature rise of the air is neglected.

Analysis

As in the vertical tubes the calculation is performed again in sections. The se-
lected nodes are: x = 1, 0.75, 0.5, 0.25 and 0.0. For the calculation the following
mean vapor qualities are used: 0.875, 0.625, 0.375 and 0.125. In the following the
numeric values of in the first section with the vapor quality of x = 0.875 are shown.
The other values are tabulated later.

The mass flow rate of the Freon, which condenses completely, can be determined
with the given heat rate.

-31.0 kW
6.588 10  kg/s

151.8 kJ/kg

Q
m

r
= = = ⋅

The calculation of the Nußelt number follows here without comments.



160 5 Condensation of pure vapors

3

6

(1 ) 6.588 10 (1 )
( ) 306.1

0.006 142.7 10l
l i l

m x x
Re x

dπ η π

−

−

⋅ − ⋅ ⋅ −
= = = =

⋅ ⋅ ⋅ ⋅ ⋅

2

4
( ) 90 607g i i

g
g g i

c d m x d
Re x

dν η π

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅

0.2( ) 0.184 ( ) 0.0190gx Re xξ −= ⋅ =

( )0.9

3
0.9

max 2 ( ); 0.132 ( )
( ) 4.946 10

( )

l l gl

g lg

Re x Re x
F x

Re x

ρη

η ρ
−

⋅ ⋅
= ⋅ ⋅ = ⋅

1
( ) 1 0.9596

1 1/ [8.48 ( )]
x

F x
ε = − =

+ ⋅

5( ) 0.25 (1 ) 6.034 10 mix dδ ε −= ⋅ − ⋅ = ⋅

2

4
( ) 3.202 m/s

( 2 )g

g i

m x
c x

dπ ρ δ

⋅ ⋅
= =

⋅ ⋅ − ⋅

2

( ) 2.446 Pa
8
g g

g

c
x

ξ ρ
τ

⋅ ⋅
= =

[ ]*
( )

( ) 1 850 ( ) 12.722
( )

g
g

l

x
x F x

g x

τ
τ

ρ δ
= ⋅ + ⋅ =

⋅ ⋅

0.56 *( ) 1 ( 1) tanh( ( ))] 1.898lam l ZPC x Pr xτ= + − ⋅ =

0.08 *( ) 1 ( 1) tanh( ( ))] 1.096turb l ZPC x Pr xτ= + − ⋅ =

The local Nußelt numbers are determined with Equations  (5.30) and (5.34).
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Here the index x indicates the length of the section for which the local Nußelt
numbers were determined. The Nußelt number is a function of the vapor quality x.

* *1/3 2 2
, , , , ,( ) ( ) 0.632L x g lam L lam x turb L turb xNu C Nu C Nuτ′ ′ ′= ⋅ ⋅ + ⋅ =
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The characteristic length L is:

2 53 / 1.571 10  mlL' gν −= = ⋅

The local and the overall heat transfer coefficients in the first section are:

*
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2443  
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⋅ ⋅ ⋅

In each section 25 % of the entering vapor is condensed, i.e. the heat rate in all
sections has the value:

  W250)( 10 =⋅−⋅= rxxmQΔ

To be able to transfer the given heat rate a certain heat exchanger surface area, i.e.
tube length, must be determined.

2

( )

250 W m K
1.055 m

0,008 m 328 W (50 22) K

a a F L

A Q
l

d d k

Δ Δ
Δ

π π ϑ ϑ

π

= = =
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⋅ ⋅ ⋅
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The table below shows the calculated values.

x
m

τ
g

τ*
ZP

α
i

k ΔL
- Pa - W/(m2 K) W/(m2 K) m

0.875 1.593 12.722 2 857 336.7 1.055
0.625 1.064 8.099 2 443 328.8 1.083
0.375 0.604 5.419 2 350 325.7 1.091
0.125 0.200 3.350 2 185 321.2 1.106

The total tube length is the sum of the section tube lengths, i.e. 4.335 m.

Discussion

The outside heat transfer coefficient is reasonably lower than that in the tubes. For
the air side a mean heat transfer was given and the air temperature was assumed as
constant. To take the temperature rise of the air into account, knowledge of a cross
flow heat exchanger is required, which will be discussed in Chapter 8. However,
this example is rather close to reality where about 5 to 10 % larger surface area
would be determined.
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EXAMPLE 5.7: Condenser retrofit

The condenser of a U.S. power station had an insufficient performance, i.e. the con-
denser pressure was higher than its designed value. It was planned to replace con-
denser bundles with state of the art bundles. In the call for tenders the following
features were given:

Each of the three low-pressure turbines has a condenser, in which the water is
passing in serial flow (see sketch). The heat rate to each condenser is 733 MW.

Lager

Cooling water duct

Cooling
water inlet

Turbine A

Condenser neck

Turbine B
Shaft

Tube arrangement

d + 5/16"

Cooling 
water outlet

Area available for
tubing: 27.28 sqm

d + 5/16"

13.64 m

Turbine C

2 2
13.64 m
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Data of the existing condenser:
Number of tubes in each condenser: 27000 tubes with 1'' OD and 1.2 mm wall

thickness
Distance between tubes: d

a
 = 1 5/16''

Tube lengths: l
A
 = 35' l

B
 = 45'  l

C
 = 55'

Cooling water volume flow rate: 381
 
500 GPM

      at 86 ft water column pressure head
In the specification it was required that with the new condensers at a cooling water

inlet temperature of 35 °C to condenser A, the pressure  in condenser C does not ex-
ceed 5 inHg column. The tube lengths and the outer shell dimensions must be kept.
The tube material requested was titanium with 0.7 mm wall thickness.

The successful bidder had a state of the art bundle design, which required within
the given shell dimensions for the tubing a surface area of 27.28 m2. The optimiza-
tion for the tube outer diameter was done from 1" in 1/8'' steps. A gap of  5/16'' be-
tween the tubes was selected.

In the above sketch the disposition of the condensers is shown left, the area for the
tubing and the tube arrangement is presented on the right.

For the cooling water the following material properties can be used:

c
p
 = 4.174 kJ/(kg K),  ρ = 990.2 kg/m3,  ν = 0.6 . 10-6 m2/s, λ = 0.6368 W/(m K),

Pr = 3.946.

Conversion coefficients: 1 GPM (gallon per minute) = 0.063083 l/s,
in = 0.0254 m, ft = 0.3048 m, 1 inHg = 3

 
386.39 Pa.

Volume flow rate in 1000 GPM

Pump head
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System head

Pressure-flow characteristic of the cooling water pump and cooling water system
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The cooling water flow rate is a function of the pressure drop in the condenser
according to the cooling water pump characteristic. The pressure drop in the con-
denser tubes can be calculated with the formula of Blasius:

Δp
v
 = 0.3164 . Re-0.25 . l / d . (c2 . ρ / 2)

Find

The design with which the condenser C pressure is below 5 inHg at 35 °C cooling
water temperature and the pressure in the three condensers.

Advice: First check the outlet temperature of the cooling water.

Solution

Schematic See sketch in the definition of the example.

Assumptions

• In the ducts to and from the condenser tubes the pressure drop is proportional to
the square of the volume flow rate.

• The static pressure head is always existent (height difference between cooling
water level and injection nozzles in the cooling tower).

• The vapor pressure drop in the condenser bundles is can be neglected.
• The direction of the heat flux and of the tube length can be neglected.
• The material properties of the cooling water is assumed being constant and

having the same value in all three condensers.

Analysis

First the U.S. units are conversed to SI units.

3
0 381500 GPM 24.066 m /s

35' 10.668 m 13.716 m 16.764 m 1" 25.4 mm

2 23 mm 5 inHg 16932 Pa 169.32 mbar
A B C a

i a

V

l l l d

d d s

= =

= = = = = =

= − ⋅ = = =

As a first step it will be shown, that with the given cooling water volume flow rate
the condenser C pressure can not be reached. The cooling water outlet temperature
is calculated with the energy balance equation.

6 3

1 1 3
0 1 1

3 733 10 W s m kg K
35 C 57.11 C

24.066 m 990.2 kg 4174 J
tot

p

Q

V c
ϑ ϑ

ρ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
′′ ′= + = ° + = °

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

According to the steam table the saturation temperature at 5 inHg = 169.32 mbar
is 56.5 °C, i.e. the cooling water outlet temperature is higher than the saturation
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temperature of the vapor, which should heat up the cooling water. To reach the
desired condenser pressure of 5 inHg, the cooling water must be at least 2 to 3 K
colder than the saturation temperature of the vapor. This can only be reached with a
higher cooling water flow rate. The most economic solution would be to reduce the
pressure drop in the condenser tubes so that the cooling water volume flow rate
increases according to the cooling water pump characteristics. The pressure head of
the pump is the sum of the constant static Δp

st
 plus the dynamic head of the cooling

water system, which is the frictional loss Δp
va

 in the cooling water ducts and the
frictional pressure drop in the condenser tubes Δp

v
. The latter one can be influenced

by the design of the new bundles. The pressure drop in the ducts and water boxes
will not change for the new condensers and their value can be determined with the
given data of the old condenser. The pressure drop in the condenser tubes of the old
condenser is:

2
0.25 0 1

0 0.3164
2i

ges
v d

i

l c
p Re

d

ρ
Δ − ⋅

= ⋅ ⋅ ⋅

For the velocity in the tubes we receive:

3
0

0 2 2 2

4 4 24.066 m m
2.143 

s27 000 0.023 m si

V
c

n dπ π

⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The Reynolds number is: 0
-6

1

2.145 0.023
82 239

0.6 10i

i
d

c d
Re

ν

⋅ ⋅
= = =

⋅

The frictional pressure drop calculated with Blasius formula:

2 2
0,25

0 2 3

2

41.148 m 2.145 m 990.2 kg
0.3164 82 239

0.023 m 2 s m
76169 Pa 25.735 ft H O

vp − ⋅ ⋅ ⋅ ⋅
Δ = ⋅ ⋅ ⋅ =

⋅ ⋅ ⋅

= =

The pump head at 381500 GPM volume flow rate is 86 ft. Therein is 34 ft the
static head and 25.74 ft the frictional pressure drop in the condenser tubes. For the
pressure drop in the duct to and from the condenser remain 26.27 ft. The system
characteristic with new condenser bundles can be calculated. It changes with the
number and size of the tubes. The frictional pressure drop Δp

 
in the new condenser

tubes can be given as  a ratio to the pressure drop with old condenser Δp
v0

:

0.25 2
0

2
0 0 0

v i

v i

p dRe c

p Re d c

−

Δ
= ⋅ ⋅

Δ

The tube velocity can be calculated as a function of volume flow rate, tube num-
ber, tube inner diameter and inserted in the above equation.
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0.25 2 1.75 4.752 2
0 0 0 0 0 0 0

0 2 2
0 0 0 0

25.74 fti i i i i
v v

i ii i i

n d V d d n d V n V d
p p

d dn d V d n d V n V
Δ Δ

−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The system head is the sum of the static head and the dynamic heads, caused by
friction.

2 1.75 4.75

0

00 0

34 26.27 25.74 fti
tot

i

n V dV
p

dV n V
Δ

⋅
= + ⋅ + ⋅ ⋅ ⋅

⋅

With this equation the system head for the new condensers can be calculated and
with the pump characteristic the volume flow rate can be determined. For the new
condensers first the number of tubes which can be fitted into the given surface of
27.28 m2 has to determined for different tube diameters. For one tube in 60° ar-
rangement the following area is required:

2
00 )(

2

3
)( sddA aa +⋅=

For the number of tubes as a function of the outer diameter we receive:

2

2

27.28 m
( )

3 ( 0.0079375 m)
a

a

n d
d

⋅
=

⋅ +

For tubes with 1" outer diameter 28343 tubes can be inserted, with 1 1/8" 23628
and with 1 1/4" 20000.

The volume flow rate resulting from change of the system characteristic can be
determined either by iteration or graphically in a diagram. The changed system dia-
gram can be drawn in the diagram and the intersection point with the pump charac-
teristic is the new volume flow rate. Below a detail of the system and pump charac-
teristic diagram made with Origin soft ware is shown.
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With the three investigated tube diameters the following volume flow rate were
obtained:

1" 406800 GPM 25.662 m3/s
1 1/8" 428500 GPM 27.031 m3/s
1 1/4" 443900 GPM 28.002 m3/s

For the 1" tube diameter the cooling water outlet temperature is:

6 3

1 1 3
0 1 1

3 733 10 W s m kg K
35 C 55.73 C

25.662 m 990.2 kg 4174 J
tot

p

Q

V c
ϑ ϑ

ρ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
′′ ′= + = ° + = °

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The increased flow rate is due to the larger inner diameter of the titanium tubes.
The cooling water outlet temperature is 1.9 K lower than the saturation temperature
of the vapor at 5 in Hg saturation pressure. It is still too high to transfer the heat rate
with the heat exchanging surface area.

The following outlet temperatures were calculated:
1 1/8'' tubes 54.68 °C

1/4" tubes 54.00 °C
With the 1.25" tube diameter the cooling water outlet temperature is 2.5 K lower

than the saturation temperature. With this value the condenser can most probably be
designed, but we have to check it.

 With the equation given in Chapter 3 first the heat transfer coefficients in the
tubes can be calculated. The velocity in the tubes is:

3

2 2 2

4 4 28.002 m / s m
1.935 

s20000 0.03035 mi

V
c

n dπ π

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅

For the Reynolds number we receive:

6/ 1.935 0.03035 / 0.6 10 97897
id iRe c d ν −= ⋅ = ⋅ ⋅ =

The hydraulic resistance coefficient required for the determination of the Nußelt
number is:

2
1.8 lg(Re ) 1.5 0.018

idξ
−

= ⋅ − =

Nußelt number:

1

2/3 2/3

( / 8) (0.018 / 8) 97 897 3.946
454.2

1 12.7 / 8 ( 1) 1 12.7 0.018 / 8 (3.946 1)
i

i

d

d

Re Pr
Nu

Pr

ξ

ξ

⋅ ⋅ ⋅ ⋅
= = =

+ ⋅ ⋅ − + ⋅ ⋅ −

Heat transfer coefficient in the tubes:
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2
1 / 9530.7 W / (m K)

ii d iNu dα λ= ⋅ = ⋅

The thermal resistance in the tubes and in the tube walls results as:

231.75 0.03175 31.75 m K
ln ln 0.15749

2 30.35 9530.7 2 15 30.35 kW
a a a

i
i i R i

d d d
R

d dα λ

⋅
= + ⋅ = + ⋅ =

⋅ ⋅ ⋅ ⋅

For the condensation the determination of the heat transfer coefficients must be
performed separately for each condenser. As the saturation pressures are not known,
we have to start with an estimated value.

Condenser A:
It is assumed that the saturation temperature is 4 K higher than the cooling water

outlet temperature of condenser A. As the heat rate in all three condensers has the
same magnitude and as specific heat capacity of the water is assumed to be constant,
the temperature rise in each condenser is 6.33 K, i.e. the condenser A cooling water
outlet temperature is 41.33 °C and the saturation temperature 45.33 °C. In con-
denser A we have a pressure of  97.60 mbar. The mean temperature of the conden-
sate is estimated with 43 °C. From the vapor table we receive the following values:

ρ
l
 = 991 kg/m3, ρ

g
 = 0.0666 kg/m3, η

l
 = 617.8 . 10-6 kg/(m s), ν

l
 = 0.623 . 10-6 m2/s,

λ
l
 = 0.6347 W/(m K), r = 2393.2 kJ/kg.

The mass flow rate per unit width is determined with Equation (5.28):

3733000 kW kg kg
1.436 10

2393.2 kJ 20000 10.668 m m sA

Q

r n l
Γ −⋅ ⋅

= = = ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Reynolds number: 3 3/ 1.436 10 / 0.6178 10 2.325l lRe Γ η − −= = ⋅ ⋅ =

Nußelt number:
1/3

1 /
0.959 0.724g l

L
l

Nu
Re

ρ ρ−
= ⋅ =

Characteristic length:

2 6 2 533 / (0.623 10 ) / 9.806 3.408 10 mlL gν − −= = ⋅ = ⋅

Outside heat transfer coefficient:

5 2/ 0.724 0.6374 / 3.408 10 13 483  W/(m K)L lNu Lλ −= ⋅ = ⋅ ⋅ = ⋅

 Now the overall heat transfer coefficient, the log mean temperature difference,
the saturation temperature and pressure of condenser A can be determined.
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11
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1 1 W
0.1575 10 4317  

13483 m Kik R
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−−

−= + = + ⋅ =
⋅
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4317 W 20000 0.03175 m 10.668 mm
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ϑ ϑ ϑ ϑ
Θ

ϑ ϑ Δϑ

′ ′ ′′− −
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′′−
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1 1 2.212
A A

sA

ϑ ϑ
ϑ

′ ′′− ⋅ ° − ⋅ °
= = = °

− −

The saturation temperature is 1.2 K larger than the assumed value of 43 °C. With
the calculated values the mean temperature of the condensate is:

0.5 ( ) 0.5 / 45.28 Cm sA WA sA sA m kϑ ϑ ϑ ϑ ϑ Δϑ α= − ⋅ − = − ⋅ ⋅ = °

In the condenser A we have a pressure of 103.91 mbar. The material properties of
the condensate:

ρ
l
 = 990.1 kg/m3, ρ

g
 = 0.0707 kg/m3, η

l
 = 593.1 . 10-6 kg/(m s), r = 2390.2 kJ/kg,

ν
l
 = 0.599 . 10-6 m2/s, λ

l
 = 0.6377 W/(m K).

With these material properties we receive a condenser pressure of 103.70 mbar
and a saturation temperature of 46.52 °C, this is 0.04 K lower than the value calcu-
lated before. With this accuracy the iteration can be terminated.

Condenser B:
The procedure is the same as for condenser A. Here only the material properties

and results are listed.

ρ
l
 = 987.9 kg/m3, ρ

g
 = 0.0889 kg/m3, η

l
 = 545.0 . 10-6 kg/(m s), r = 2378.5 kJ/kg,

ν
l
 = 0.552 . 10-6 m2/s, λ

l
 = 0.6438 W/(m K).

The saturation temperature is 51.14 °C and the pressure 130.67 mbar.

Condenser C:
In analogy here we receive:

ρ
l
 = 985.6 kg/m3, ρ

g
 = 0.1115 kg/m3, η

l
 = 502.8 . 10-6 kg/(m s), r = 2366.4 kJ/kg,

ν
l
 = 0.510 . 10-6 m2/s, λ

l
 = 0.6494 W/(m K).

Saturation temperature: 56.44 °C, pressure: 168.80 mbar.
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The pressure of 168,8 mbar corresponds to the U.S. unit of 4.985 inHg which is
lower than the requested 5 inHg.

Discussion

This example demonstrates that for the design and calculation of a heat exchanger
with the science of heat transfer only, no result could be delivered. Here the determi-
nation of pressure drop, the use of pump characteristics and knowledge of the fluid
mechanics and civil engineering were required.

According to the definition of the example, the influence of the tube length and
the direction of the heat flux were not taken into account. If they were included
approximately 3 to 5 % higher heat transfer coefficients would be calculated but the
pressure drop in the bundle would create a reduction of approximately the same
magnitude. Anyhow at the design of a heat exchanger oft this size a very exact
calculation is required.

The condensers discussed here were designed by Brown Boveri & Cie, Switzer-
land. Two halves of each condensers were erected in a shop, transferred from Tulsa,
Oklahoma by bark via the Panama channel to Oregon State where the power plant
was located. In four weeks the existing condenser bundles were removed from the
shell and the new ones inserted and welded to the shell. The price of the modules
including transport and installation was about 18 Million US$. In the contact in case
of a higher pressure than 5.285 inHg a penalty of 1.8 Mio. US$ per 0.1 in Hg was
established. That means, a too small surface area which results in a too high pressure
is punished with a penalty. A too large surface area however, results in higher costs
and is therefore not competitive. The condenser discussed here had reached the
guaranteed values.



6 Boiling heat transfer

For the design of heat exchangers in which steam or vapor is generated, knowledge
of the laws of boiling heat transfer is required. Steam generators are used in steam
power plants, heat pumps, refrigerators, boilers, distilling and rectifying columns.
Boiling can occur in static and flowing fluids.

Evaporation occurs, when a liquid is heated up to saturation temperature ϑ
S
 and

heat transfer to it is continued. When a small heat rate is transferred to a static satu-
rated liquid, steam is released from it surface, its mass flow rate is determined by the
heat rate. With increasing heat rate steam bubbles are generated at the heating sur-
face and nucleate boiling starts.

Condensation starts independent of the steam temperature immediately when the
steam has contact to a surface with a lower temperature than the saturation tempera-
ture. During boiling, however, it was found that on a surface with a temperature
above saturation temperature, steam generation does not necessarily start. A fluid
can be superheated without steam generation. In extreme cases, very high excess
temperatures of more than 100 K were observed; this phenomenon is called boiling
retardation. In such a case a sudden steam explosion can follow. The mechanism
behind this phenomenon can be explained as follows: with a wall temperature above
saturation temperature bubble generation starts. Because of the surface tension, the
pressure in the bubble is larger than in the fluid and with the accordingly higher
saturation temperature in the bubble, recondensation occurs. For the existence of the
bubble the surrounding liquid must be superheated! Depending on the excess  tem-
perature of the wall Δϑ = ϑ

W
 – ϑ

S
 and the velocity of the liquid, different types of

heat transfer processes were observed.

6.1 Pool boiling

The process of heat transfer to a static liquid in a vessel with a heated surface on
which steam bubbles are formed, is called pool boiling. In Figure 6.1 heat transfer
coefficient and heat flux at pool boiling is shown versus the excess temperature of
the wall.

With increasing excess temperature the formation of bubbles starts (B). This is the
beginning of nucleate boiling. Bubbles are formed on the heating surface in small
pits, called nucleation sites. With increasing excess temperature the intensity of
bubble formation and the number of active nucleation sites increase. The bubble
generation acts as a stirring of the liquid and increases the convective heat transfer
in the liquid. The bubbles ascend to the surface of the liquid. As can be seen in
Figure 6.1, the heat flux and heat transfer coefficients are increasing rapidly.

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_6, © Springer-Verlag Berlin Heidelberg 2012 
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Figure 6.1: Heat transfer coefficient and heat flux of boiling of water vs. excess tempera-
ture

With further rising excess temperature and heat rate, at a certain stage the bubbles
coalesce and form continuous steam film areas (Leidenfrost phenomenon - starting
at point (C) ). This process is called film boiling. The transition from nucleate to film
boiling is called boiling crisis. In the vapor or steam film areas, the heat transfer is
governed mainly by radiation and conduction. As the heat transfer resistance of the
steam film areas is much larger than that of the boiling convection process, a further
increase in heat flux beyond the critical heat flux requires a large increase of the wall
temperature. This can happen in large steam generators where the heat is provided
by combustion or nuclear fission at an almost constant heat flux. In such installa-
tions, the excess temperature jumps from point C to point E if the heat flux exceeds
the critical value. With water at a pressure of 1 bar as shown in Figure 6.1, the jump
of the excess temperature is 770 K. The heating wall temperature goes from 100 °C
to 870 °C between C and E. Large steam generators are working at much higher
pressures and the saturation temperature is correspondingly higher. Most materials
for steam generators could not withstand such a large temperature change and a
destruction of the boiler wall would be the result (burn out). Therefore, the  transi-
tion from nucleate boiling to film boiling must be avoided. At the design of the
boiler it must be made sure that the critical heat flux is never reached.

 Point D can be reached when an excess temperature controlled heating process is
maintained, where the excess temperature is increased slowly. D can also be
reached, when dropping the heat flux coming from E. Then, at D a sudden decrease
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of the excess temperature to B happens and film boiling changes back to nucleate
boiling. The physical state between point C and D can only be reached in labora-
tories using special liquids and devices.

Film boiling is a hazard for heat exchangers which should be avoided and its heat
transfer coefficients, therfore, are not further discussed in this book.

The produced steam or vapor mass flow rate at boiling is calculated with the en-
ergy balance equation as:

rQmg /= (6.1)

This correlation is valid for all types of boiling.

6.1.1 Sub-cooled  convection boiling

As long as no bubbles are generated in a static sub-cooled liquid, even if the heating
surface temperature is larger than the saturation temperature, the heat transfer
coefficients and the Nußelt numbers are calculated as described in Chapter 4.  For
horizontal tubes and horizontal plane surfaces simplified formula are proposed
[6.1].

The Nußelt number is:

1/30.15 ( )l lNu Gr Pr= ⋅ ⋅ (6.2)

The characteristic lengths for the Grashof and Nußelt number are defined as:

Square surface: L= a . b/2 (a + b)
Circular surface: L= d/4
Horizontal cylinder: L= d

6.1.2 Nucleate boiling

As already mentioned at certain locations, the so called nucleation sites, bubbles are
generated. The number of nucleation sites increases with increasing heat rate. The
bubbles are growing from microscopic pits on the – technically rough – surface. The
heat is first transferred to the boundary layer of the liquid and from there into the
bubble. The pressure p

g
 in the bubble is larger than that in the liquid, due to the

surface tension. Figure 6.2 shows the nascency of a steam bubble.
The overpressure in the steam bubble is generated by the force induced by the

surface tension σ. The force balance equation of the pressure and surface tension
forces is:

dpp lg /4 σ⋅=− (6.3)

For the nascency of a bubble with the diameter d a minimum excess temperature
must exist.
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Figure 6.2: Nascency of a steam bubble

The diameter of the nucleation site d
K
 is that of the smallest bubble. According to

the Laplace-Kelvin-derivation the correlation between the excess pressure and the
excess temperature is:
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− ρ
(6.4)

With Equation (6.3) we receive for the required excess temperature:

rd

T

gK

s
SW

⋅⋅

⋅⋅
=−

ρ

σ
ϑϑ

4
(6.5)

At a certain size the bubble tears off the surface and ascends to the liquid surface.
It transfers the received heat as latent heat of evaporation. In the wake of the bubble
a drift flow is generated, that increases the convective heat transfer. Equation (6.5)
shows that with increasing excess temperature the smallest possible bubble diame-
ter decreases and with it the number of nucleation sites.

For the determination of the heat transfer coefficients the rules of bubble nascency
and its tear-off help to develop correlations. With the forces acting on a bubble a
model for the tear-off diameter d

A
 of the bubble can be developed. With a great

number of nucleation sites according to the frequency distribution of the uncoupling
diameter the most probable diameter can be given. With this model and with experi-
mental data the following tear-off diameter was found:

0 2
0.0149

( )A

l g

d
g

σ
β

ρ ρ

⋅
= ⋅ ⋅

⋅ − (6.6)

Therein β 0 is the bubble contact angle. Its value depends on the liquid. Below the
bubble contact angels for a few liquids are listed.
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Water: β 0 = 45°
Refrigerants: β 0 = 35°
Benzene: β 0 = 40°

The heat transfer coefficient as a function of heat flux and excess temperature is:

ϑΔϑϑ
α

qq

sW
B =

−
= (6.7)

The characteristic length in the Nußelt number of nucleate boiling is the tear-off
diameter.

l

AB
d

d
Nu

A λ

α ⋅
= (6.8)

For the determination of the heat transfer coefficients reference values, either cal-
culated or determined experimentally, are required.

For the heat transfer coefficient the following correlation was found [6.2]:

0.25 0.133 0.9 0.3 *

0 0
0 0 0 0

( * )
0

p

l l pl a
B

l l pl a

c R q
f p

c R q

λ ρ
α α

λ ρ

− ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅
⋅ ⋅

(6.9)

The reference heat transfer coefficient α
0
 is determined at the dimensionless

pressure of p* = p/p
krit 

= 0.1, R
a
 the mean roughness index according to DIN 4762/

01.89, which takes into account the surface properties with regard to the number and
size of nuclei. It replaces the smoothing roughness R

p
 according to DIN 4672/08.60

used earlier. Between the two values the following relationship exist:

0.4a pR R= ⋅ (6.10)

The formerly used reference value R
p0

 = 1 μm is replaced by R
a0

 = 0,4 μm.
The function f (p*) takes into account the influence of pressure.

0.27 2

0.27

0.68
1.73 * 6.1 * for water

1 *
( *)

1
1.2 * 2.5 * for other pure liquids

1 *

p p
p

f p

p p
p

⋅ + + ⋅
−

=

⋅ + + ⋅
−

(6.11)

Based on a large number of tests Stephan and Preußer [6.2] found at a pressure of
p = 0.03 . p

krit
, heat flux of 20000 W/m2 and a mean roughness index of R

a
 = 0.4 μm

the following correlation for the reference Nußelt number Nu
dA0

 (Caution! Use the
material properties at p = p*  . 0.03 for the calculation!):
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(6.12)

Therein is a
l
 = λ

l 
/(ρ

l
 c

pl
) the thermal diffusivity of the liquid.

0 0 0

(0.1) 1

(0.03) (0.03)A A

l l
d d

A A

f
Nu Nu

f d f d

λ λ
α = ⋅ ⋅ = ⋅ ⋅ (6.13)

For the reference heat transfer coefficient α
0
 of water with Equations (6.9) to

(6.13) we receive the value of 6398 W/(m2 K). The experimentally determined value
is 5600 W/(m2 K). For some of the refrigerants the agreement is better.

Table 6.1 contains calculated and experimentally determined reference heat trans-
fer coefficients of water, Freon R134a and propane at p* = 0.1. Further values can
be found in VDI Heat Atlas.

Table 6.1: Reference heat transfer coefficient at  p* = 0,03

p
krit

λ
l0

ρ
l0

c
pl0

λ
l0 

. ρ
l0
 . c

pl0
α

0
α

0exp

bar W/(m K) kg/m3 J/(kg K) kg2/(s5 K2) W/(m2 K)
Water 220.64 0.650 843.5 4594 2.519 . 106 6

 
398 5

 
600

R134a 40.60 0.088 1
 
263.1 1368 0.154 . 106 3

 
635 4

 
500

Propane 42.40 0.108 533.5 2476 0.143 . 106 3
 
975 4

 
000

The excess temperature at which nucleate boiling starts is the temperature at
which the heat transfer coefficient of nucleate boiling is larger than that of free
convection.

Figure 6.3 shows the transfer from free convection to nucleate boiling of water at
6.62 bar on horizontal tubes of 15 mm outer diameter. In this example the transfer to
nucleate boiling is at an excess temperature of 1.5 K.
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Figure 6.3: Transfer from free convection to nucleate boiling
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EXAMPLE 6.1: Water boiling in a pot

Water is brought to nucleate boiling on a heating surface with a power of 2.5 kW in
a pot with 250 mm diameter. The pressure is 0.98 bar. The mean roughness index is
0.5 μm.

Material properties of water at p = 0.03 . p
krit

 = 6.6192 bar:
ρ

l0
 = 904.8 kg/m3, ρ

g0
 = 3.477 kg/m3, c

p0
 = 4.346 kJ/(kg K), σ

0
  = 0.046 N/m,

Pr
l0
 = 1.07, λ

l0
 = 0.679 W/(m K), ν

l0
 = 0.185  .  10-6 m2/s, T

s
 = 435.85 K, β ° = 45°,

r = 2073 kJ/kg, a
l
 = 1.727 . 10-7 m2/s.

Material properties of water at p* = 0.1:
ρ

l 
= 843.5 kg/m3, λ

l
 = 0.650 W/(m K), c

p
 = 4.594 kJ/(kg K)

Material properties of water at p* = 0.004444:
ρ

l 
= 958.6 kg/m3, λ

l
 = 0.679 W/(m K), c

p
 = 4.216 kJ/(kg K).

Find

The heat transfer coefficient and excess temperature.

Solution

Assumption

• The temperature of the heating surface is constant.

Analysis

The reference value of the heat transfer coefficient can be taken from Table 6.1.
To check it we calculate the reference heat transfer coefficient.

At p* = 0.03 the bubble uncoupling diameter d
A0

 according to Equation (6.6):

0
0

2 3

2
0.0149

( )

2 0.046 N/m
0.0149 45 2.163 mm

9.806 m/s (904.8 3.477) kg/m

A
l g

d
g

σ
β

ρ ρ

⋅
= ⋅ ⋅ =

⋅ −

⋅ ⋅
= ⋅ ⋅ =

⋅ ⋅ − ⋅

The Nußelt number Nu
dA0

, requested to determine α
0
 is calculated with Equation

(6.12).

0.371 0.350.674 0.156 2 2
0 0.160 0 0 0 0

0 02
0 0 0 0 00

0.1 13.85
A

gA A l l
d l

l s l Al

q d r d a
Nu Pr

T da

ρ ρ

λ ρ σ
−⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅ =
⋅ ⋅

For the calculation the material properties of water at 6.6192 bar were inserted.
The heat flux was as defined as 20

 
000 W/m2.
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The function for the pressure correction is determined with Equation (6.11).

0,27 20.68
(0.03) 1.73 0.03 6,1 0.03 0.677

1 0.03
f = ⋅ + + ⋅ =

−

For the reference heat transfer coefficients α
0
 we receive:

0 0

0 2
0

13.85 0.679 W/(m K) W
6398

(0.03) 0.677 0.002163 m m  K
Ad l

A

Nu

f d

λ
α

⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅

This value is the same as that listed in Table 6.1.
The heat transfer coefficient α

B
 we determine with Equation (6.9). First the heat

flux must be calculated:

2 2 2 2

4 4 2 500 W W
50 930 

025 m m

Q Q
q

A dπ

⋅ ⋅ ⋅
= = = =

⋅ ⋅ ⋅

For the material property function we receive:
λ

l0 
. ρ

l0
 . c

pl0
 = 0.650 . 843.5 . 4594 = 2.519 . 106

λ
l 

. ρ
l
 . c

pl
 = 0.679 . 958.6 . 4216  = 2.744 . 106

The pressure correction function delivers:

0,27 20.68
(0.00444) 1.73 0.00444 6.1 0.00444 0.401

1 0.00444
f = ⋅ + + ⋅ =

−

The heat transfer coefficient with Equation (6.12) is:

0.25 0.133 0.9 0.3 *

0
0 0 0 0 0

( *)
p

l l pl a
B

l l pl a

c R q
f p

c R q

λ ρ
α α

λ ρ

− ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ =
⋅ ⋅ ⋅2

W
6 271 

m K

The excess temperature can be determined with the heat flux:

2

2

50930 W/m

6 271 W/(m K)W s
B

q
Δϑ ϑ ϑ

α

⋅
= − = = =

⋅ ⋅
8.12 K

Discussion

To transfer the given flux an excess temperature of 8.12 K is established. Using
the slightly smaller experimental reference values, the value of the heat transfer
coefficient would be 14 % smaller, the required excess temperature would be 10 K.
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EXAMPLE 6.2: Determine the performance of an electrically heated boiler

With an electric boiler of 6 kW power, steam should be generated at 2 bar pressure.
The heating rod has a steel shell of 12 mm diameter and 1 m length. The mean
roughness index is 1.5 μm.

The reference values at p* = 0.03 can be taken from Example 6.1.

Material properties at p* = 0.00906: r = 2201.6 kJ/kg, ρ
l 
= 942.9 kg/m3,

λ
l
 = 0.683 W/(m K), c

p
 = 4.247 kJ/(kg K).

Find

The steam mass flow rate, heat transfer coefficient and excess temperature.

Solution

Assumptions

• The wall temperature is constant.
• The generator is fed with saturated water.

Analysis

The mass flow rate of the steam can be determined by Equation (6.1).

6 kW
0.00273 kg/s

2 201.6 kJ/kg

Q
m

r

⋅
= = = =

⋅
9.81 kg / h

The reference value of the heat transfer coefficient is that of Example 6.1.
Material properties: λ

l 
. ρ

l
 . c

pl
 = 0.683 . 942.9 . 4247 = 2.735 . 106

Pressure correction function: (0.00906) 0.486f =

For the heat flux, heat transfer coefficient and excess temperature we receive:

26 kW
159155  W/m

0.012 m 1 m

Q
q

d lπ π

⋅
= = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.25 0.133 0.9 0.3 *

0
0 0 0 0 0

0.90270.25 0.133

2

( *)

2.735 1.5 159155 W
0.486 4346 

2.670 0.4 20000 m K

p

l l pl a
B

l l pl a

c R q
f p

c R q

λ ρ
α α

λ ρ

− ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ =
⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ =
⋅ ⋅2

W
16 306  

m K
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2

2

159155 W/m

16306 W/(m K)W s
B

q
Δϑ ϑ ϑ

α

⋅
= − = = =

⋅ ⋅
9.76  K

Discussion

The high heat flux generates an intensive bubble generation, providing a very
high heat transfer coefficient. Therefore the required excess temperature remains
rather low.

EXAMPLE 6.3: Design of an electrically heated boiler

For the start up of  a steam power station the feed water storage tank must be heated
to increase the pressure to 10 bar. After reaching this pressure, further steam is re-
quired to deliver 1.5 kg/s steam for the auxiliary steam lines. The heating is provi-
ded with six electric heater rods of 100 mm diameter. The mean roughness index is
3 μm. The excess temperature is 6 K. The reference values at p* = 0.03 can be used
from Example 6.1.

Material properties at p = 10 bar:
r = 2014.4 kJ/kg, ρ

l 
= 887.1 kg/m3, λ

l
 = 0.673 W/(m K), c

p
 = 4.405 kJ/(kg K).

Find

Determine the required heat rate and the required heated length of the heaters.

Solution

Assumptions

• The wall temperature is constant.
• Water flowing to the heater rods is at saturation temperature.

Analysis

The heat rate calculated with Equation (6.1) is:

kg kJ
1.5 2014.4

s kg
Q m r= ⋅ = ⋅ ⋅ ⋅ = 3.022  MW

Per heater rod heat rate of 504 kW is required. The material properties are:
λ

l 
. ρ

l
 . c

pl
 = 0.673 . 887.1 . 4405 = 2.669 . 106 . kg2/(s5 K2).
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The relative pressure p* is 0.0452. The correction function for the pressure was
determined as:

0.27 20.68
(0.0453) 1.73 0.0453 6.1 0.0453 0.764

1 0.0453
f = ⋅ + + ⋅ =

−

As the heater rod length is not known, the heat flux will be replaced in Equation
(6.9) by the heat transfer coefficient. First we rearrange Equation (6.9).

0.25 0.133 0.9 0.3 * 0.8864

0 0 0 0 0 0 0

( *) 0.9991
p

l l pl aB

l l pl a

c R q q
f p

c R q q

λ ρα

α λ ρ

− ⋅
⋅ ⋅

= ⋅ ⋅ ⋅ = ⋅
⋅ ⋅

The heat flux can be replaced by α
B
 . Δϑ.  This results in the following relation-

ships:

0.1 0.3 * 0.8846 7.8028

0 0 0 0

0.9991 0.9992
p

B Bα αΔϑ Δϑ

α Δϑ α Δϑ

− ⋅

= ⋅ = ⋅

With the reference values of the heat flux and heat transfer coefficient the referen-
ce excess temperature can be determined.

0 0 0/ (20 000 / 4 346)  K 4.602 KqΔϑ α= = ⋅ =

Heat transfer coefficient, required heating surface area and heated length of the
rods can be calculated.

7.8028 7,8028 2 2
0 0( ) (6 / 3,12) 4 346 W/(m K) 34 435 W/(m K)B /ϑ ϑ= ⋅ = ⋅ ⋅ ⋅ = ⋅

2/ / ( ) 504 kW / (34 435 6 kW/m )BA Q q Q α Δϑ= = ⋅ = ⋅ ⋅ ⋅ = 22.436 m

2/ ( ) 2.436 m /( 0.1 m)l A dπ= ⋅ = ⋅ ⋅ ⋅ = 7.754 m

Discussion

The very high heat flux increases the heat transfer coefficient. The heat transfer
requires an excess temperature of only 6 K. At higher surface area the heat flux
would be reduced and so the heat transfer coefficient, but the excess temperature
would increase. The heat transfer coefficients are increasing at this pressure with al-
most the eighth power of the excess temperature. Just a small decrease of the excess
temperature leads to a large increase of the required surface area. In this exam-ple
the reduction of the excess temperature from 6 K to 5 K would require a five times
larger surface area with 12.13 m2. Typical for nucleate boiling is a very rapid in-
crease of the heat transfer coefficients with increasing excess temperature.
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6.2 Boiling at forced convection

Boiling can occur in liquids flowing in channels or at impinged surfaces, e.g. at tube
bundles. The fluid entering the boiler can be sub-cooled or saturated liquid or a
liquid/steam two-phase mixture. At the outlet of the boiler the steam can be wet,
saturated or superheated steam. The heat transfer process in a boiler can proceed in
a single phase sub cooled or super-heated fluid or in a two phase steam/liquid flow
[6.3].

In a flowing fluid the heat transfer first works as described in Chapter 3. Already
in the sub-cooled fluid steam bubbles can be generated, which then recondense.
However, the steam bubbles influence the heat transfer coefficients in the sub-
cooled liquid. With increasing liquid temperature nucleate boiling starts and de-
pending on the velocities a two-phase flow convective heat transfer process devel-
ops.

6.2.1 Sub-cooled boiling

The following asymptotic correlation was found for the sub-cooled boiling:

1.2 1.21.2
k Bα α α= + (6.14)

Excess temperature
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Figure 6.4: Heat transfer coefficients at sub-cooled boiling

Therein α
k
 is the heat transfer coefficient of forced convection as given in Chapter

3 and α
B
 that at nucleate boiling according to Equation (6.8).

Figure 6.4 shows an example for heat transfer coefficients at the interference of
sub-cooled boiling and forced convection.
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6.2.2 Convection boiling

If the heat transfer coefficient of forced convection is larger than that of the nucleate
boiling convection boiling occurs. It is also called silent boiling. With increasing
steam velocity the heat transfer coefficient of the convection boundary layer is so
large that the excess temperature cannot activate nucleate sites. The evaporation
occurs on the liquid surface. Different correlations were found for horizontal and
vertical tubes and channels [6.1, 6.2]. They can be applied for all steam qualities
between  x = 0 to x = 1.

The ratio of boiling to the liquid heat transfer coefficient in vertical tubes and
channels is defined as:

( )

0.52.20.01 1.5 0.6 0.35

2

00.01 0.7 0.67

0

(1 ) (1 ) 1,9

( )
1 8 (1 )

x

g
lo

l

x x x R

x
x x R

α
ϕ αα

α

−

−

− ⋅ − + ⋅ ⋅ +

= =
+ ⋅ + ⋅ − ⋅

(6.15)

Therein R = ρ
l 
/ρ

g
 is the ratio of liquid to the vapor density. The heat transfer

coefficients of the liquid and vapor phase are α
l0
 and α

g0
. They are calculated as if

each phase would flow alone in the tube or channel. The correlations as given in
Chapter 3 come to application. The Reynolds numbers are:

g

h

l

hg
g

l

h

l

hl
l A

dmdc
Re

A

dmdc
Re

ηνην ⋅

⋅
=

⋅
=

⋅

⋅
=

⋅
=

00
(6.16)

Therein is A the cross-section of channel and d
h
 its hydraulic diameter.

The correlation for horizontal tubes is similar:

( )

0,52.20.01 1.5 0.4 0.37

2

00.01 0.7 0.67
0

0

(1 ) (1 ) 1.2

( )
1 8 (1 )

x

g
l

l

x x x R

x
x x R

α
ϕ αα

α

−

−

− ⋅ − + ⋅ ⋅ +

= =
+ ⋅ + ⋅ − ⋅

(6.17)

Equation (6.17) takes into account the distribution of the phases in a horizontal
tube.

The given correlations are based on tests in circular and rectangular tubes as well
as in annular gaps. Figure 6.5 shows the behavior of the heat transfer coefficients in
a vertical tube at different density ratios versus the steam quality.
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Figure 6.5: Local heat transfer coefficients in vertical tubes vs. vapor quality

Mean heat transfer coefficients can be found by integration of Equations (6.15)
and (6.17).

⋅
−

=
2

1

)(
1

12

x

x

dxx
xx

αα (6.18)

Figure 6.6 shows the mean heat transfer coefficients at total evaporation from  x =
0 to x = 1 in vertical and Figure 6.7 in horizontal tubes versus of density ratio for
different ratios of the liquid to vapor heat transfer coefficient.
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Figure 6.6: Mean heat transfer coefficients in vertical tubes at total evaporation
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Figure 6.7: Mean heat transfer coefficients in horizontal tubes at total evaporation

In boilers of heat pumps and refrigerators a two-phase mixture enters the evapora-
tor and the liquid part is than completely evaporated. In the boilers of steam genera-
tors in steam power plants and in the evaporators of desalinating plants liquid enters
the boiler and is not completely evaporated. This is required to avoid the deposit of
salt on the boiler surfaces. In these cases Equations (6.15) and (6.17) must be inte-
grated or calculated step-by-step with local values of the mean steam quality. The
integration of the equations cannot be performed analytically, but programs like
Mathcad or Maple can deliver the results.

Values determined with a mean steam quality in most cases deliver results with
sufficient accuracy.

EXAMPLE 6.4: Design of an evaporator for a refrigerator

The evaporator tubes of a refrigerator have 6 mm internal diameter. The refrigerant
R134a evaporates at a pressure of 2 bar. The outside heat resistance related to the
internal diameter is  0.9 . 10-3 (m2 K)/W. The refrigerant enters the evaporator with a
steam quality of 0.4 and is completely evaporated. The heat rate shall be 700 W. The
tubes are positioned horizontally. The evaporation temperature is –10.07 °C, the
temperature outside the tubes 4 °C.

The latent heat of evaporation of R134a is: r = 205.88 kJ/kg.
Condensate properties: ρ

l 
= 1327.7 kg/m3. λ

l
 = 0.0971 W/(m K), Pr

l
 = 4.23,

η
l
 = 0.3143 . 10-3 kg/(m s).

Vapor properties:  ρ
g 
= 10.02 kg/m3, λ

g
 = 0.0111 W/(m K), Pr

g
 = 0.609,

 η
g
 = 0.0112 . 10-3 kg/(m s).
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Find

a) The required tube length, determined with a mean steam quality of 0.7.
b) The required tube length, determined by integration of Equation (6.17).

Solution

Assumptions

• The wall temperature is constant.
• The influence of the tube bend can be neglected.

Analysis

With the given power of the evaporator the mass flow rate of the refrigerant can
be determined.

3

1 1

0.700 kW kg
5.667 10

( 1) 0.6 205.88 kJ/kg s

Q Q
m

h x r h x r
−= = = = ⋅

′′ ′− ⋅ − − ⋅ ⋅

First the heat transfer coefficients of the liquid and vapor flow will be calculated.

2 2

4 4
3 826 107 368l g

i l i g

m d m d
Re Re

d dπ η π η

⋅ ⋅ ⋅ ⋅
= = = =

⋅ ⋅ ⋅ ⋅

2 2[1.8 log( ) 1.5] 0.0408 [1.8 log( ) 1.5] 0.0175l l g gRe Reξ ξ− −= ⋅ − = = ⋅ − =

2/3

/ 8
33.50

1 12.7 / 8 ( 1)
l l l

l

l l

Re Pr
Nu

Pr

ξ

ξ

⋅ ⋅
= =

+ ⋅ ⋅ −

2/3

/ 8
171.94

1 12.7 / 8 ( 1)

g g g
g

g g

Re Pr
Nu

Pr

ξ

ξ

⋅ ⋅
= =

+ ⋅ ⋅ −

2 2

W W
542.1 318.1

m  K m  K
g gl l

l g
i i

NuNu

d d

λλ
α α

⋅⋅
= = = =

/ 0.587g lα α =

a) First the ratio of the two-phase flow to the liquid heat transfer coefficient will
be calculated with Equation (6.17) for a steam quality of x = 0.7.
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( )

0.52.20.01 1.5 0.4 0.37

2

0.01 0.7 0.67

(1 ) (1 ) 1.2

( ) 2.206
1 8 (1 )

x

g
l

l

x x x R

x
x x R

α
ϕ αα

α

−−

−

− ⋅ − + ⋅ ⋅ +

= = =
+ ⋅ + ⋅ − ⋅

The mean heat transfer coefficient:

2 2

W W
(0.7) 2.206 542.1 1196.1

m  K m  Klα α ϕ= ⋅ = ⋅ =

Overall mean heat transfer coefficient related to the inner diameter:

11
3

2 2

1 1 W W
0.9 10 576.0

1196.1 m  K m  Kak R
α

−−

−= + = + ⋅ ⋅ =

The surface required for the transfer of the heat rate is:

2
2700 W m K

0.086  m
( ) 576.0 W (4 10.07) Ka i

Q
A

k ϑ ϑ

⋅ ⋅ ⋅
= = =

⋅ − ⋅ ⋅ + ⋅

For the required tube length we receive:

/ ( )il A dπ= ⋅ = 4.582  m

b) The integral of  Equation. (6.16) can be calculated e.g. with MathCad. We
receive:

2

1

1

2 1 0.4

1 1
( ) ( ) ( ) 2.113

1 0.4

x

x

x x dx x dx
x x

ϕ ϕ ϕ= ⋅ ⋅ = ⋅ ⋅ =
− −

The integrated mean heat transfer coefficient has a 4.4 % lower value as calcu-
lated  with the mean steam quality and would require a  2.1 % longer tube.

Discussion

In this example the heat transfer coefficient is 2.2 times larger compared to the li-
quid flow convective heat transfer. The case discussed here delivers a rather good
agreement for both calculations, i.e. calculation with the mean steam quality
delivers almost the same heat transfer coefficient as received with the exact
integration. Step-by-step calculations with three to five steps results usually very
close to the integrated value.



  



7 Thermal radiation

Heat transfer by thermal radiation is carried by electromagnetic waves. Contrary to
heat conduction, where the transfer is managed by the movement of molecules,
atoms or electrons, i.e. a transfer medium is required, radiation does not need a
medium and thus can even occur in vacuum. Heat transfer by radiation happens in
vacuum, or in materials (glasses and gases) which allow the transmission of electro-
magnetic waves.  In the second case the radiation goes along with conduction and
both heat rates have to be calculated separately and added. Furthermore, gases
consisting of molecules with more than two atoms may emit or absorb electro-
magnetic waves.

Radiation occurs from the surface of solid or liquid bodies and also from
gases with molecules having more than two atoms.

The wavelength of electromagnetic waves transferring heat varies between 0.8
and 400 μm. Electromagnetic waves in this wavelength region are called ultra red
light. The wavelength range of visible light is between 0.35 and 0.75 μm. At low
temperatures the part of visible radiation is so low that it cannot be detected by
human eyes. At high temperatures the part of visible light is increasing and can be
detect by our eyes (e.g. the glowing filament of an electric bulb).

The intensity of thermal radiation increases with increasing temperature but also
at very low temperatures the thermal radiation can be of importance as e.g. at the
insulation of cryogenic systems.

Depending on its surface characteristic, radiation waves will be fully or partially
reflected, transmitted or absorbed at the surface of a body. The ratio of absorbed to
total radiation is α, the ratio of transmitted vs. total is τ and the ratio of reflected vs.
total radiation is ρ.  α is also called absorptivity. The sum of the three ratios is
always 1.

1=++ τρα (7.1)

Solids and liquids block the transmission of electromagnetic waves even at very
small thicknesses: metals at 1 μm and liquids at 1 mm. For almost all bodies the part
of reflection, absorption and transmission are dependent on the wavelength.

Every body, with a temperature higher than absolute zero, emits electromag-
netic waves.

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_7, © Springer-Verlag Berlin Heidelberg 2012 
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The capability of emission is a characteristic of the body. A so called black body
is capable of emitting electromagnetic waves at a certain temperature with maxi-
mum intensity. The capability of other bodies to emit electromagnetic waves at the
same temperature is determined by the emissivity ε. The emissivity is the ratio of the
emission intensity of the body at a certain temperature to that of the black body at
the same temperature.

The Kirchhoff’s law states:

The emissivity ε of a body at stationary conditions has the same value as its
absorptivity α.

αε = (7.2)

Depending on their reflectivity, absorptivity and transmissivity bodies are as-
signed with the following characteristics respectively names:

black: the radiation will be completely absorbed (α  = ε  = 1)
white: the radiation will be completely reflected (ρ = 1)
gray: the absorptivity for all wavelengths is the same (ε < 1)
colored: certain wavelengths (those of the colors) are preferentially re-

flected
reflective: all rays are reflected with the same angle as the inlet angle
soft/diffuse: the radiation is reflected diffuse in all directions.

7.1 Basic law of thermal radiation

A black body can be approximated by a hollow volume with adiabatic, isothermal
inner walls and a small opening through which radiation enters and leaves. The
radiation emitted solely through the opening, is called black radiation.

The spectral specific intensity of the black radiation i
λ,s

 is given by Planck's radia-
tion law.

)1( )(/5
1

,
2 −⋅

=
⋅TCs

e

C
i

λλ
λ

(7.3)

The consonants C
1
 and C

2
 are given as:

2 16 2
1

2
2

2 3.7418 10 W m

/ 1.438 10 K m

C c h

C c h k

π −

−

= ⋅ ⋅ ⋅ = ⋅ ⋅

= ⋅ = ⋅ ⋅
(7.4)

Both constants do not include empiric terms but only physical constants. They are
the light velocity c, the Planck constant h, the Boltzmann constant k. The values  of
these physical constants are:

 c = 299
 
792

 
458 m/s, h = 6.6260755 . 10-34 J . s, k = 1.380641 . 10-23 J/K.
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The term i
λ,s

 is the radiation intensity (flux) of a black radiator (the index s is for
black radiation) divided by the wavelength, at which the radiation occurs. As the
intensity is given per wavelength, its unit is W/m3.

Figure 7.1 shows the spectral specific intensity at different absolute temperatures
vs. wavelength. As the diagram shows, the radiation has a maximum for each tem-
perature at a certain wavelength. Differentiation of Equation (7.3) to the wavelength
and set to zero, delivers the wavelength of the maximum as a function of the tem-
perature.

         2 898 m K/i max Tλ = = ⋅ (7.5)

With increasing temperature the maximum is displaced to smaller wavelengths.
This relationship is called Wien's displacement law.

The temperature of the sun’s surface is approximately 6
 
000 K. The maximum is

there at a wavelength of 0.48 μm, i.e. in the visible range.
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Figure 7.1: Spectral specific intensity of black radiation vs. wavelength

7.2 Determination of the heat flux of radiation

The intensity of radiation, which is the heat flux, can be determined by integration
of Equation (7.3) from zero to infinite wavelength.
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The Stefan-Boltzmann-constant σ, can be calculated with the physical constants
given before:

8 2 4(5.6696 0.0075) 10 W m Kσ − − −= ± ⋅ ⋅ ⋅ (7.7)

This is presently the most exact value, based on measurements of the physical
constants. In practice the value of 5.67 . 10-8 W . m-2 . K-4 is commonly used. For a
simpler calculation, the following equation is proposed:

4

100
⋅=

T
Cq ss (7.8)

Here C
s
 is the radiation constant of black bodies.

8 2 410 5.67 W m KsC σ − −= ⋅ = ⋅ ⋅ (7.9)

For non-black bodies the heat flux is:

4

100
⋅⋅=

T
Cq sε (7.10)

The heat flux emitted from a non-black body is that of the black body multi-
plied by the emissivity.

7.2.1 Intensity and directional distribution of the radiation

The emission changes with the characteristic of the emitting surface. In the follow-
ing gray bodies will be discussed, as the characteristic of a gray surface is close to
that of most technical surfaces.

The intensity of a dot shaped radiation source decreases with the square of the
distance. The Lambert's cosine law says, that the intensity of a diffuse radiation
emitted from an infinite surface element dA has in each direction the same magni-
tude. However the emittance decreases proportionally to the cosinus of the angle to
the orthogonal to the surface.

ββ cos⋅= nqq (7.11)

The integration over a half sphere delivers the total emission to the space:

π⋅= nqq (7.12)
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From a gray surface the heat flux radiated to a half sphere is π times the heat flux
of the orthogonal ration. For non-gray bodies this law is only approximately correct.
The emissivity of metal surfaces increases with radiation angel and for non-metallic
surfaces it decreases.

7.2.2 Emissivities of technical surfaces

The emissivity of a surface depends on the surface characteristic and the tempe-
rature. Ageing ,for example, due to contamination, oxidation and corrosion can lead
to strong alteration of the emissivity. The exact value of the emissivity of a technical
surface can only be determined by measurements. Conclusions, regarding the emis-
sivities from optical or other evaluations may lead to completely wrong results.

Table 7.1: Emission coefficients of technical surfaces (Source: [7.2])

Material State Temperature ε
n

ε
°C

Aluminum rolled shiny 170 0.039 0.049
900 0.060

strongly oxidized 90 0.020
504 0.310

Aluminum oxide 277 0.630
830 0.260

Copper polished 20 0.030
slightly tarnished 20 0.037
black oxidized 20 0.780

Iron, steel polished 430 0.144
cast 100 0.800

Steel oxidized 200 0.790
Tungsten 25 0.024

1000 0.150
3000 0.450

Glass 20 0.940
Gypsum 20 0.850
Brick 20 0.930
Wood (Oak) 20 0.900
Paint black, flat 80 0.920
Paint white 100 0.940
Radiator paint (VDI-74) 100 0.925
Water 0 0.950

100 0.960
Ice 0 0.966
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The normal component of the emissivity can simply be measured between two
parallel plates. For this reason in literature commonly the normal components ε

n
 of

the emission coefficients are published. With the diagram in Figure 7.2 the emission
coefficient of the total radiation can determined.

In practice the emission coefficients, depending on the state of the surface may
have large deviations from the values reported in literature.

Further data can be found in VDI Heat Atlas [7.2] and W. Wagner: Wärme-
übertragung [7.4],  [7.5, 7.6] and in Appendix A11 of this book.

Normal component of the emissivity εn

1.1

ε/
ε

0.90 0.1

1.0

0.30.2 0.4

Electric conductors

1.2

n

1.4

1.3

Electric insulators

0.60.5 0.7 0.8 0.9 1.0

Figure 7.2: Diagram for the determination of the emission coefficient of the total radiation

7.2.3 Heat transfer between two surfaces

In many of the technically interesting cases thermal radiation occurs between two or
more surfaces. The transfer phenomena by thermal radiation can easily be explained
in the example of interaction between two surfaces. The surface area 1 emits rays
according to its temperature T

1
 and characteristic of the surface. As defined by the

directional distribution a part of the emitted rays hits the second surface and will
there be absorbed, reflected or passed through. The second surface in turn emits rays
according to its temperature T

2
 and characteristics of the surface. These emitted and

reflected rays hit the first surface according to their directional distribution.

2

s

dA

β

1T

1

1

2β

2
dA

T

Figure 7.3: Radiation heat transfer between two surfaces
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Figure 7.3 shows the thermal radiation between two infinitely small surface ele-
ments dA

1
 and dA

2
 of the surface 1 and 2. The temperature of surface 1 is T

1
 and that

of the surface 2 T
2
. Similarly are the emission coefficients ε

1
 and ε

2
. Lambert's law

delivers for the heat flow rate between the two gray diffuse surfaces:

⋅⋅
⋅

⋅
⋅−⋅⋅⋅=

21

212
21

4

2

4

1
2112

coscos

100100
AA

s dAdA
s

TT
CQ

π

ββ
εε (7.13)

The double integral in this equation is representing the geometrical characteris-
tics. The integral divided by the surface A

1
 delivers the irradiation coefficient ϕ

12
.

⋅⋅
⋅

⋅
⋅=

21

212
21

1
12

coscos1

AA

dAdA
sA π

ββ
ϕ (7.14)

As radiation heat transfers in reverse directions must be independent of geometry,
the following expression applies:

212121 ϕϕ ⋅=⋅ AA (7.15)

With this the heat rate can be given as:

−⋅⋅⋅⋅⋅=

4

2

4

1
1211212 100100

TT
ACQ sεεϕ (7.16)

For pairs of surfaces i and k in thermal radiation interaction the following recipro-
cal correlation is valid:

kikiki AA ϕϕ ⋅=⋅ (7.17)

In case of the thermal radiation interaction of the surface i with other surfaces in
the space surrounding i, the energy balance delivers the following relation:

=

=
n

k
ik

1

1ϕ (7.18)

The problem of determining the heat rate is the evaluation of the integrals in
Equation (7.14). For non-gray technical surfaces the determination is even more
complicated, as the radiation is partially absorbed and transmitted.

For simple geometrical surfaces of lateral dimensions much larger than its dis-
tance the irradiation coefficient can be calculated as:
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−⋅⋅=

4

2

4

1
1212 100100

TT
ACQ (7.19)

Therein C
12

 is the  thermal radiation exchange coefficient.

7.2.3.1 Parallel gray plates with identical surface area size

Between two parallel gray plates of the same size with the temperatures T
1
 and T

2

(Figure 7.4) the thermal radiation exchange coefficient is given as:

1ε 2ε

T

A

1 T

A

2

Figure 7.4: Thermal radiation between two parallel gray palates of identical size

1/1/1 21
12

−+
=

εε
sC

C (7.20)

...

ε 1 εε11 2112 ε ε22
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1 2

ε 1ε i ε  2i ε  1   2n n 2ε

i

A

T
n

2

Figure 7.5: Thermal radiation between several parallel gray palates of identical size

For n additional parallel plates in between two outer plane plates of identical  size
as shown in Figure 7.5, an analysis delivers the following correlation:
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sC
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2121

12

)1/1/1(1/1/1 εεεε (7.21)

Therein ε
i1
 is the emission coefficient of the i-th plate on the side facing T

1
 and ε

i2

facing T
2
. If all n plates have the same emissivity, Equation (7.21) simplifies:

)1/2(1/1/1 21
12

−⋅+−+
=

i

s

n

C
C

εεε (7.22)

If all surfaces have the same emissivity, a further simplification results:

)1/2()1(12
−⋅+

=
εn

C
C s

(7.23)

As the size of all plates is identical, in Equation (7.19) the surface A can be in-
serted.

Due to the additional plates the value of the denominator in the above equations
increases and subsequently the heat flow rate decreases. The additional plates result
in improved heat insulation. For the insulation of very cold fluids such as liquid
helium, this type of insulation comes to application. The tank to be insulated is
surrounded with an outer shell. The space in between is evacuated and provided
with polished thin aluminum foils (super insulation).

7.2.3.2 Surrounded bodies

For surrounded bodies like a sphere in a hollow sphere or a cylinder in hollow cylin-
der (Figure 7.6) the following correlation applies:

2A

2ε

T2

AT1
1

ε1

Figure 7.6: The radiation of a surrounded body

−⋅+
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1
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22

1

1

12

εε A

A

C
C s

(7.24)

In Equation (7.24) A
1
 is always the surface of the surrounded body, i.e. A

1 
is

smaler than A
2
. Here in the case that T

1
 is lower than T

2
 and the heat flow rate

calculated with Equation (7.19) would be negative. This has to be taken in to ac-
count.
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If the surface A
1
 is much smaller than A

2
, Equation (7.24) delivers:

sCC ⋅= 112 ε (7.25)

Even in case of bodies with rather complex geometry surrounded by an essentially
larger surface Equation (7.25) delivers results very close to reality (e.g. a radiator).

For a large number of geometries thermal radiation exchange coefficients are
given in VDI Heat Atlas [7.1].

EXAMPLE 7.1: Insulation with special emissivity window panes

The window panes of a house are replaced by high reflexivity glass panes. The
material properties of the original and high reflexivity glass are:

original high reflexivity
Absorptivity α 0.80 0.40
Reflexivity ρ 0.05 0.50
Transmissivity τ 0.15 0.10

The old panes were heated to 35°C on the room side, with the new panes this
temperature dropped to  28 °C. The temperature of the walls and the air in the room
is 22 °C. The heat transfer coefficient of free convection is 5 W/(m2 K). The heat
flux of the irradiation of the sun was measured as 700 W/m2.

Find

Calculate the heat flux entering the room through the window panes.

Solution

Schematic See sketch.

Assumptions

• The heat transfer coefficients of the free convec-
tion are constant.

• The glass temperature is constant.

Analysis

The heat flux through the gals of the window panes into the room has three com-
ponents:

q
.

sun

.
q

ϑ glas

22 °C

rad

conv

qdir

q
.

.
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• the sun rays directly passing through the glass,
• the free convection,
• the thermal radiation from the windowpanes glass to the room.

The three heat fluxes will now be calculated for the normal and for the high reflex-
ivity glass.

The portion of heat flux of the sun rays passing directly through is given by the
transmissivity.

original new

dir sunq q τ= ⋅ 105 W/m2 70 W/m2

The heat flux of the free convection:

( )conv K glass Rq α ϑ ϑ= ⋅ − 65 W/m2 30 W/m2

The heat flux transferred by radiation from the pane to the walls can be determined
by Equation (7.25):

4 4

100 100
glass R

rad s

T T
q Cε= ⋅ ⋅ − 65 W/m2 14 W/m2

For the heat flux from window panes out of normal glass we receive 235 W/m2,
for the high reflexivity glass 114 W/m2.

Discussion

The high reflexivity glass reflects 50 % of the sun rays hitting the window plane;
this is about 45 % more than with the normal glass. The absorptivity is 50 % lower
and the window pane will be heated up less, thus the convection heat transfer as well
as the thermal radiation to the room will be reduced. The larger part of the heat flux
to the room with high reflexivity glass is caused by the convection and radiation
from the pane.

EXAMPLE 7.2: Design of a light bulb filament

A 240 Volt light bulb shall have an electric power of 100 W at a filament tempera-
ture of 3

 
100 °C. The specific electric resistance of the tungsten filament has the

value of ρ
el
 = 73 . 10-9 Ω m. The temperature of the glass of the bulb is 90 °C.

Find

a) The length and diameter of the filament.
b) Efficiency of the electric bulb.
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Solution

Schematic See sketch.

Assumptions

• The surface of the glass is much larger than that of the
filament and is therefore negligible.

• The influence of the filament holders and the convective
heat transfer in the bulb can be neglected.

• The temperature of the filament is constant.

Analysis

a) The heat flow rate transferred from the filament by thermal radiation is equal
to the electric power supplied to the filament. To determine heat flow rate of the
thermal radiation the emissivity of tungsten is required. In Table 7.1 it is given as
0.45. The surface area for a heat flow rate of 100 W can be determined by Equation
(7.19). The thermal radiation exchange coefficient is with Equation (7.25) C

12
 = ε .

C
s
. For the surface area required for the 100 W heat flow rate we receive:

-5 2

4 4

1 2

3.028  10  m

100 100s

Q
A

T T
C ε

= = ⋅

⋅ ⋅ −

For 100 W electric power at a voltage of  240 V the following electric resistance
is required:

  576
W100

V240 222

=
⋅

⋅
==

elP

U
R

The surface area A and the electric resistance R are functions of the dimensions of
the filament. The following relationships can be given:

2

4

d

l
RldA el

⋅

⋅⋅
=⋅⋅=

π

ρ
π

Now the diameter d of the filament can be determined as:

9 5 2

33
2 2

4 4 73 10 m 3.021 10 m

576

A
d

R

ρ

π

− −⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅
0.0116  mm

The required length of the filament is:

Filament

3 100 °C

90 °C
Glass
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5 2

6

3.021 10 m

12 10 m

A
l

dπ π

−

−

⋅
= = =

⋅ ⋅ ⋅
0.832  m

b) The objective of an electric bulb is to provide light, i.e. emit visible light
(wavelength 0.35 to 0.75 μm). By integrating Equation (7.3) between these
wavelengths and multiplying the result by the emissivity we receive the heat flux of
the radiation in the range of the visible light.

2

2

1

1
/ ( )5

0.75 m 16 2

5 0.01438 K m / ( 3373 K) 2
0.35 m

( 1)

0.45 3.7418 10 W m MW
0.5504 

( 1) m

visible C T

C
q d

e

d
e

λ

λ
λ

λ

λ
λ

ε
λ

λ

λ
λ

⋅

= −

⋅ ⋅ ⋅ ⋅

=

⋅
= =

⋅ −

⋅ ⋅ ⋅ ⋅
= =

⋅ −

For the total emitted heat flux by thermal radiation we receive:

5 2 2

100 W MW
3.303 

2.7185 10 m m
el

tot

P
q

A −
= = =

⋅ ⋅

The efficiency of the bulb is:

/Bulb visible totq qη = = 0.167

Discussion

The temperature of the filament determines the surface area of the filament re-
quired to emit a heat rate of 100 W, i.e. the determined surface emits at the given
temperature a heat rate of 100 W. The filament is designed such that at a voltage of
240 V its electric resistance provides an electric power of 100 W and the surface
area being sufficient for emitting the 100 W heat flow rate by thermal radiation. The
relatively long filament can be realized by coils and redirections with multiple hol-
ders. The major part of the electric power is emitted as heat to the glass and trans-
ferred from there to the environment. The efficiency of 17%, calculated in this ex-
ample with some simplifying assumptions, cannot be reached in reality. Only about
8% to 12% of the radiated power is in the range of the visible light.

EXAMPLE 7.3: Performance of a radiator

  A radiator with a length of 1.2 m, a height of 0.45 m and a thickness of 0.02 m has
a surface temperature of  60 °C. Its surface is covered with radiator enamel. The
walls of the room have a temperature of 20 °C and the air in the room 22 °C.
The material properties of the air: λ = 0.0245 W/(m K), ν = 14 . 10-6 m2/s, Pr = 0.711.
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Find

The heat rate transferred from the radiator by radiation and by free convection.

Solution

Schematic See sketch.

Assumptions

• As the surface area of the room walls is much larger than that of the heater, it can
be neglected.

• The thin side walls of the heater are not taken into consideration.
• The temperature of the heater is constant.

Analysis

The heat rate transferred by thermal radiation can be determined with Equations
(7.19) and (7.25). The emissivity of the heater surface can be calculated by the value
given in Table 7.1 and the diagram shown in Figure 7.2:

0.96 0.925 0.96 0.89nε= ⋅ = ⋅ =

The surface area of the heater: 2 22 2 1.2 0.45 m 1.08 mA l h= ⋅ ⋅ = ⋅ ⋅ =

The heat flow rate of thermal radiation is:

4 4
1 2

2 4 2 4 4 4

( /100) ( /100)

0.89 5.67 W/(m K ) 1.08 m (3.332 2.993 ) K

Str sQ C A T Tε= ⋅ ⋅ ⋅ − =

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 257 W

The heat rate transferred by free conductivity can be calculated as described in
Chapter 4. The  Rayleigh number is calculated with Equations (4.3) and (4.6).

3
0

2
0

2 3 3
6

2 12 4 2

( )

9.806 m s 0.45 m (60 22) K
0.711 417.4 10

295.15 K 14 10 m s

Wg h
Ra Gr Pr Pr

T

ϑ ϑ

ν
−

− −

⋅ ⋅ −
= ⋅ = ⋅ =

⋅

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
= ⋅ = ⋅

⋅ ⋅ ⋅ ⋅ ⋅

The Nußelt number is determined with Equations (4.7) and (4.8):

( ) ( )
8/ 27 8/ 279/16 9/16

1( ) 1 0.671 1 0.671 0.711 0.838f Pr Pr
− −− −= + ⋅ = + ⋅ =

0.
02

 m

1.2 m

0.
45

 m
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{ }
21/6

10.852 0.387 ( ) 94.51hNu Ra f Pr= + ⋅ ⋅ =

For the heat transfer coefficient we receive:

2

94.51 0.0245 W W
5.146

0.45 m m K m K
hNu

h

λ
α

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

The heat flow rate transferred by free convection results as:

2 2 1
1 0( ) 1.08 m 5.146 W m K (60 22) KconvQ A α ϑ ϑ − −= ⋅ ⋅ − = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ = 211 W

Discussion

In this example the heat rates transferred by thermal radiation and by free con-
vection are compared. The heat flow rate by thermal radiation is larger. The part of
the thermal radiation increases stronger with increasing wall temperature  than that
of the free convection. This is the reason that in earlier days, when the heater
surfaces worked at 80 °C, they were called radiators and this name is still used now.

Attention! Here it is important, that for the thermal radiation the ambient tem-
perature is that of the wall and for the free convection the air temperature. The total
heat flow rate is the addition of the heat flow rates of thermal radiation and free
convection.

EXAMPLE 7.4: Distortion of the temperature measurement by radiation

With a spherical shaped temperature sensor of 2 m diameter the temperature of the
exhaust gas of a car is measured. The measured temperatures seem to be too low. As
it was assumed that the measurement could be distorted by thermal radiation also
the wall temperature of the exhaust pipe was determined. At a measured exhaust gas
temperature of  880 °C the wall temperature of the exhaust pipe had a temperature of
250 °C. The emissivity of the sensor is 0.4, the velocity of the gas in the exhaust pipe
25 m/s. The material properties of the exhaust gas:

λ = 0.076 W/(m K), ν = 162 . 10-6 m2/s, Pr = 0.74.

Find

a) The temperature of the exhaust gas.
b) Show possibilities to improve the accuracy of the measurement.
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Solution

Schematic See sketch.

Assumptions

• As the surface area of the exhaust pipe is much larger than that of the sensor,
Equation (7.25) applies.

• The measurement is not influenced by the fixation of the sensor.

Analysis

a) The gas-heated sensor transfers heat to the colder exhaust pipe wall and has
therefore a lower temperature than the exhaust gas. As the temperature of the sen-
sor is lower than that of the exhaust gas, heat is transferred from the gas to the sensor
by forced convection. The sensor transfers the same amount of heat rate to the
exhaust pipe wall.

rad convQ Q=

The heat flow rate transferred by thermal radiation can be determined with Equa-
tions (7.19) and (7.25).

4 4( /100) ( /100)rad s S WQ A C T Tε= ⋅ ⋅ ⋅ −

Temperature of the sensor is T
S
 and of the exhaust pipe T

W
. The heat transfer

coefficient on a body in the cross-flow is discussed in Chapter 3.2.3. The equation to
be applied is defined by the Reynolds number.

6/ 25 0.002 /162 10 309L'Re c d ν −= ⋅ = ⋅ ⋅ =

Equation (3.30) delivers the Nußelt number:

3 3
, 0.664 0.664 0.74 309 10.55L lam LNu Pr Re′ ′= ⋅ ⋅ = ⋅ ⋅ =

The heat transfer coefficient of the forced convection is:

,

2

10.55 0.076 W W
401  

0.002 m m K m K
L lamNu

d

λ
α ′ ⋅ ⋅ ⋅

= = =
⋅ ⋅ ⋅ ⋅

The heat rate transferred to the sensor by forced convection:

0( )conv SQ A T Tα= ⋅ ⋅ −

As both heat rates are equal, the exhaust gas temperature can be determined.

25 m/s

250 °C

880 °C
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4 4
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4 4 4
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( / 100) ( / 100)

0.4 5.67
(11.532 5.232 ) K 1153.2 K

401 K

s
S W S

C
T T T T

ε

α

⋅
= ⋅ − + =

⋅
= ⋅ − ⋅ + = °

⋅
975.8  C

The temperature of the exhaust gas is 92.8 K higher than the measured value.

b) The accuracy of the measurement can be improved by insulation of the ex-
haust pipe wall. With this measure the cooling down of the exhaust pipe by the air-
stream is avoided. If this is not possible, a shield can be installed around the sensor.
This can be e.g. a polished steel pipe of 10 mm diameter, 20 mm length and an
emissivity of 0.06. The sensor then has only a radiation heat transfer to the shield
which transfers heat by radiation to the exhaust pipe wall. The pipe can be
calculated as a good approximation of a plane wall. The characteristic length is the
length of the pipe. The Reynolds number is:

6/ 25 0.02 / 162 10 3086lRe c l ν −= ⋅ = ⋅ ⋅ =

The Nußelt number can be determined with Equation (3.21).

3 3
, 0.664 0,664 0.74 3086 33.42l lam lNu Pr Re= ⋅ ⋅ = ⋅ ⋅ =

The heat transfer coefficient:

,

2

33.42 0.076 W W
127.0  

0.02 m m K m K
L lamNu

d

λ
α ′ ⋅ ⋅ ⋅

= = =
⋅ ⋅ ⋅ ⋅

The pipe is heated by the exhaust gas from both sides but transfers heat by radia-
tion only from the outer side to the exhaust pipe. For the determination of the heat
rate by convection the doubled surface must be used.

02 ( )conv pipeQ A T Tα= ⋅ ⋅ ⋅ −

For the temperature T
pipe

 we receive:

4 4
0

4 4 4
3

( / 100) ( / 100)

0.4 5.67
(11.532 5.232 ) K 1153.2 K

401 K

s
S W S

C
T T T T

ε

α

⋅
= ⋅ − + =

⋅
= ⋅ − ⋅ + = °

⋅
975.8 C

The temperature of the exhaust gas is 27.6 K higher than that of the pipe. The
distortion of the sensor temperature can be determined as before and we receive for
the temperature difference:
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4 4
0

4 4 4
3

( /100) ( /100)

0.4 5.67
( /100) 12.202 K

401 K

s
S S pipe

S

C
T T T T

T

ε

α

⋅
− = ⋅ − =

⋅
= ⋅ − ⋅ =

⋅
8.51 K

Discussion

This example demonstrates that a temperature measurement can be distorted by
thermal radiation. Particularly large errors can occur in the flow of gases. At high
temperatures the deviation can be extremely large as the difference 4

2
4

1 TT − also at
smaller deviations has reasonable values. In our case with shield, the temperature
difference between sensor and shield is only 27 K but the error is 8.51 K. The high
difference is due to the large temperature of 950 °C. At a gas temperature of 100 °C
with the shield the error would only be 0.298 K.

To avoid wrong measurements, glass thermometers for room temperature meas-
urements have a polished metal shield installed around the sensor.

7.3 Thermal radiation of gases

Like solids and liquids, some gases have the ability to emit and absorb thermal
radiation. Gases constituting only one atom (noble gases) or two atoms per molecule
(elementary gases O

2
, N

2
, H

2 
or gases as CO and HCl) are diatherm, i.e., they are

transparent for the thermal radiation. Other gases and vapors, consisting of more
than two atoms per molecule, as e.g. H

2
O, CO

2
, SO

2
, NH

3
 and CH

4
 are potential

radiators, which emit and absorb thermal radiation in a small range of wavelength.
The intensity of thermal radiation of hydrocarbons increases with the number of
atom per molecule. For technical application, air can be assumed to be diatherm as
the carbon dioxide concentration is very low. However for our climate, the carbon
dioxide concentration in the air is of greatest interest. With increasing of the CO

2

concentration the thermal radiation of the earth surface is absorbed and resubmitted
to the earth and creates the so called “green house effect”.

The amount of heat absorbed by gas is dependent of the thickness s of the gas
layer. The intensity of the thermal radiation through a gas layer is given as:

saeii ⋅⋅= 0 (7.26)

Therein a is the absorptivity of gases. The intensity absorbed from the gas can be
given by integration of Equation (7.26):

)1(00
saeiiii ⋅−⋅=−=α

(7.27)

The absorptivity of a gas is defined as:
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sa
g e ⋅−= 1α (7.28)

It is dependent of temperature and pressure. The space occupied by a gas can be of
very complex geometry. Instead of the layer thickness, like the hydraulic diameter,
an equivalent thickness s

gl
, is used, which is determined by gas volume V

g
 and sur-

face area.

g

g
gl A

V
fs

⋅
⋅=
4

(7.29)

The correction function  f  takes into account the geometry and pressure and has
approximately the value of 0.9.

7.3.1 Emissivities of flue gases

Thermal radiation of gases is of great interest for the design of combustion cham-
bers. The gases with thermal radiation potential are water vapor and carbon dioxide.
The flue gas in the combustion chamber mainly consists of nitrogen and the part of
oxygen, not used for the combustion, as the  diatherm component. Depending of the
fuel, the concentration of the water vapor and carbon dioxide varies. In the follow-
ing calculation procedures it is assumed that the gas mixture of the flue gas have a
diatherm portion (nitrogen and oxygen) and water vapor and carbon dioxide as
potential thermal radiators. In this book only the thermal radiation of dust-free gases
is discussed. Corrections for flue gases containing solid particles can be found in
VDI Heat Atlas [7.1].

The emissivity of a flue gas is:

gCOOHg )(
22

εΔεεε −+= (7.30)

The absorptivity is given similarly:

gCOOHg )(
22

εΔααα −+= (7.31)

The correction terms Δε are given in the diagram in Figure 7.10.

7.3.1.1 Emissivity of water vapor

In the diagrams in Figure 7.7 and 7.8 the emissivities of water vapor and its
correction function are given as a function of the partial pressure, the pressure and
the temperature. The emissivity of gases is not always the same as the absorptivity.
It depends on the wall and gas temperature. If the absolute temperature of the wall
T

W
 is not the same as that of the gas T

g
, the following correlation has to be used:

0.45( / )gW gW g WT Tα ε= ⋅ (7.32)
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Therein α
gW

 is the absorptivity of the vapor at the wall. It can be determined in the
diagram in Figure 7.7. It is important that the partial pressure has to be determined
with the wall temperature.

)/(
22 , gWOHWOH TTpp ⋅= (7.33)

7.3.1.2 Emissivity of carbon dioxide

In Figure 7.9 the emission coefficients of carbon dioxide are given as a function of
the partial pressure and temperature. As with the water vapor the influence of the
wall temperature must be taken into account.

0.65( / )gW gW g WT Tα ε= = (7.34)

Therein α
gW

 is the absorptivity of the gas at the wall. In Figure 7.9 the emissivity
ε

gW
 is given. Similarly with the water vapor the partial pressure at the wall has to be

used.

)/(
22 , gWCOWCO TTpp ⋅= (7.35)

7.3.2 Heat transfer between gas and wall

The heat rate between gas volume and wall, which envelops this volume, is given
as:

⋅−⋅⋅
−⋅−−

⋅⋅
=

44

100100)1()1(1
W

gW
g

g
gWW

sW
gW

TTAC
Q αε

αε

ε
(7.36)

In most cases the wall temperature is much lower than that of the gas, therefore the
contribution of the term with the lower temperature has only marginal influence, for
example, at 400 K wall and 1200 K gas temperature it is only 1.2 %.  In such a case
with neglecting the influence of the lower temperature, the following approach can
be applied:

4

100)1()1(1
⋅

−⋅−−

⋅⋅⋅
≈

g

gWW

sWg
gW

TAC
Q

αε

εε
(7.37)
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Figure 7.7: Emissivity of water vapor vs. temperature (Source: VDI-Heat Atlas)

Figure 7.8: Correction function (Korrekturfaktor f) for water vapor vs. partial pressure
(Source: VDI-Heat Atlas)
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Figure 7.9: Emission coefficient of carbon dioxide vs. temperature (Source: VDI-Heat
Atlas)

EXAMPLE 7.5: Heat rate of a combustion chamber

A cubical combustion chamber has an edge length of  0.5 m. The wall temperature is
600 °C, that of the gas 1

 
400 °C. The emissivity of the wall is 0.9. The flue gas

contains 12 Vol% water vapor and 10 Vol% CO
2
. The pressure is 1 bar.

Find

The heat flow rate transmitted from the gas to the wall.

Solutions

Assumptions

• The flue gas is homogeneous.
• The temperature in the combustion chamber is constant.
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Figure 7.10: Correction terms Δε for gas mixtures containing water vapor and carbon dioxide
a) 130 °C, b) 540 °C, c) 920 °C and over (Source: VDI Heat Atlas)

Analysis

The heat flow rate is calculated with Equation (7.38). First the equivalent length,
the emissivity and the absorptivity must be determined. The equivalent length is
given by Equation (7.29):

24 4
0.9 0.6 0.3  m

6
g

gl
g

V a
s f a

A a

⋅ ⋅
= ⋅ = ⋅ = ⋅ =

⋅

For the determination of the emissivity of water vapor and carbon dioxide the pro-
duct of equivalent length and partial pressure is required. The partial pressure is
equal to the volume fraction.

2 2
0.12 0.3 0.036 bar m 0.1 0.3 0.03 bar mH O gl CO glp s p s⋅ = ⋅ = ⋅ ⋅ = ⋅ = ⋅
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The diagrams in Figures 7.7 to 7.9 deliver:

2 2
1.06 0.025 0.04H O COf ε= = =

The correction term Δε is given in diagram in Figure 7.10 c) and is Δε = 0.002.
For the emissivity of the gas we receive with Equation (7.31):

2 2
( ) 1.06 0.025 0.04 0.002 0.0645g H O CO gε ε ε Δε= + − = ⋅ + − =

The emissivity and absorptivity are taken from the corresponding diagram and
calculated with Equations (7.34) to (7.37). The product of the equivalent length and
partial pressure is:

2 2, / 873/1 673 0.036 bar m 0.019 bar mgl H O W gl H O W gs p s p T T⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅

2 2, / 0.016 bar mgl CO W gl CO W gs p s p T T⋅ = ⋅ ⋅ = ⋅

From diagrams in Figures 7.7 to 7.9 the emissivities at the wall are:

2 2, ,1.06 0.047 0.066H O W CO Wf ε= = =

The emissivity of the flue gas at the wall is:

2 2, , ( ) 1.06 0.067 0.058 0.002 0.114gW H O W CO W gWfε ε ε Δε= ⋅ + − = ⋅ + − =

The absorptivity of carbon dioxide and water vapor at the wall are:

2 2 2 2

0.45 0.65
, , , ,( / ) 0.063 ( / ) 0.101H O W H O W g W CO W CO W g WT T T Tα ε α ε= ⋅ = = ⋅ =

The absorptivity of the flue gas at the wall is:

2 2, , ( ) 0.063 0.101 0.002 0.161gW H O W CO W gWα α α Δε= + − = + − =

With Equation (7.36) we receive the heat rate.

4 4

2 2
4 4 4

2 4

1 (1 ) (1 ) 100 100

0.9 5.67 W 6 0.5 m
0.0645 16.73 0.162 8.73 K

1 (1 0.9) (1 0.162) m K

gW s W
gW g gW

W gW

TC A T
Q

ε
ε α

ε α

⋅ ⋅
= ⋅ ⋅ − ⋅ =

− − ⋅ −

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ ⋅ − ⋅ ⋅ =

− − ⋅ − ⋅ ⋅
34.38  kW
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Discussion

In this example it was assumed that the temperature of the flue gas is constant. Air
is blown into the combustion chamber with a fan and together with the fuel during
the combustion process produces the flue gas. Due to the thermal radiation but also
by forced convection the temperature of the gas flow decreases. In the area of the
flames the major part of the heat transfer occurs by thermal radiation. Furthermore,
the flue gas can contain soot which improves the heat transfer, but has not been
taken into account. The exact calculation of combustion chambers is only possible
with 3D computer programs. The calculation procedure given here can serve as a
rough estimation only.



  



8 Heat exchangers

When calculating heat exchangers the analysis can have completely different goals:

• Design of heat exchangers: mass flow rates and temperatures of the fluids are
defined, the dimensions of the heat exchanger must be calculated

• Recalculation of heat exchangers: the geometry of the heat exchanger is
known and its performance has to be calculated in off-design conditions

• Optimization of heat exchangers and systems
• Mechanical design

In practice the thermal and mechanical design go hand in hand with the goal of
optimizing the heat exchanger. In this book only the thermal design is explained, as
this is the foundation for all other analyses.

The heat exchangers discussed up to here were either parallel-flow or counter-
flow heat exchangers or apparatus with constant temperature in one of the fluids
(condensation and evaporation). The design of heat exchangers in which the fluid
flows in cross-flow cannot be handled with the knowledge acquired up to here.

8.1 Definitions and basic equations

Figure 8.1 shows a schematic of a heat exchanger with important information of the
fluid flows [8.1].

k  A

Heat exchanger

1ϑ ''

ϑm
. '1 1

.

22
'.

m ϑ

ϑ ''2

Figure 8.1: Schematic of a heat exchanger

The fluid 1 enters the heat exchanger with the temperature ϑ '
1
 and leaves it with

the temperature ϑ ''
1
. The fluid 2 enters the heat exchanger with temperature ϑ '

2
 and

leaves it with the temperature ϑ ''
2
. The temperature change of each fluid depends on

the mass flow rates, inlet temperatures, specific heat capacities and overall heat

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1_8, © Springer-Verlag Berlin Heidelberg 2012 

215



216 8 Heat exchangers

transfer coefficient as well as of the exchanger surface area. The heat rate transfer-
red from one to the other fluid is:

mAkQ ϑΔ⋅⋅=12 (8.1)

In equation (8.1) it is assumed that the heat exchanger has a constant mean overall
heat transfer coefficient. In most cases this is rather close to reality as usually the
mean heat transfer coefficients of the fluids are determined.

In cases where the heat transfer mode changes, e.g. a vapor condenses completely
in a tube and then the condensate is sub-cooled, the calculation must be performed
with local heat transfer coefficients in the subsequent tube sections.

The log mean temperature difference  Δϑ
m
 is:

⋅−⋅=
A

m dA
A

)(
1

21 ϑϑϑΔ (8.2)

The local temperature difference of the fluids 1 and 2 is ϑ
1
 – ϑ

2
. For parallel-flow

or counterflow heat exchangers or in apparatus in which the temperature of one
fluid is constant, the log mean temperature difference was defined in Chapter 1.1 as:

for  0
ln( / )

gr kl
m gr kl

gr kl

ϑ ϑ
ϑ ϑ ϑ

ϑ ϑ

Δ − Δ
Δ = Δ − Δ ≠

Δ Δ (8.3)

( ) / 2 for  m gr kl gr klΔϑ Δϑ Δϑ Δϑ Δϑ= + = (8.4)

The temperature difference of the fluid flows at the inlet and outlet are Δϑ
gr

 and
Δϑ

kl
, whereas Δϑ

gr
 is the lager and Δϑ

kl
 the smaller difference. In earlier days the

validity of Equation (8.4) was limited to Δϑ
gr

 –  Δϑ
kl
 < 1 K. For a heat exchanger

with small temperature differences this could result in severe error. Today calcula-
tors and computers allow the calculation of the log mean temperature difference
even at very small differences (e.g. Δϑ

gr
– Δϑ

kl
 = 0.00001 K).

The energy balance equation gives us the heat flow rate as the product of the mass
flow rate and the change of the fluid enthalpy.

1 11 12

2 21 22

( )

( )

Q m h h

Q m h h

= ⋅ −

= − ⋅ −
(8.5)

The enthalpy h
11

 is that of the fluids 1 at the inlet, h
12

 the one at the outlet. Respec-
tively the enthalpy h

21
 is that of the fluids 2 at the inlet and h

22
 the one at the outlet.

Equation (8.5) has universal validity, i.e. also for flows with phase change. At flows
without phase change the enthalpy can be given as a function of the temperature.
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)(

)(

2222

1111

ϑϑ

ϑϑ

′′−′⋅⋅−=

′′−′⋅⋅=

p

p

cmQ

cmQ
(8.6)

In Equation (8.5) heat losses, change of kinetic and potential energy were not
taken into consideration. In cases when these energies have a significant influence,
what only seldom happens, the corresponding equations of the first law of thermo-
dynamics have to be applied.

In flows without phase change the parameter heat capacity rate W can be de-
fined.

1 1 11 12 1 1 1 1

2 2 21 22 2 2 2 2

( ) / ( )

( ) / ( )

p

p

W m h h m c W

W m h h m c

ϑ ϑ

ϑ ϑ

′ ′′= ⋅ − − = ⋅

′ ′′= ⋅ − − = ⋅
(8.7)

To create generally valid correlations for heat exchangers, the following dimen-
sionless  parameters are defined:

Dimensionless log mean temperature difference:

21 ϑϑ

ϑΔ
Θ

′−′
= m

(8.8)

Dimensionless temperature changes of the fluid flows 1 and 2 are P
1
 and P

2
,

which are called cell efficiency. They are the temperature change of the fluid flow
divided by the inlet temperature difference, which is the largest one.

1 1 2 2
1 2

1 2 1 2

P P
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ ′′ ′′ ′− −
= =

′ ′ ′ ′− − (8.9)

Here the temperatures should be selected so that  P
1
 is positive, with which also P

2

will be positive.
Number of transfer units NTU of both fluid flows:

1 1
1

1 m

k A
NTU

W

ϑ ϑ

Δϑ

′ ′′−⋅
= =              

mW

Ak
NTU

ϑΔ

ϑϑ 22

2
2

′−′′
=

⋅
= (8.10)

The number of transfer units is the ratio of temperature change of the fluid flow to
the log mean temperature difference or the ratio of the product of overall heat trans-
fer coefficient and heat transfer area to the heat capacity rate.

Heat capacity rate ratio of the two fluid flows:

22

1
1

1

RW

W
R == (8.11)
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Within these dimensionless parameters the following relationships exists:

2
12

1

2

1 1
R

RNTU

NTU

P

P
=== (8.12)

2

2

1

1

NTU

P

NTU

P
==Θ (8.13)

8.2 Calculation concepts

There exist a large number of calculation procedures for heat exchangers, which
differ in the area of application, calculation effort and accuracy. The most exact
procedures are the difference methods and step-by-step procedures. Here the heat
exchanger is calculated in segments with local values, e.g., the local flow conditions
and temperatures are applied for the calculation of the heat transfer coefficients.
With regard to the calculation effort this is the most expensive method. This
calculation procedure will not be discussed in this book.

8.2.1 Cell method

In the cell method the heat transfer surface area of the heat exchanger is divided into
cells, in which the flows are directed in series or in reverse order with full or partial
flow rate of the fluids. Each heat transfer surface area has an individual inlet and
outlet temperature. Each cell will be applied with most realistic flow directions.  In-
stead of a complete heat exchanger, a system with interconnected individual heat
exchangers is created [8.2, 8.3].

With the equations, valid for the flow conditions of the cell and with the given
inlet temperatures, the outlet temperatures of each cell can be calculated. For the
calculation the term k . A must be known. The determination of  k . A takes place with
corresponding correlations for the heat transfer coefficients.

Starting with the given inlet temperatures of the fluid flow we receive 2n equa-
tions for n cells for the 2n unknown outlet temperatures. This equation matrix deliv-
ers all the intermediate temperatures of both fluid flows. With these temperatures
the material properties and heat transfer coefficients are determined. Each indi-
vidual cell can have different surface areas and heat transfer coefficients. At not too
large temperature differences and flow conditions (e.g. flow in a tube and cross flow
outside), a constant overall heat transfer for all cells can be assumed. Often heat
exchangers are designed such as the overall heat transfer coefficients and the heat
transfer areas can be selected equal for each cell. In this case a constant value of
k . A allows a simplified calculation and the NTU values for each fluid flow are also
constant. The number of internal passes in a heat exchanger is z and that of the
external flows n. The number of flows is the number of redirections plus 1.
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Figure 8.2: Left: heat exchanger with two internal and three external passes; right: cell model

The cell model will be demonstrated here with a heat exchanger having two inter-
nal (n = 2) and tree external passes (z = 3), as shown in Figure 8.2. To simplify the
calculation it is assumed that k . A in all cells has the same value and is constant. The
heat exchanger consists of six cells with different flow conditions that are signed
with index letters. For the whole apparatus the following relations apply:

ges
p

ges
p

ges NTUR
mc

Ak
NTU

mc

Ak
NTU 11

22
2

11
1 ⋅=

⋅

⋅
=

⋅

⋅
= (8.14)

The value of  k . A is constant and each cell has the same heat transfer area, thus the
following relation is valid for each cell:

1
1

1 1

2
2 1 1

2 2

gesi

p

gesi

p

NTUk A
NTU

c m n z

NTUk A
NTU R NTU

c m n z

⋅
= =

⋅ ⋅

⋅
= = = ⋅

⋅ ⋅

(8.15)

The flow conditions of the cell (e.g. pure cross-flow or cross-flow mixed with
parallel-flow and tube flow) determine the dimensionless temperatures of the cell.
For any cell j, the dimensionless temperatures are defined as:

1 2 2 2
1 2

1 2 1 2

j j
j jT T

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ ′− −
= =

′ ′ ′ ′− − (8.16)

The cell j is entered with the fluid flow 1 from cell p and with fluid flow 2 from
cell q (Figure 8.3).
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= ϑ ϑ ' ''

q

Cell
2j 2q

ϑ 

ϑ 1j''

j

Cell

2 j''

1''ϑ ϑ 1j ='

p

Cell

p

Figure 8.3: Temperatures of cell j

For the dimensionless temperatures we receive the following relationships:

1 1 1 1 2

2 2 2 2 1

(1 ) 0

(1 ) 0
j p j j q

j q j j p

P T T P T

P T T P T

′′ ′′ ′′− ⋅ − + ⋅ =

′′ ′′ ′′− ⋅ − + ⋅ = (8.17)

For P
1j
 and P

2j
 the inlet respectively outlet temperature has to be inserted in to

Equation (8.7).

     
1 1 2 2

1 2
1 2 1 2

j j j j
j j

j j j j

P P
ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ ′′ ′′ ′− −
= =

′ ′ ′ ′− − (8.18)

If cell  j is the inlet cell of the fluid flow 1 or 2, the following applies:

      1 1 2 21 0p j q jT T T T′′ ′ ′′ ′= = = = (8.19)

Correspondingly if cell j is the outlet cell of fluid flow 1 or 2:

 1 1 2 21ges j ges jP T P T′′ ′′= − = (8.20)

For the example discussed here, we receive the following equations:
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We do now have 12 equations with 12 unknown temperatures. The equations can
be solved with the corresponding mathematical methods. As long as k respectively
k.A have the same value for all cells and the parameter P

1
 and P

2
 are equal in each

cell, the solution is rather simple. In cases of individual values of  k . A of each cell,
they must be calculated separately.

 Relations for P
i
 for some flow arrangements are given here.

pure counterflow                

[ ]
[ ] 1

1 2 1

1 exp ( 1)
for 1

1 exp ( 1)

for 1
1

i i
i

i i i

R NTU
P R

R R NTU

NTU
P P R

NTU

− − ⋅
= ≠

− ⋅ − ⋅

= = =
+

(8.21)

pure parallel-flow               
[ ]

i

ii
i R

NTUR
P

+

⋅+−−
=

1

)1(exp1
(8.22)

pure cross-flow                   2,1

!

1
1

!

1
1

0

0
=

⋅⋅−⋅

⋅⋅⋅−

=

⋅−

=

−

i

NTU
j

e

NTU
j

e

m

j

j
i

NTUR

m

j

j
i

NTU

ii

i

(8.23)

cross-flow to one tube row     ]/)1exp[(1 11
11 ReP NTUR −−= ⋅− (8.24)

The analysis with the cell method usually requires computer programs. The sim-
pler procedure is the mean log temperature difference method, which will be dis-
cussed in Chapter 8.2.2.

EXAMPLE 8.1: Analysis of a heat exchanger with the cell method

The flow arrangement of the heat exchanger consists of two inner and two outer
flows with a flow reversal on the shell side. The parameter k . A controlling the heat
transfer has for all cells the same value of  4 000 W/K. The shell side flow has the
index 1. To simplify the calculation both heat capacity rates 1W  and 2W  were
selected with 3

 
500 W/K. The inlet temperature of flow 1 is ϑ '

1
 = 100 °C and that of

the flow 2 ϑ '
2
 =  20 °C.

Find

The outlet temperatures  ϑ ''
1
 and ϑ ''

2
.
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Solution

Schematic See sketch.

2T' = 0
1T

ϑ
ges

T2d = 2 gesP

1=1T d 1 - P

ϑ''
2 d

= 1

'
.

1W ϑ

'' 1T1

1

cT2 c

c

W ϑ '

1T a

2 a2

.

T2 T2a b

1T bb

Assumption

• The overall heat transfer coefficient and the heat transfer surface area has in all
cells the same value.

Analysis

The dimensionless parameters required for the whole system are:

1 2 1 2

1 1 2

/ 1

/ 4000 / 3500 1.1429ges ges

R R W W

NTU k A W NTU

= = =

= ⋅ = = =

For each cell we receive:

1, 2 10.25 0.2857gesNTU NTU= ⋅ =

As we have here a heat exchanger with one tube row in cross flow, P
1
 and P

2
 can

be determined with Equation (8.24).

1 1 0.2857
1 2 11 exp[( 1) / ] 1 exp[( 1)] 0.220R NTUP P e R e− ⋅ −= = − − = − − =

The temperature changes can be calculated with Equations (8.17) to (8.20). We
receive for the eight unknowns eight independent equations. As the parameters P

1

and P
2
 have the same value for all cells, the calculation simplifies. Further P

1 ges
 has

the same value as P
2 ges

. With Equation (8.20) we receive: P
1 ges

 +
 
P

2 ges 
= 1 and sub-

sequently P
1 ges

 = P
2 ges

 = 0.5.

gesd

bc

cab

ba

PT

PTPT

TPTPT

TPT

22

1222

11222

112

)1(

)1(

=

+⋅−=

⋅+⋅−=

⋅=

       

gesd

bc

acb

ba

PT

TPPT

TPTPT

TPT

11

2111

21111

111

1

1)1(

)1(

)1(

−=

⋅+⋅−=

⋅+⋅−=

⋅−=
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These eight linear equations can be solved and the dimensionless temperatures
can be transformed in Celsius-temperatures. The results are tabulated below:

1 2 1 2 2 2
1 2

1 2 1 2

20 C 20 C
and

80 K 80 K
j j j j

j jT T
ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ ′− − ° − − °
= = = =

′ ′ ′ ′− −

T
2a

T
2b

T
2c

T
2d

T
1a

T
1b

T
1c

T
1d

0.153 0.306 0.458 0.5 0.542 0.694 0.847 0.5
ϑ

2a
ϑ

2b
ϑ

2c
ϑ

2d
ϑ

1a
ϑ

1b
ϑ

1c
ϑ

1d

32.2 44.5 56.6 60 63.4 75.5 87.8 60.0 °C

The total temperature changes P
1 ges

 and P
2 ges

 are equal at 0.5, i.e. the outlet
temperatures have the same value of 60 °C.

Discussion

The cell method requires computer codes to solve the equations. Already the sim-
ple example here needs a rather high calculation effort. However, some conclusions
can be drawn that would not be possible with other methods.

So the flow configuration in this example is not economical, because in cell d all
temperatures are close to 60 °C and therefore the heat rate there is very low. A better
result would be achieved if cell d were the inlet cell for fluid flow 1.

8.2.2 Analysis with the log mean temperature method

The heat rate can be determined with Equation (8.1). The log mean temperature is
only known for parallel-flow, counterflow or when the temperature of one fluid is
constant. With the cell method the log mean temperatures can be determined for
complex flow arrangements. With the diagrams in Figures 8.5 to 8.12 the log mean
temperatures of several flow arrangements can be determined. With the dimension-
less temperatures P

1
 and P

2
 the number of transfer units NTU

1
 and NTU

2
 can be

determined. Equation (8.13) delivers the dimensionless temperature Θ and with
Equation (8.8) the log mean temperature difference Δϑ

m
 can be calculated.

The diagrams have been proposed by Roetzel and Spang following a review of all
known ways to represent the relationship between P

i
, NTU

i
 and Δϑ

m
. The diagrams

8.5 to 8.12 have been published in the VDI Heat Atlas and have been taken from
there.



224 8 Heat exchangers

Figure 8.4 demonstrates the use of the diagrams. We find the dimensionless tem-
peratures P

1
 and P

2
 on the bottom and left axis and on the top and right axis the

dimensionless ratio of heat capacity flow R
1
 and R

2
. Here we have to pay attention

that  the lower value of R is used, for example, its value must be smaller than 1.
In the diagram there are two sets of curves. The upper continuous curves are for

NTU
1
, the lower ones for NTU

2
 the dashed curves are for the parameter F, which is

defined as:

i

iG

klgr

klgrm

mG

m

NTU

NTU
F =

−⋅
==

)/ln(

)(

ϑΔϑΔ

ϑΔϑΔϑΔ

ϑΔ

ϑΔ
(8.25)

The index G is for a counterflow heat exchanger mean temperature difference
according to Equation (8.3).

P2

= const.

= const.

R

P
1 R

0
0

F

NTU

= 
co

ns
t.

1

1

1

R
2N

TU

1

= const.

2

1
1

1

Figure 8.4: How to use the diagrams in Figures 8.5 to 8.12
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Figure 8.5: Pure parallel-flow (Source: VDI-Wärmeatlas, 9. Aufl.)
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Figure 8.6: Pure couterflow (Source: VDI-Wärmeatlas, 9. Aufl.)
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Figure 8.7: Tube and shell heat exchanger with one external and two internal passes
(Source: VDI-Wärmeatlas, 9. Aufl.)
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Figure 8.8: Tube and shell heat exchanger with one external and four internal passes
(Source: VDI-Wärmeatlas, 9. Aufl.)



8 Heat exchangers 229

Figure 8.9: Pure cros- flow (Source: VDI-Wärmeatlas, 9. Aufl.)
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Figure 8.10: Cross-flow with one tube row and cross mixed cross-flow on one side
(Source: VDI-Wärmeatlas, 9. Aufl.)



8 Heat exchangers 231

Figure 8.11: Cross-flow cross mixed on both sides (source: VDI-Wärmeatlas, 9. Aufl.)
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Figure 8.12: Cross-flow with two tube rows and two passes (Source: VDI-Wärme-atlas, 9.
Aufl.)
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EXAMPLE 8.2: Design of an automotive cooler

The automotive cooler shall transfer 50 kW heat rate at an ambient temperature of
45 °C. The cooling water enters the cooler with a temperature of 94 °C and shall be
cooled to 91 °C. The air flows between the fins of the cooler with a velocity of
20 m/s. The square cooling water channels have the following geometry: wall thick-
ness 1 mm, length 550 mm, outside width 6 mm, outside depth 50 mm. On the chan-
nels fins with 0.3 mm thickness are soldered in 1 mm distance. The distance be-
tween the cooling water channels is 60 mm. The water channel walls and the fins
have a thermal conductivity of 120 W/(m K).

The thermal properties of cooling water and air:
Water: ρ = 963.6 kg/m3, λ = 0.676 W/( m K), ν = 0.317 . 10-6  m2/s, Pr = 1.901,

c
p
 = 4.208 kJ/(kg K).

Air: ρ = 1.078 kg/m3, λ = 0.028 W/( m K), ν = 18.25 . 10-6  m2/s, Pr = 0.711,
c

p
 = 1.008 kJ/(kg K).

Find

The required number of channels.

Solution

Schematic See sketch.

2 h   = 60

Measures in mm

Water channel

s 
 =

 0
,3

B =
 5

0

R
i

Air

Fins

Water

C = 6

b =
 4

8

t 
  
 =

 1
R

i

Water

Ri

c = 4

Assumptions

• In the whole cooler the heat transfer coefficients are constant.
• The influence of the direction of the heat flux can be neglected.

Analysis

The cooling water is signed with the index 1, the air with 2. The mass flow rate  of
the cooling water can be determined by the energy balance equation:
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1
1 1 1

50 kW kg K
3.961  kg/s

( ) 4.208 kJ (94 91) Kp

Q
m

c ϑ ϑ

⋅ ⋅ ⋅
= = =

′ ′′⋅ − ⋅ ⋅ − ⋅

The mass flow rate of the air is dependent on the number of cooling water chan-
nels. Always one half of a fin, e.g. 30 mm belongs to a cooling water channel. Per
cooling water channel the cross-section for the air flow is:

2

2 2

2 ( ) 2 ( ) / 2 (1 / )

2 0.03 0.7 0.55 m 0.0231  m
Ri Ri Ri Ri Ri Ri Ri Ri Ri RiA h t s n h t s H t h s t H= ⋅ ⋅ − ⋅ = ⋅ ⋅ − ⋅ = ⋅ ⋅ − ⋅ =

= ⋅ ⋅ ⋅ ⋅ =

With z cooling water channels, we receive for the air mass flow rate:

2 3
2 2 2 2 0.0231 m 1.078 kg/m 20 m/s 0.498  kg/sm z A c z zρ= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅

The total mass flow rate of the air increases with number of channels. The cooling
water mass flow rate in each channel decreases with the number of channels.

The next step is to determine the heat transfer coefficients.
The air channels between the fins have the following hydraulic diameter:

2
2 4 ( ) /[2 ( )] 2 30 0.7 mm /(30.7 mm) 1.368  mmh Ri Ri Ri Ri Ri Rid h t s t s h= ⋅ ⋅ − ⋅ − + = ⋅ ⋅ ⋅ ⋅ =

The Reynolds number of the air is:

6
2 2 2 2/ 20 0.001368 / (18.25 10 ) 1 499hRe c d v −= ⋅ = ⋅ ⋅ =

The flow is laminar; the Nußelt can be determined with Equation (3.17) and de-
liver the heat transfer coefficient of the air.

2

3 3 3/ 23
, 2

3 3 3/23

3.66 0.644 ( / )

3.66 0.644 0.711 (1499 1.37 / 50) 4.698

i hd lam d hNu Pr Re d l= + ⋅ ⋅ ⋅ =

= + ⋅ ⋅ ⋅ =

, 2
2 2

2

4.698 0.028 W W
96.2  

0.001368 m m K m K
d lam

h

Nu

d

λ
α

⋅ ⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

The heat transfer coefficient of the air is independent of the number of channels,
i.e. it remains constant.

 In the cooling water channel the hydraulic diameter is:

2
1 4 / [2 ( )] 2 48 4 mm /(52 mm) 7.385  mmhd b c b c= ⋅ ⋅ ⋅ + = ⋅ ⋅ ⋅ ⋅ =

The total mass flow rate of the cooling water is distributed to the channels and is
therefore dependent on the number of channels. The water velocity in the channels:
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3
1 1

1
1 1 1

3.961 kg m 21.421 m

0.048 m 0.004 m 963.6 kg s s

m m
c

z A z b c z zρ ρ

⋅ ⋅
= = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Reynolds number:

1 1
1 6

1

21.421 0.00738 499 015

0.317 10
hc d

Re
zzν −

⋅ ⋅
= = =

⋅ ⋅

For less than 50 channels the water flow in the channel remains turbulent. For the
clarity of the calculation the simplified Equation (3.14) for the Nußelt number is
applied.

1 1

0,8 0,48 2/3 0,8
1 10.0235 ( 230) [1 ( / ) ] 1222,7 7.773

h hd d hNu Re Pr d l z−= ⋅ − ⋅ ⋅ + = ⋅ −

The from z dependent heat transfer coefficient is:

1

0.8 2
1 1 1/ (111932 711.5) W / (m K)

hd hNu d zα λ −= ⋅ = ⋅ − ⋅ ⋅

To receive the overall heat transfer coefficient with Equation (3.46) the fin effi-
ciency as well as the surface areas A, A

0
 and A

Ri
 must be determined. Equation (2.58)

delivers the fin efficiency.

2 2tanh( ) 2 ( ) 73.31
0.444 with

m
Ri Ri Ri

Ri
Ri Ri Ri Ri Ri

m h U B s
m

m h A B s

α α
η

λ λ

⋅ ⋅ ⋅ ⋅ +
= = = = =

⋅ ⋅ ⋅ ⋅

2 2
02 ( ) 0.0616 m 2 (1 / ) 0.0385 mRi RiA C B H A B H s t= ⋅ + ⋅ = = ⋅ ⋅ ⋅ − =

22 / 1.65 mRi Ri RiA h B H t= ⋅ ⋅ ⋅ =

The overall heat transfer coefficient:

0

0.8
0

1 1 1

1 1 1 1

1191 111 932 711.5

o

Ri Ri a R i i

o

Ri Ri a R i

sA A

k A A A

sA C B

A A c b z

η α λ α

η α λ α −

= ⋅ + + ⋅ =
+ ⋅

+ ⋅
= ⋅ + + ⋅ = +

+ ⋅ + ⋅ −

2

m K

W

The outlet temperature of the air is dependent of the number of channels. It is re-
quired to determine the dimensionless temperatures, the ratio of heat capacity rates
and the reference log mean temperature of the counterflow heat exchangers. To
determine the log mean temperature of the cooler the listed values are shown
tabular. With them the value of the parameter F can be taken from diagram in Figure
8.9.
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The air outlet temperature is:

2 2
2 2

75 kW kg K s
45 C 45 C 99.6 K /

1.008 kJ 0.498 kgp

Q
z

c m z
ϑ ϑ

⋅ ⋅ ⋅ ⋅
′′ ′= + = ° + = ° +

⋅ ⋅ ⋅ ⋅ ⋅

The ratio of heat capacity rates are calculated as:

2 2
2

1 1

0.498 1008
0.03012

3.961 4208
p

p

m c z
R z

m c

⋅ ⋅ ⋅
= = = ⋅

⋅ ⋅

As long as z remains smaller than 37, the value of R
2
 remains also smaller than 1

and we can take the values of  F below the diagonal. The dimensionless temperature
P

2
 can be determined with Equation (8.9).

2 2
2

1 2

99.6 K 2.033

49 K
P

z z

ϑ ϑ

ϑ ϑ

′′ ′−
= = =

′ ′− ⋅

With an assumed number of channels R
2
, P

2
, F, the log mean temperature differ-

ence, the overall heat transfer coefficient and the required surface area A
tot

  can be
determined. The number of channels results as: z

requ
 = A

tot
/A.

mGm
tot Fk

Q

k

Q
A

ϑΔϑΔ ⋅⋅
=

⋅
=

z ϑ ''
2

R
2

P
2

F Δϑ
mG

Δϑ
m

k A
tot

z
requ

- °C - - - K K W/(m2 K) m2 -
6 61.6 0.18 0.34 0.992 38.4  38.1 1

 
135 1.158 19

19 50.2 0.57 0.11 0.996 44.8 44.6 1
 
054 1.064 17

17 50.9 0.51 0.12 0.996 44.4 44.2 1
 
065 1.061 17

Discussion

The calculation with the log mean temperature difference is easily possible. The
example above could have been calculated with a good accuracy as counterflow
heat exchanger as F had a value of almost 1.

8.3 Fouling resistance

Up to here only the resistance of the separating walls of the heat exchanger were
taken into account. The walls of a heat exchanger are made of solid materials
(mostly metal, plastic, glass, graphite, etc.). The metal surfaces are covered by an
oxide layer, whose thermal conductivity is lower than that of the metal. Further on
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some solid particles or salt in the flowing fluid can build deposits. The formation of
a thick oxide layer (rust) is possible. Also the desired formation of a protective layer
(steam power plant condenser with brass tubes) is possible. All these layers are
thermal resistances.

A tube wall with several additional layers has a larger thermal resistance than the
“clean” tube. The resistance caused by additional layers is called fouling resistance
or fouling. Here the influence of the fouling resistance on the overall heat transfer
coefficient of a tube will be analyzed. For other geometries, e.g. plane walls similar
calculation procedures apply.

The exact determination of the effect of fouling takes into account the influence of
the thermal resistance of the fouling layers as well as that of the change of geometry.
For this calculation a fouling layer, with given thickness and thermal conductivity,
is assumed on both sides of the tube wall. With the fouling layers the inside and
outside diameter of the tube is influenced. Figure 8.13 illustrates the calculation
model.

d

d

Tube wall

fouling layer
Inside

si

fouling layer
Outside

s

i

a

a

Figure 8.13: Illustration of the exact fouling resistance model

For the fouled overall heat transfer coefficient k
f
 related to the clean tube outside

diameter we receive.

21 1
ln ln

2 2 2

1
ln

2 2 2

a a a a a a

f a a a sa a R i

a i a

si i i i i i

d d d s d d

k d s d d

d d d

d s d s

α λ λ

λ α

+ ⋅
= ⋅ + ⋅ + ⋅ +

+ ⋅ ⋅ ⋅

+ + ⋅
⋅ − ⋅ − ⋅

(8.26)

Therein are s
a
 and s

i
 the thicknesses, λ

sa
 and λ

si
 the thermal conductivities of the

outer and inner fouling layer. Mostly the exact thickness and also the thermal con-
ductivity of the fouling layers cannot be determined exactly. From tests the decrease
of the overall heat transfer coefficients is known. Based on experience the fouling
resistances are given. For some heat exchangers the inner and outer fouling resis-
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tances R
i
 and R

a
 are known. In most cases only a cumulated fouling resistance R

F
 is

known. With these values we receive the fouled overall heat transfer coefficient.

1 1 1 1 1

2 2
a a a a

a i F
f a R i i a R i i

d d d d
R R R

k d dα λ α α λ α
= + + + + ⋅ = + + + ⋅

⋅ ⋅ (8.27)

Due to the fouling resistances the overall heat transfer coefficients can strongly be
reduced. The reduction increases with the value of the heat transfer coefficients.
When designing a heat exchanger the corresponding fouling resistances have to be
considered.

Some clients, mainly in the USA, ask instead of the fouling resistance for a foul-
ing factor ϕ, which has to be multiplied with the clean overall heat transfer coeffi-
cient.

1
1 1

2
a a

clean
a R i i

d d
k k

d
ϕ ϕ

α λ α

−

= ⋅ = + + ⋅ ⋅
⋅

(8.28)

With changing of outer parameters (e.g. cooling water temperature) the correction
with the fouling factors provides almost the same values as determined with the
fouling resistance at lower heat transfer coefficients. At high heat transfer coeffi-
cients the deviation can be significant.

EXAMPLE 8.3: Consideration of the fouling

A steam power plant condenser has at 10 °C cooling water inlet and 20 °C outlet
temperature a heat transfer coefficient of 3

 
540 W/(m2 K) and the saturation

temperature of 25 °C. At a cooling water inlet temperature of 25 °C the outlet tem-
perature is 35 °C. The calculated saturation temperature increases to 39 °C. The
fouling resistance has the value of 0.0565 (m2 K)/kW.

Find

The expected saturation temperature if instead of the fouling resistance the fouling
factor of 0.8 is used.

Assumption

• The heat rate to the condenser is constant and independent of the cooling water
inlet temperature.
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Analysis

The heat flux can be determined by the rate equation. For the determination we need
the overall heat transfer coefficient at 10 °C cooling water inlet temperature.

2 1

1

2

10 K
9.102  K

ln(15 / 5)
ln

m

s

s

ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

−
= = =

−

−

2 23540 W/(m K) 9.102 K 32 222  W/mmq k Δϑ= ⋅ = ⋅ ⋅ ⋅ =

At 25 °C cooling water inlet temperature the log mean temperature difference is:

2 1

1

2

10 K
7.982  K

ln(14 / 4)
ln

m

s

s

ϑ ϑ
Δϑ

ϑ ϑ

ϑ ϑ

−
= = =

−

−

This indicates that at the higher cooling water temperature the overall heat
transfer coefficient has a higher value. This is due to the changed material properties
of the condensate.

2

2

32225 W / m W
/ 4.037 

7.982 K m  Kmk q Δϑ= = =

With the fouling resistances calculated with “clean” overall heat transfer coeff-
icients are:

1 3 1 2
,10 C

1 3 1 2
,25 C

(1/ ) (1/ 3 540 0.0565 10 ) 4 425  W/(m  K)

(1/ ) (1/ 4 037 0.0565 10 ) 5 230  W/(m  K)

clean v

clean v

k k R

k k R

− − −

°

− − −

°

= − = − ⋅ =

= − = − ⋅ =

The overall heat transfer coefficient calculated with the fouling factor 0.8 results
at 10 °C cooling water inlet temperature in 3

 
540 W/(m2 K) and at 25 °C in a higher

value of 4 184 W/(m2 K). The difference is 3.51 %. The log mean temperature calcu-
lated with this over heat transfer coefficient delivers 7.702 K. For the saturation
temperature we receive:

1 2 2 1

2 1

exp[( ) / ] 25 35 exp[10 / 7.702]

1 exp[( ) / ] 1 exp[10 / 7.702]
m

s
m

ϑ ϑ ϑ ϑ Δϑ
ϑ

ϑ ϑ Δϑ

− ⋅ − − ⋅
= = = °

− − −
38.8 C

Discussion

The heat transfer coefficient determined with the fouling factor is lower than the
one determined with the fouling resistance. It pretends a lower condenser pressure.
With regard to physics the fouling factor is a wrong approach. The real values are
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those calculated with the fouling resistance. The condenser designed with the
fouling fac-tor would have a 3.5 % too small surface area.

8.4 Tube vibrations

Flow instabilities can lead to critical tube vibrations resulting in high sound levels.
The first effect leads to critical oscillations followed by tube destruction, the second
to unacceptable noise emission.

8.4.1 Critical tube oscillations

Tube vibrations are induced by flow instability. The vibration can be induced by
cross-flow with vortex generation or by resonances of the fluid  in the shell and also
at parallel-flow between long non-supported tubes. To avoid damages the
dangerous oscillations have to be damped. Damping can be achieved by the
installation of support plates or support grids. The allowable non-supported length
can be determined. It is dependent on the fluid flow velocity, tube material, tube
moment of inertia, tube fixation, damping parameters (logarithmic decrement). An
exact analysis of the vibration generation modes and the damping parameter is
necessary to certainly avoid vibration. Most heat exchangers use an equidistant
installation of support plates or grids. This must be a result of an exact analysis.
Tubes hit by a fluid jet must be separately investigated. A detailed description of the
vibration analysis is published in VDI Heat Atlas, Chapter O [8.5] and in TEMA
Standards Of The Tubular Heat Exchangers Manufacturers Association, 9th
Edition, Section 6 [8.6]. Here only a simple calculation method is given.

The equation is based on an empiric equation. It allows the determination of the
maximum supported tube length l

0
, with which dangerous tube vibrations can be

avoided. The calculation requires the tube parameters and the flow velocity between
the tubes.

2 6
2 5

0 4 4 3

10
4.5

( ) m
a

Sp
a i

d
c l

d d E
ρ⋅ ⋅ ⋅ ⋅ ≤

− ⋅
(8.29)

Therein c
Sp

 is the flow velocity between the tubes, d
a
 the outside, d

i
 the inside and

E the elasticity module of the tube material. The term 106 / m3 was set in to have the
result without decimal power and dimensions.

The flow velocity and supported tube length can be influenced by the mechanical
design. The support length of the tube can be changed by the number of support
structures. Is the result of Equation (8.29) larger then 4.5, it can be reduced by re-
ducing the supported tube length. Are the support distances equally long, instead of
l
0
 the total tube length l

ges
 divided by the number of support places plus 1 l

0
 = l

ges
 /

(N+1) are inserted and the number of support plates is determined.
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EXAMPLE 8.4 Determination of the number of support plates

For the condenser designed in Example 5.3 a vibration analysis shall be performed.
The following data can be used:

d
a
 = 12 mm, d

i
 = 10 mm, m

R134a
 = 0.5 kg/s, ρ = 66.3 kg/m3, l

ges
: 5.983 m, n = 47.

The elasticity module of copper is 110 kN/mm2 = 1.1 . 1011 N/m2. The tube distance
is s = 17 mm.

Find

The number of support plates, required to avoid vibration.

Solution

Schematic See sketch.

Assumption

• The flow into the bundle is uniform.

Analysis

First the tube arrangement has to be defined. In the sketch above 48 tubes could be
inserted in a circular shell instead of the 47 from the design calculation. With the
additional one tube the required thermal performance can be met and a realistic tube
arrangement could be designed. The inlet gaps are shown with bold lines. We have
22 gaps. The cross-section for the steam is:

222 22 5.983 m 0.005 m 0.658 minA l s= ⋅ ⋅ = ⋅ ⋅ =

The flow velocity between the tubes we receive as:

3

2

0.5 kg m m
0.011

s0.658 m 66.3 kgSp
in

m
c

Aρ

⋅ ⋅
= = =

⋅ ⋅ ⋅ ⋅

Now the vibration criteria can be determined.

2 6
2 5

0 4 4 3

10
4.5

( ) m
a

Sp
a i

d
c l

d d E
ρ⋅ ⋅ ⋅ ⋅ ≤

− ⋅

Without support plate the result is 8.1 and for 1 support plate it is 0.25.
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Discussion

In this case according to the vibration criteria without a support plate the tubes
would be subject to vibration. With one support plate the result is far below the
limit. With a supported length of 5.313 m the vibration criteria has the value of 4.5.

8.4.2 Acoustic resonance

With perpendicular cross flow on cylindric bodies above Reynolds numbers of 50
vortex shedding occurs. On the cylinder surface vortices are generated which shed
from the cylinder and remain in the flow. The formation and shedding of the vor-
tices is periodic and occurs alternatively on the lower and upper side of the cylinder.
Figure 8.14 illustrates this process. With shedding of the vortices on the back side of
the cylinder pressure changes occur, which are forming periodic forces acting on the
cylinder.

0c

Figure 8.14: Vortex shedding on a cylinder

The whistling of wires in the wind is generated by vortex shedding. The vibration
of the tubes generated by these vortices was discussed above. Here the development
of high sound levels will be explained.

The dimensionless frequency ν of the vortex shedding is the Struhal number S. It
is a function of the Reynolds number and the geometry. The Struhal number S is de-
fined as:

0

St d
S

c

ν ⋅
= (8.30)

Therein ν
St
 is the frequency of vortex shedding and is called Struhal frequency, d

is the cylinder diameter and c
0
 the flow velocity. For Reynolds numbers less than 105

the Struhal number of bodies in perpendicular cross flow has a value of approxi-
mately 0.2. At higher Reynolds numbers the value is between  0.17 and 0.32. Geo-
metry, surface characteristics, in tube bundles the tube arrangement are further in-
fluencing variables. In tube bundles, where vortex shedding of one tube influences
the frequency of the following tubes, Struhal numbers between 1.0 and 1.6 were
measured.

In case that the Struhal frequency, given by the Struhal number, is equal or close
to the body’s Eigenfrequency, the resonance can leads to so severe oscillations of
the tubes and damages may happen. The Tacoma Narrows Bridge, a large bridge of
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several hundreds of meters span in US state Washington broke in 1940 at wind
velocities of 70 km/h due to such strong oscillations.

Every Struhal frequency has an accoustic wave length. If flow boundaries, for
example, the bundle height, are close to the accoustic wavelength, a so called lock-
in resonance can occur. This effect must not lead to damage, but sound levels of
unacceptable intensity can be generated. The problem with the lock-in  resonance is,
that even with reasonably low flow velocity the resonance remains.

When designing a heat exchanger the engineer has to make sure that dangerous
resonances cannot occur.

EXAMPLE 10.4: Accoustic resonance in a tube bundle

For the reheater bundle in Example 3.6 the Struhal number was measures as 1.04.
The height of the bundle was 1.4 m but divided in two halves of 675 mm. The tube
diameter is 15 mm and the steam velocity 6 m/s. The velocity of sound is 517 m/s.

Find

Has the bundle lock-in resonance and at what velocity lock-in resonance could
occur.

Solution

Schematic See sketch.

Assumption

• The Struhal number is related to the outer diameter and the steam velocity c0.

Analysis

The accoustic wave length is:

a

a
λ

ν
=

The frequency ν to a wavelength of 0.675 m has the value of:

ν = a / l
a
 = (517 m/s) / 0.765 m = 766 Hz.

With (8.29) the Struhal frequency is:

0 1.04 6 m

0.015 m sSt

S c

d
ν

⋅ ⋅ ⋅
= = =

⋅ ⋅
416 Hz

67
5 

m
m

14
00

 m
m

c 0
67

5 
m

m
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The Struhal frequency is much lower than the frequency belonging to a wave
length of  0.675 m. Therefore the occurrence of lock-in resonance has not to be
anticipated. The steam velocity at which a lock-in resonance my occur is:

1

0

765 s 0.015 m

1.04
St d

c
S

ν −⋅ ⋅ ⋅ ⋅
= = = 11.0  m / s

Discussion

With the design of the reheater bundle no lock-in resonance has to be anticipated.
Only at a much higher steam velocity of 11 m/s, lock in may happen.



Appendix

A1: Important physical constants

Critical properties of matter

Material Chemical Mol mass T
crit

p
crit

z
crit

formula kg/kmol K bar –
Acetylene C

2
H

2
26.0380 309.0 26.8 0.274

Ammonia NH
3

17.0305 406.0 112.8 0.284
Argon Ar 39.9480 151.0 48.6 0.242
Butane C

4
H

10
58.1240 425.0 38.0 0.274

Ethane C
2
H

6
30.0700 305.0 48.8 0.285

Ethanol C
2
H

5
OH 46.0690 516.0 63.8 0.249

Ethylene C
2
H

4
28.0540 283.0 51.2 0.270

Freon 134a CF
3
CH

2
F 102.0300 374.2 40.7 0.260

Helium He 4.0026 5.2 2.3 0.300
Carbon dioxide CO

2
44.0100 304.0 73.9 0.276

Carbon monoxide CO 28.0100 133.0 35.0 0.294
Methane CH

4
16.0430 191.0 46.4 0.290

Octane C
8
H

18
114.2310 569.0 24.9 0.258

Propane C
3
H

8
44.0970 369.8 42.4 0.276

Oxygen O
2

31.9988 154.0 50.5 0.290
Sulfur dioxide SO

2
64.0650 431.0 78.7 0.268

Nitrogen N
2

28.0134 126.0 33.9 0.291
Water H

2
O 18.0153 647.1 220.6 0.233

Hydrogen H
2

2.0159 33.2 13.0 0.304

Fundamental constants

Avogadro-constant N
A
 = (6.0221367 ± 0.0000036) . 1023 mol-1

Universal gas constant R
m
 = (8314.41 ± 0.07) J/(kmol K)

Boltzmann-constant R
m
/N

A
k = (1.380641 ± 0.000012) . 10-23 J/K

Elementary charge e = (1.60217733 ± 0.00000049) . 10-19 C
Planck-constant h = (6.6260755 ± 0.000004) . 10-23 J s
Speed of light c = 299 792

  
458 m/s

Stefan-Boltzmann-constant σ
s
 = 5.670 . 10-8 W/(m2 K4)

Source: [9.3]

P. von Böckh and T. Wetzel, Heat Transfer: Basics and Practice, 
DOI 10.1007/978-3-642-19183-1, © Springer-Verlag Berlin Heidelberg 2012 
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A2: Thermal properties of sub-cooled water at 1 bar pressure

ϑ ρ λ η ν c
p

Pr β
°C kg/m3 W/(m K) 10-6 kg/(m s) 10-6 m2/s kJ/(kg K) - 1/K

0 999.8 0.5611 1791.5 1.7918 4.219 13.473 –0.068
2 999.9 0.5649 1673.4 1.6735 4.213 12.480 –0.032
4 1000.0 0.5687 1567.2 1.5673 4.207 11.595 0.001
6 999.9 0.5725 1471.4 1.4715 4.203 10.802 0.032
8 999.9 0.5763 1384.7 1.3849 4.199 10.089 0.061

10 999.7 0.5800 1305.9 1.3063 4.195 9.445 0.088
12 999.5 0.5838 1234.0 1.2346 4.193 8.862 0.114
14 999.2 0.5875 1168.3 1.1692 4.190 8.332 0.139
16 998.9 0.5912 1108.1 1.1092 4.188 7.849 0.163
18 998.6 0.5949 1052.7 1.0541 4.186 7.408 0.185
20 998.2 0.5985 1001.6 1.0034 4.185 7.004 0.207
22 997.8 0.6020 954.4 0.9566 4.183 6.633 0.227
24 997.3 0.6055 910.7 0.9132 4.182 6.291 0.247
26 996.8 0.6089 870.2 0.8730 4.181 5.976 0.266
28 996.2 0.6122 832.5 0.8356 4.181 5.685 0.285
30 995.7 0.6155 797.3 0.8008 4.180 5.415 0.303
32 995.0 0.6187 764.6 0.7684 4.179 5.165 0.320
34 994.4 0.6218 733.9 0.7381 4.179 4.932 0.337
36 993.7 0.6248 705.2 0.7097 4.179 4.716 0.353
38 993.0 0.6278 678.3 0.6831 4.179 4.515 0.369
40 992.2 0.6306 653.0 0.6581 4.179 4.327 0.385
42 991.4 0.6334 629.2 0.6346 4.179 4.151 0.400
44 990.6 0.6361 606.8 0.6125 4.179 3.986 0.415
46 989.8 0.6387 585.7 0.5917 4.179 3.832 0.429
48 988.9 0.6412 565.7 0.5720 4.179 3.687 0.444
50 988.0 0.6436 546.9 0.5535 4.180 3.551 0.457
52 987.1 0.6459 529.0 0.5359 4.180 3.423 0.471
54 986.2 0.6482 512.1 0.5193 4.181 3.303 0.484
56 985.2 0.6503 496.1 0.5035 4.181 3.189 0.498
58 984.2 0.6524 480.9 0.4886 4.182 3.082 0.510
60 983.2 0.6544 466.4 0.4744 4.183 2.981 0.523
62 982.2 0.6563 452.7 0.4609 4.184 2.885 0.536
64 981.1 0.6581 439.6 0.4480 4.185 2.795 0.548
66 980.0 0.6599 427.1 0.4358 4.186 2.709 0.560
68 978.9 0.6616 415.2 0.4242 4.187 2.628 0.572
70 977.8 0.6631 403.9 0.4131 4.188 2.551 0.584
72 976.6 0.6647 393.1 0.4025 4.189 2.478 0.596
74 975.5 0.6661 382.7 0.3924 4.191 2.408 0.607
76 974.3 0.6675 372.9 0.3827 4.192 2.342 0.619
78 973.0 0.6688 363.4 0.3735 4.194 2.279 0.630
80 971.8 0.6700 354.4 0.3646 4.196 2.219 0.642
82 970.5 0.6712 345.7 0.3562 4.197 2.162 0.653
84 969.3 0.6723 337.4 0.3481 4.199 2.107 0.664
86 968.0 0.6734 329.4 0.3403 4.201 2.055 0.675
88 966.7 0.6744 321.8 0.3329 4.203 2.005 0.686
90 965.3 0.6753 314.4 0.3257 4.205 1.958 0.697
92 964.0 0.6762 307.4 0.3188 4.207 1.912 0.708
94 962.6 0.6770 300.6 0.3123 4.209 1.869 0.719
96 961.2 0.6777 294.1 0.3059 4.212 1.827 0.730
98 959.8 0.6784 287.8 0.2998 4.214 1.788 0.740

Source [9.1]
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A2: Thermal properties of sub-cooled water at 1 bar (cont.)

Polynomes for the range of 0 °C to 100 °C.
6

0

with / /100 Ki
i R R ref

i

C ϑ ϑ ϑ ϑ ϑ
=

⋅ = =

ρ λ η c'
p

Pr β
C

0
999.85 0.56112 1.79016 4.21895 13.460 –0.06755

C
1

5.4395 0.18825 –6.11398 –0.3299 –51.371 1.8226
C

2
–76.585 0.03255 15.1225 1.15869 134.214 –3.1122

C
3

43.993 –0.23117 –26.7663 –2.35378 –244.081 5.3644
C

4
–14.386 0.15512 30.435 2.88758 282.198 –6.2277

C
5

0 –0.00988 –19.323 –1.84461 –181.31 4.0943
C

6
0 –0.01697 5.1396 0.47973 48.664 –1.1233

Results in kg/m3 W/(m K) 10-3 kg/(m s) kJ/kg - 1/K
Std.-Div. % 0.225 0.003 0.004 0.084 0.006 0.130

Important: Not valid for temperatures over 100 °C!
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A3: Thermal properties of  saturated water and steam

Source [9.1]
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Formula for saturation pressure and density of saturated steam
Valid for the total saturation area.

2

2 3

exp(11.6885 3 746/ 228 675 ) bar 0.8 %

exp(11.41 4 194 / 99183/ ) kg/m 6 %

sp T /T

T Tρ

= − − ⋅ ±

′′ = − − ⋅ ±

Formula for the range of  0 °C to 320 °C.
9

0

with / / 373.95 Ci
i R R crit

i

C ϑ ϑ ϑ ϑ ϑ
=

⋅ = = °

ρ ' λ' λ'' c'
p

c''
p

C
0

999.8 0.561 17.1 4.2196 1.888
C

1
22.92 0.671 –7.55 –1.088 0.341

C
2

–1161 1.283 455.1 10.42 –2.5
C

3
3507 –20.70 –1917 –46.57 68.2

C
4

–9975 79.63 20.5 98.84 –571
C

5
19

 
710 –162.11 26

 
173 55.534 2525

C
6

–25
 
039 185.11 –89

 
184 –709.9 –6074

C
7

18
 
158 –109.56 135

 
700 1

 
454.5 8195

C
8

–6014 22.52 –100
 
790 –1

 
303.6 –5864

C
9

264.9 3.02 29
 
757 451.9 1748

Results in kg/m3 W/(m K) 10-3 W/(m K) kJ/(kg K) kJ/(kg K)
Std.-Div. in % 0.017 0.069 0.075 0.056 0.111

η η Pr Pr r
C

0
1.791 9.199 13.468 1.0173 2

 
500.9

C
1

–21.595 20.4 –181.25 2.973 –893
C

2
170.01 –208 1

 
510.76 –58.94 224

C
3

–902.200 1499 –8269.4 443.32 –2
 
484

C
4

3
 
201.52 –4926 29

 
914.8 –1

 
729.3 11

 
784

C
5

–7
 
522.95 8

 
326.8 –71

 
208.642 3

 
922.7 –42

 
215

C
6

1
 
1487 –7

 
286.3 109

 
707.19 –5

 
359.6 87

 
847

C
7

–10916 3
 
077.8 –104

 
892.38 4

 
367.8 –108

 
004

C
8

5
 
849.41 –655.2 56

 
431.8 –1971.3 72

 
611

C
9

–1
 
347.78 173.29 –13032.7 385.41 –20

 
870

Results in 10–3 kg/(m s) 10–6 kg/(m s) - - kJ/kg K
Std.-Div. in % 0.017 0.069 0.075 0.056 0.111

Important: Not valid for temperatures over 320 °C !

A3: Thermal properties of saturated water and steam (cont.)
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A4: Thermal properties of water and steam

p ϑ ρ c
P

η ν λ Pr
bar °C kg/m3 kJ/(kg K) 10-6 kg/(m s) m2/s 10-3 W/(m K) -

1 0 999.844 4.219 1
 
791.53 1.792 561.08 13.473

50 988.047 4.180 546.85 0.553 643.61 3.551
100 0.590 2.074 12.27 20.810 25.08 1.015
150 0.516 1.986 14.18 27.469 28.86 0.976
200 0.460 1.976 16.18 35.144 33.28 0.960
250 0.416 1.989 18.22 43.841 38.17 0.949
300 0.379 2.012 20.29 53.543 43.42 0.940
350 0.348 2.040 22.37 64.226 48.97 0.932
400 0.322 2.070 24.45 75.864 54.76 0.924

2 0 999.894 4.219 1
 
791.28 1.791 561.13 13.468

50 988.090 4.179 546.87 0.553 643.65 3.551
100 958.400 4.216 281.77 0.294 679.15 1.749
150 1.042 2.067 14.13 13.566 29.54 0.989
200 0.925 2.014 16.15 17.446 33.68 0.965
250 0.834 2.010 18.20 21.821 38.42 0.952
300 0.760 2.025 20.28 26.691 43.59 0.942
350 0.698 2.048 22.36 32.047 49.09 0.933
400 0.645 2.076 24.45 37.877 54.85 0.925

5 0 1
 
000.047 4.217 1

 
790.53 1.790 561.30 13.454

50 988.221 4.179 546.92 0.553 643.79 3.550
100 958.541 4.216 281.85 0.294 679.32 1.749
150 917.020 4.310 182.47 0.199 682.06 1.153
200 2.353 2.145 16.05 6.822 34.93 0.986
250 2.108 2.078 18.14 8.607 39.18 0.962
300 1.913 2.066 20.24 10.579 44.09 0.948
350 1.754 2.075 22.34 12.739 49.45 0.938
400 1.620 2.095 24.44 15.086 55.14 0.929

10 0 1
 
000.301 4.215 1

 
789.28 1.789 561.57 13.430

50 988.438 4.177 547.01 0.553 644.02 3.548
100 958.775 4.215 281.99 0.294 679.59 1.749
150 917.304 4.309 182.59 0.199 682.40 1.153
200 4.854 2.429 15.89 3.274 37.21 1.037
250 4.297 2.212 18.05 4.200 40.52 0.985
300 3.876 2.141 20.19 5.207 44.96 0.961
350 3.540 2.123 22.31 6.303 50.07 0.946
400 3.262 2.128 24.42 7.488 55.62 0.935

20 100 959.242 4.212 282.25 0.294 680.14 1.748
150 917.871 4.305 182.85 0.199 683.07 1.152
200 865.007 4.491 134.43 0.155 663.72 0.910
250 8.970 2.560 17.86 1.991 43.49 1.051
300 7.968 2.320 20.08 2.519 46.82 0.995
350 7.215 2.230 22.25 3.084 51.37 0.966
400 6.613 2.200 24.40 3.689 56.62 0.948
450 6.115 2.196 26.52 4.336 62.32 0.935
500 5.692 2.207 28.60 5.025 68.34 0.924

Source [9.1]
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A4: Thermal properties of water and steam (cont.)

p ϑ ρ c
P

η ν λ Pr
bar °C kg/m3 kJ/(kg K) 10-6 kg/(m s) m2/s 10-3 W/(m K) -

50 200 867.27 4.474 666.329 135.181 0.156 0.908
250 800.08 4.851 622.501 106.400 0.133 0.829
300 22.05 3.171 53.848 19.799 0.898 1.166
350 19.24 2.661 22.127 1.150 55.989 1.052
400 17.29 2.459 24.369 1.410 60.062 0.998
450 15.79 2.371 26.550 1.681 65.105 0.967
500 14.58 2.333 28.681 1.967 70.743 0.946
550 13.57 2.321 30.766 2.267 76.794 0.930
600 12.71 2.324 32.810 2.582 83.135 0.917

100 300 715.29 5.682 86.461 0.121 550.675 0.892
350 44.56 4.012 22.151 0.497 68.088 1.305
400 37.82 3.096 24.487 0.647 67.881 1.117
450 33.57 2.747 26.735 0.796 70.987 1.035
500 30.48 2.583 28.911 0.949 75.607 0.988
550 28.05 2.501 31.027 1.106 81.106 0.957
600 26.06 2.460 33.089 1.270 87.139 0.934
650 24.38 2.442 35.103 1.440 93.478 0.917
700 22.94 2.438 37.071 1.616 99.978 0.904

200 300 734.71 5.317 90.050 0.123 571.259 0.838
350 600.65 8.106 69.309 0.115 463.199 1.213
400 100.51 6.360 26.034 0.259 105.458 1.570
450 78.62 4.007 27.812 0.354 91.029 1.224
500 67.60 3.284 29.849 0.442 89.846 1.091
550 60.35 2.955 31.901 0.529 92.785 1.016
600 54.99 2.781 33.923 0.617 97.553 0.967
650 50.78 2.682 35.903 0.707 103.158 0.934
700 47.32 2.625 37.841 0.800 109.109 0.910

500 300 776.46 4.782 98.477 0.127 618.323 0.762
350 693.27 5.370 83.236 0.120 541.491 0.825
400 577.74 6.778 67.983 0.118 451.173 1.021
450 402.02 9.567 50.477 0.126 315.361 1.531
500 257.11 7.309 40.499 0.158 202.982 1.458
550 195.37 5.103 38.690 0.198 163.650 1.206
600 163.70 4.097 39.121 0.239 151.983 1.055
650 143.73 3.587 40.249 0.280 149.724 0.964
700 129.57 3.288 41.648 0.321 150.918 0.907

1000 300 823.18 4.400 109.110 0.133 675.330 0.711
350 762.34 4.605 95.741 0.126 616.955 0.715
400 692.92 4.892 84.758 0.122 548.157 0.756
450 614.19 5.258 74.911 0.122 476.087 0.827
500 528.20 5.576 66.062 0.125 394.700 0.933
550 444.48 5.549 59.116 0.133 319.247 1.028
600 374.22 5.171 54.690 0.146 272.029 1.040
650 321.08 4.628 52.429 0.163 248.026 0.978
700 282.00 4.191 51.587 0.183 236.000 0.916

Source [9.1]
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A5: Thermal properties of saturated Freon 134a
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Saturation pressure
Validity range: –35 °C to +80 °C.

2exp(9.94333 2 137/ 78 124 ) bar 0.5 %sp T / T= − − ⋅ ±

Formula for the range of –35 °C to +80 °C.
6

0

mit / /101.05 Ci
i R R crit

i

C ϑ ϑ ϑ ϑ ϑ
=

⋅ = = °

ρ ' ρ '' λ' λ'' c'
p

c''
p

C
0

1
 
294.8 14.432 93.661 11.962 1.3412 0.8975

C
1

–333.18 50.335 –44.471 9.46 0.2586 0.4325
C

2
–74.807 71.630 –1.3931 1.37592 0.1849 0.2574

C
3

–2.04 5.0382 0.6391 0.9545 –123.76 2.0974
C

4
–18.472 14.333 –2.9691 –0.9588 –0.0769 –0.1909

C
5

76.9178 –79.744 4.3914 –7.7306 –2.5225 –4.0597
C

6
–159.04 163.240 1.5307 16.077 3.6497 5.9750

Results in kg/m3 kg/m3 10-3 W/(m K) 10-3 W/(m K) kJ/(kg K) kJ/(kg K)
Std.-Div. % 0.005 0.405 0.013 0.078 0.086 0.184

η η Pr Pr r
10–6 kg/(m s) 10–6 kg/(m s) - - kJ/kg

C
0

265.27 11.0235 3.7977 0.8271 198.614
C

1
–319.73 4.3362 –2.0036 0.0735 –76.868

C
2

192.61 0.2324 1.4628 0.2551 –26.119
C

3
–123.76 2.0974 –0.2527 0.4615 –14.865

C
4

77.281 0.1718 0.7457 0.1096 0.7774
C

5
–42.575 –5.3073 –2.8296 –3.0793 –11.94

C
6

4.5818 9.1226 3.3467 4.0928 –16.902
Results in 10–6 kg/(m s) 10–6 kg/(m s) - - kJ/kg
Std.-Div. in % 0.013 0.025 0.063 0.228 0.025

Important: Not valid below  –35 °C and over +80 °C.

A5: Thermal properties of saturated Freon 134a (cont.)
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A6: Thermal properties of air at 1 bar pressure

ϑ ρ λ c
p

η ν Pr a
°C kg/m3 10-3 W/(m K) J/(kg K) 10-6 kg/(m s) 10-6 m2 / s - 10-9 m2/s
–80 1.807 17.74 1009 12.94 7.16 0.7357 9.73
–60 1.636 19.41 1007 14.07 8.60 0.7301 11.78
–40 1.495 21.04 1007 15.16 10.14 0.7258 13.97
–30 1.433 21.84 1007 15.70 10.95 0.7236 15.13
–20 1.377 22.63 1007 16.22 11.78 0.7215 16.33
–10 1.324 23.41 1006 16.74 12.64 0.7196 17.57

0 1.275 24.18 1006 17.24 13.52 0.7179 18.83
10 1.230 24.94 1007 17.74 14.42 0.7163 20.14
20 1.188 25.69 1007 18.24 15.35 0.7148 21.47
30 1.149 26.43 1007 18.72 16.30 0.7134 22.84
40 1.112 27.16 1007 19.20 17.26 0.7122 24.24
60 1.045 28.60 1009 20.14 19.27 0.7100 27.13
80 0.9859 30.01 1010 21.05 21.35 0.7083 30.14

100 0.9329 31.39 1012 21.94 23.51 0.7070 33.26
120 0.8854 32.75 1014 22.80 25.75 0.7060 36.48
140 0.8425 34.08 1016 23.65 28.07 0.7054 39.80
160 0.8036 35.39 1019 24.48 30.46 0.7050 43.21
180 0.7681 36.68 1022 25.29 32.93 0.7049 46.71
200 0.7356 37.95 1026 26.09 35.47 0.7051 50.30
250 0.6653 41.06 1035 28.02 42.11 0.7063 59.62
300 0.6072 44.09 1046 29.86 49.18 0.7083 69.43
350 0.5585 47.05 1057 31.64 56.65 0.7109 79.68
400 0.5170 49.96 1069 33.35 64.51 0.7137 90.38
450 0.4813 52.82 1081 35.01 72.74 0.7166 101.50
500 0.4502 55.64 1093 36.62 81.35 0.7194 113.10
550 0.4228 58.41 1105 38.19 90.31 0.7221 125.10
600 0.3986 61.14 1116 39.17 99.63 0.7247 137.50
650 0.3770 63.83 1126 41.20 109.30 0.7271 150.30
700 0.3576 66.46 1137 42.66 119.30 0.7295 163.50
750 0.3402 69.03 1146 44.08 129.60 0.7318 177.10
800 0.3243 71.54 1155 45.48 140.20 0.7342 191.00
850 0.3099 73.98 1163 46.85 151.20 0.7368 205.20
900 0.2967 76.33 1171 48.19 162.40 0.7395 219.70

1000 0.2734 80.77 1185 50.82 185.90 0.7458 249.20

Source: [9.3]
Formula for the range of  –80 °C to 1

 
000 °C

1 3/ 348.68 K kg/m 0.066 %p R T T −= ⋅ = ⋅ ⋅ ⋅ ±

5

0

with / / 1000 Ki
i R R crit

i

C ϑ ϑ ϑ ϑ ϑ
=

⋅ = =

λ c
p

η ν Pr a
C

0
24.18 1006.3 17.23 13.53 0.718 18.84

C
1

76.34 7.4 50.33 89.11 -0.166 128.72
C

2
-48.26 525.6 -34.17 111.36 0.686 168.71

C
3

62.81 -334.5 24.22 -48.80 -0.954 -160.40
C

4
-45.68 -195.2 -4.11 28.60 0.581 155.62

C
5

11.39 175.6 -2.67 -7.91 -0.117 -62.31
Results in 10-3 W/(m K) J/(kg K) 10-6 kg/(m s) 10-6 m2/s - 10-8 m2/s
Std.-Div. in % 0.013 0.036 0.225 0.062 0.063 0.050
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A7: Thermal properties of solid matter

Metals and alloys
ϑ ρ c

p
λ a

°C kg/m3 J/(kg K) W/(m K) 10-6 . m2/s

Aluminum 20 2700 945 238 93.4
Lead 20 11

 
340 131 35.3 23.8

Bronze (6 Sn. 9 Zn. 84 Cu. 1 Pb) 20 8
 
800 377 61.7 18.6

Iron
Cast iron 3 % C 20 7

 
870 450 58 14.7

Steel ST 37.8 20 7
 
830 430 57 16.9

Cr-Ni-Steel 1.4541 20 7
 
900 470 15 4.1

Cr-Steel X8 Cr7 20 7
 
700 460 25.1 7.1

Gold (pure) 20 19
 
290 128 295 119

Copper (pure) 20 8
 
960 385 394 114

Building materials

Brick wall 20 1
 
400 840 0.79 0.49

1
 
800 840 0.81 0.54

Plaster 20 1
 
690 800 0.79 0.25

Fir, radial 20 600 2
 
700 0.14 0.09

Plywood 20 800 2
 
000 0.15 0.09

Cork tile 30 190 1
 
880 0.041 0.11

Mineral rock wool 50 200 920 0.064 0.25
Glass wool 0 200 660 0.037 0.28

Stones and glasses

Soil 20 2
 
040 1

 
840 0.59 0.16

Fire-brick 100 1
 
700 840 0.50 0.35

Quartz 20 2
 
100 780 1.40 0.72

Sandstone 20 2
 
150 710 1.60 1.00

Marble 20 2
 
500 810 2.80 1.30

Granite 20 2
 
750 890 2.90 1.20

Window glass 20 2
 
480 700 1.16 0.50

Pyrex glass 20 2
 
240 774 1.06 0.61

Quartz glass 20 2
 
210 730 1.40 0.87

Plastics

Polyamide 20 1
 
130 2300 0.280 0.12

Polytetrafluorethyle (Teflon) 20 2
 
200 1040 0.230 0.10

Rubber, soft 20 1
 
100 1670 0.160 0.09

Styrofoam 20 15 1250 0.029 0.36
Polyvinyl chloride (PVC) 20 1

 
380 960 0.150 0.11

Sources [9.1, 9.3]
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Matter Producer Validity ρ c
p

ν λ
range
°C kg/m3 kJ/(kg K) 10-6 m2/s W/(m K)

Farolin U Aral –10 886 1.80 15.8 0.135
325 682 3.10 0.60 0.113

Farolin S Aral –25 931 1.66 1
 
396 0.129

305 710 2.93 0.52 0.113
Farolin T Aral –30 914 1.74 91.9 0.132

300 695 2.84 0.56 0.111
Thermofluid A AVIA –25 947 1.70 804 0.133

250 751 2.68 0.52 0.114
Thermofluid B AVIA 0 878 1.81 300 0.136

310 688 2.94 0.59 0.113
Transcal N BP 0 889 1.95 310 0.135

320 680 3.04 0.56 0.115
Transcal LT BP –20 900 1.80 300 0.136

260 732 2.77 0.49 0.118
Deacal A 12 Shell & 0 882 1.75 82.6 0.135

DEA 250 720 2.67 0.53 0.117
Deacal 32 Shell & 0 887 1.78 310 0.135

DEA 270 711 2.78 0.68 0.115
Deacal 46 Shell & 0 885 1.80 604 0.133

DEA 280 709 2.81 0.84 0.113
Thermal Oil S Esso –10 893 1.80 47.3 0.134

240 731 2.67 0.52 0.116
Thermal Oil T Esso 0 877 1.81 285 0.135

320 670 3.01 0.6 0.112
Essotherm 650 Esso 0 909 1.77 15

 
803 0.130

320 702 2.92 1.34 0.108
Caloran 32 Fina 0 883 1.86 300 0.134

320 648 3.25 0.62 0.111
Mobiltherm 594 Mobil Oil –44 914 1.64 300 0.135

250 724 2.70 0.42 0.116
Mobiltherm 603 Mobil Oil –8 876 1.79 300 0.137

300 677 2.98 0.52 0.113
Thermia Oil A Shell –25 917 1.71 300 0.133

250 751 2.68 0.52 0.114
Thermia Oil B Shell –2 878 1.81 300 0.136

310 688 2.93 0.59 0.113
Mihatherm WU 10 SRS –20 914 1.69 341 0.133

250 752 2.80 0.50 0.113
Mihatherm WU 46 SRS 0 883 1.81 529 0.135

320 678 2.97 0.60 0.112

A8: Thermal properties of thermal oils

Source [9.3]
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A9: Thermal properties of fuels at 1.013 bar

Gasoline

ϑ ρ c
p

λ η a Pr
°C kg/m3 kJ/(kg K) W/(m K) 10-6 kg/(m s) 10-8 m/s

–50 775 2.051 0.142 0.981 8.89 1
 
4.20

–25 755 2.093 0.141 0.686 8.89 1
 
0.20

0 735 2.135 0.140 0.510 8.89 7.80
20 720 2.198 0.140 0.402 8.83 6.30
50 690 2.260 0.143 0.294 9.17 4.65

100 650 2.386 0.136 0.196 8.75 3.45

Source [9.3]

Heating Oil S

ϑ ρ c
p

λ η a Pr
°C kg/m3   kJ/(kg K) W/(m K) 10-3 kg/(m s) 10-8 m2/s -

80 910 2.040 0.1190 67.34 6.41 1
 
155

90 904 2.080 0.1180 44.30 6.28 780
100 898 2.120 0.1170 30.53 6.15 553
110 892 2.160 0.1160 22.30 6.02 415
120 885 2.205 0.1155 16.46 5.92 314
130 879 2.250 0.1150 12.31 5.81 240
140 873 2.280 0.1143 9.34 5.74 186
150 867 2.310 0.1136 7.28 5.67 148
160 861 2.350 0.1129 5.94 5.58 124
170 855 2.390 0.1122 5.13 5.49 109
180 850 2.430 0.1115 4.68 5.40 102

Source [9.1]
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A10: Emissivity of surfaces

1. Metals Temperature ε
n

ε
K

Aluminum, rolled 443 0.039 0.049
773 0.050

-, high-polish 500 0.039
850 0.057

-, oxidized at 872 K 472 0.110
872 0.190

-, strong oxide layer 366 0.200
777 0.310

Aluminum oxide 550 0.630
1

 
100 0.260

Lead, gray oxidized 297 0.280
Chrome, high-polish 423 0.058 0.071

1
 
089 0.360

Gold, high-polish 500 0.018
900 0.035

Copper, high-polish 293 0.030
-, light  tarnished 293 0.037
-, black oxidized 293 0.780
-, oxidized 403 0.760
-, scraped 293 0.070

Inconel, rolled 1
 
089 0.690

-, sand-blasted 1
 
089 0.790

Cast iron, polished 473 0.210
Cast steel, polished 1

 
044 0.520

1
 
311 0.56

Oxidized surfaces:
Sheetiron

-, red rusted 293 0.612
-, strongly rusted 292 0.685
-, rolled 294 0.657

Sheet steel, thick rough oxide layer 297 0.800
Cast iron, rough surface, strongly oxidized 311 to 522 0.950
Magnesium, polished 311 0.070

811 0.180
Magnesium oxide 550 0.550

1
 
100 0.200

Brass, not oxidized 298 0.035
373 0.035

-, oxidized 473 0.610
873 0.590

Nickel, not oxidized 298 0.045
373 0.060

-, oxidized 473 0.370
873 0.478

Source [9.3]
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A10: Emissivity of surfaces (cont.)

Temperature ε
n

ε
K

Platinum 422 0.022
1

 
089 0.123

Quicksilver, not oxidized 298 0.100
373 0.120

Silver, high-polish 311 0.022
644 0.031

Titanium, oxidized 644 0.540
1

 
089 0.590

Uranium oxide (U
3
O

8
) 1

 
300 0.790

1
 
600 0.780

Tungsten 298 0.024
773 0.071

1
 
273 0.150

1
 
773 0.230

Galvanized sheet metal
-, shiny 301 0.228
-, gray oxidized 297 0.276

2. Nonmetals

Asbestos, carton 296 0.960
-, paper 311 0.930

644 0.940
Concrete, rough 273 to 366
Tar paper 294 0.910
Plaster 293 0.8 to 0.9
Glass 293 0.940
Quartz glass (7 mm thick) 555 0.930

1
 
111 0.470

Rubber 293 0.920
Wood, oak, dressed 273 to 366 0.900

-, beech 343 0.940 0.910
Ceramics, fireproof, white Al

2
O

3
366 0.900

Carbon, not oxidized 298 0.810
773 0.790

-, fibre 533 0.950
-, graphite 373 0.760

773 0.710
Corundum, emery, rough

353 0.850 0.840
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A10: Emissivity of surfaces (cont.)

3. Coatings, Paints Temperature ε
n

ε
K

Oil paint, back 366 0.920
-, green 366 0.950
-, red 366 0.970
-, white 366 0.940

Gloss paint, white 373 0.925
-, matt, black 353 0.970

Bakelite paint 353 0.935
Minium paint 373 0.930
Radiator enamel 373 0.925
Enamel, white on steel 292 0.897
Marble, light gray, polished 273 to   366 0.900
Paper 273 0.920

366 0.940
China, white 295 0.924
Clay, glazed 298 0.900

-, matt 298 0.930
Water 273 0.950

373 0.960
Ice, smooth with water 273 0.966 0.920

-, rough rime 273 0.985
Brick, red 273 to 366 0.930

Source [9.3]
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A11: Formulary

Energy balance equation

12 2 1( )KV p Source

d
V c Q Q m h h

dt

ϑ
ρ⋅ ⋅ = + + ⋅ −        transient

12 2 1 12 2 1 2 1( ) ( ) ( ) 0Source Source pQ Q m h h Q Q m h h m c ϑ ϑ+ + ⋅ − = + + ⋅ − + ⋅ ⋅ − =     steady

Rate equations

12 2 2 2 2( )WQ dAδ α ϑ ϑ= ⋅ − ⋅

12 2 1( )W W W WQ dAδ α ϑ ϑ= ⋅ − ⋅

12 1 1 1 1( )WQ dAδ α ϑ ϑ= ⋅ − ⋅

12 2 1 1( )Q k dAδ ϑ ϑ= ⋅ − ⋅

Conduction in solid bodies
Plane walls
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Hollow sphere
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Transient conduction

Dimensionless temperature Θ :
∞

∞

−

−
=

ϑϑ

ϑϑ
Θ

A

Biot number: /Bi sα λ= ⋅

Fourier number: 2/ staFo ⋅=

See Diagrams 2.11 to 2.13
Contact temperature

1

111

222
2

111

222
1 1

−

⋅⋅

⋅⋅
+⋅⋅

⋅⋅

⋅⋅
+=

p

p
A
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c
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ρλ
ϑ
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Cooling of small body in large bath

1 1

1 2 1 2( ) ( ) p

A
t

m c

A A A e
α

ϑ ϑ ϑ ϑ

⋅
− ⋅

⋅
− = − ⋅

Forced convection

Dimensionless characteristic numbers

4 / closed channels

plane surfae,  = length in flow direction

' / singel body in cross-flow

h

L

proj

L

p

d A U
c L

Re L l l

L A U

L
Nu

c
Pr

a

ν

α

λ
ην

λ

= ⋅
⋅

= =

=

⋅
=

⋅
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A11: Formulary (cont.)
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Closed channels

2/3

, 22/3
1

8 1 12.7 / 8 ( 1)
h

h h

d h h h
d turb d

Re Pr d c d m d
Nu = f Re

L APr

ξ

ν ηξ

⋅ ⋅ ⋅
⋅ ⋅ + ⋅ = =

⋅+ ⋅ ⋅ −

0.11
2

2 0.45

( / )
1.8 log( ) 1.5

( / )h

W
d

W

Pr Pr
Re f

T T
ξ

−

= ⋅ − =

3 3 1,53
, 3.66 0.664 / )

h hd lam d hNu Pr (Re d L= + ⋅ ⋅ ⋅       
2 300

7 700
hdRe

γ
−

=

,

,

, ,

if  2 300

if  10 000

(1 ) ( 2 300) ( 10 000) otherwise

h h

h h h

h h h h

d lam d

d d turb d

d lam d d turb d

Nu Re

Nu Nu Re

Nu Re Nu Reγ γ

≤

= ≥

− ⋅ = + ⋅ =

Plane wall
3

, 0.644L lam LNu Pr Re= ⋅ ⋅

0.250,8

, 0,1 2/3

( / ) for liquids0.037

1 2.443 ( 1) 1 for gases
WL

l turb
L

Pr PrRe Pr
Nu

Re Pr−

⋅ ⋅
= ⋅

+ ⋅ ⋅ −

2 2
, ,l l lam l turbNu Nu Nu= +

Single bodies in cross-flow:

,0

2 sphere

0.3 cylinderLNu ′ =

3
, 0.664 for 1 1000L lam L LNu Pr Re Re′ ′ ′= ⋅ ⋅ < <

0.8 0.48 5 7
, 40.037 for 10 10L turb L LNu Re Pr f Re′ ′ ′= ⋅ ⋅ ⋅ < <

2 2
,0 , ,L L L lam L turbNu Nu Nu Nu′ ′ ′ ′= + +

0.25
4 ( / )Wf Pr Pr=  for liquids and 0.121

4 ( / )Wf T T= for gases
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Tube bundles in cross-flow

a = s
1
 / d

a
, b = s

2
 / d

a
        s

1
 tube distance perpendicular to flow, s

2
 parallel to flow

2

1

2

1 2

1 1 1 for 1
4 4

1 1 1 for 1
4 4
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V d l
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V s d l b

V d l
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V s s l a b

π π
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π π
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− = − = − ≥

⋅ ⋅ ⋅ ⋅
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Ψ Ψ Ψν
′ ′ ′ ′
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⋅ +
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[ ]
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2
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j

j j j
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/Bundle L A nNu L Nu f fα λ ′′= ⋅ = ⋅ ⋅ /jth tube row L A jNu L Nu f fα λ ′′= ⋅ = ⋅ ⋅

Finned tubes
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=

X

X
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=η

s
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⋅

⋅
⋅⋅=

λ

α
ϕ

2

2

Annular fins [ ]( / 1) 1 0.35 ln( / )a aD d D dφ = − ⋅ + ⋅

Rectangular fins

[ ]( 1) 1 0.35 ln with 1.28 ( / ) / 0.2R a R Rb d l bϕ ϕ ϕ ϕ′ ′= − ⋅ + ⋅ = ⋅ ⋅ −

Continous fins

[ ]( 1) 1 0.35 ln with 1.27 ( / ) / 0.3R a R Rb d l bϕ ϕ ϕ ϕ′ ′ ′= − ⋅ + ⋅ = ⋅ ⋅ −

A11: Formulary (cont.)



Appendix 265

Straight fins on a plane surfacce     adh /2 ⋅=ϕ

Tube bundles with annular fins
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Condensation

Condensation on vertical surfaces and on horizontal tubes

2

3 lL
g

ν
′ = lm

b
Γ =

l
lRe

η

Γ
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for vertical sufaces, the width of the surface: b = b
for vertical tubes, the sum of circumferences: b = n . π . d
for horizontal tube, the sum of tube lengths: b = n . l
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Condensation in tubes with steam flow

Local heat transfer coefficients with downward steam flow
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Local heat transfer coefficients in horizontal tubes
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Thermal radiation
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Index

A

absorpitvity 189
absorptivity of gas 206
annular fins 112
annulus 94

B

baffle plates 109
Biot number 47
black body 190
black radiation 190
boiling

at forced convection 182
convective 183
film 172
nucleate 171
pool 171
silent 183
sub-cooled 182

boiling crisis 172
boiling heat transfer 171
boiling retardation 171
Boltzmann constant 190

C

characteristic length 94, 99
condensation 131

droplet 131
film 131
in horizontal tubes 158
in vertical tubes 152

condenser bundle design 148
convection 3

forced 77
free 3, 119

convective boiling 183
convective heat transfer 3
coupled systems 60
cross-flow 99

single bodies in 99

D

diffusivity
thermal 46

dimensionless temperature 46
dimensionless time 47
direction of heat flux 85
discharge width 138
droplet condensation 131

E

emissivity 190
of a flue gas 207
of carbon dioxide 208
of water vapor 207

energy balance equation 6
evaporation 171
excess  temperature 171
extended surfaces 110

F

film boiling 172
film condensation 131
fin efficiency 39, 111
fin surface area 110
finned tubes 110
fins 35

annular 112
infinite long 37
needle 112

first row effect 105
flat plate 98
flow length 99
flows in circular tubes 83
forced convection 3, 77
Fourier number 46
Fourier series 46
free convection 3, 119

inclined plain walls 126
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276 Index

H

heat capacity rate 217
heat flux 4
heat rate 4
heat transfer

modes of 3
heat transfer coefficient 5

overall 6
heat transfer rate 4
hydraulic diameter 94
hydraulic friction factor 84

I

influence of the tube length 84
irradiation coefficient 195

K

Kirchhoff’s law 190

L

Lambert’s law 195
Laminar flow

in circular tube
at constant wall temperature 85

Leidenfrost phenomena 172
log mean temperature difference 8
lumped capacitance method 62

M

mass flow rate per unit width 138
mean roughness index 175
modes of heat transfer 3

N

needle fins 112
non circular cross section 94
non circular cross sections 94
nucleate boiling 171
nucleation site 171
nucleation sites 171
number 82

O

overall heat transfer coefficient 6

P

penetration coefficient 60
Planck constant 190
Planck’s radiation law 190
pool boiling 171
porosity 104
Prandtl number 82
projected circumference 99

R

radiation 3, 189
thermal 4

radiation constant of black bodies 192
Rayleigh number 120
reflexivity 190
release diameter 174
Reynolds number 81

S

silent boiling 183
solving problems 9
spacially uniform  temperature 62
spectral specific intensity 190
stability criterion 74
Stefan-Boltzmann-constant 192
sub-cooled boiling 182

T

tear-off diameter 174
thermal conduction 3

in static material 17
transient 17

thermal conductivity 3, 9
thermal diffusivity 46
thermal radiation 3, 4
thermal radiation exchange

coefficient 196
thermal resistances 20
thmoothing roughness 175
transient thermal conduction 17, 44
transmission 189
tube bundle

arrangement of tubes 105
tube bundles 103
turbulent flow

in a circular tube 83

W

Wien’s displacement low 191

G

Gauß error function 58
Grashof number 119


