

8051 Microcontroller Architecture,
Programming and Application

8051 Microcontroller

Architecture, Programming

and Application

M. Mahalakshmi
			 M.Sc.,M.Phil

Department of Computer Science

Sri Vasavi College,

Erode, Tamilnadu

University Science Press
(An Imprint of Laxmi Publications Pvt. Ltd.)

	 Bangalore	 	 Chennai	 	 Cochin	 	 Guwahati	 	 Hyderabad
	 Jalandhar	 	 Kolkata	 	 lucknow	 	 mumbai	 	 Patna

Ranchi    New Delhi

Published by :

University Science Press
(An Imprint of Laxmi Publications Pvt. Ltd.)

113, Golden House, Daryaganj,
New Delhi-110002

	 Phone	 :	011-43 53 25 00
 	 Fax	 :	011-43 53 25 28

www.laxmipublications.com
info@laxmipublications.com

First Edition : 2012

Offices

  Bangalore 	 080-26 75 69 30	   Chennai 	 044-24 34 47 26	
  Cochin 	 0484-237 70 04, 405 13 03 	   Guwahati 	 0361-254 36 69, 251 38 81
  Hyderabad 	 040-24 65 23 33	   Jalandhar 	 0181-222 12 72
  Kolkata 	 033-22 27 43 84	   Lucknow 	 0522-220 95 78
  Mumbai 	 022-24 91 54 15, 24 92 78 69	   Patna	 09893476827
  Ranchi 	 0651-221 47 64

UMA-9652-175-8051 MICRO ARCH PRO APP-MAH	 	 C —
Typeset at : AV Compositors, New Delhi.  	 Printed at : Mehra Offset Press

Copyright © 2012 by Laxmi Publications Pvt. Ltd. All rights
reserved with the publishers. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording
or otherwise without the prior written permission of the publisher.

Foreword

It’s my pleasant privilege to write a foreword for this book “8051 Microcontroller Architecture,
Programming and Application”. The purpose of this book is to present, as clearly as possible,
the principles of 8051 microcontroller.
	 The contents of the book are well organized and written in a simple language with numerous
worked example and exercise problems with answers. The level of presentation is suitable for
self study. The book is intended for introductory microcontroller courses at the under graduate
level in technology and engineering.
	 Myself being a teacher in the field of computer science. I strongly recommend this book to
every electronics and computer science students. The questions at the end of the chapters not
only clearly underline the author’s experience and sound theoretical knowledge, but also indicate
her deep commitment to the subject. This book will be boon to the microcontroller beginners and
experts.

Prof. B.Mahalingam,
Head, Department of Computer Science,
Sri Vasavi College,
Vasavi College PO,
Erode – 638 316.

Preface

It is written for the individual who wishes to learn the Microcontroller. The material in this book
is appropriate for an introductory course in digital logic in either a computer or an electronic
program. It is also appropriate for the self study and as reference for individuals working in
this field.
	 At the end of each chapter have review questions, called self tests, which are intended to be
a self check of key ideas and concepts. In any subject area, there are many terms and concepts
to be learned.
	 Every major concept is worked out through examples, to a numerical conclusion. The student
can work any example to test the validity of the concept and draw their own conclusions. In
addition to the numerous examples, each chapter concludes with a wide variety of questions.
	 This book aims at providing the students with the understanding of the basic operating
principles of microcontroller. A text should be sufficiently clear to enable the reader to understand
the material well by its reading with realism.
	 All topics have been explained in simple language with illustrations, block diagrams,
specifications, applications, comparative table and examples. Summary has been added at
the end of the each chapter and besides the review questions, the objective type questions and
numerical questions have been given to help the students.
	 I hope the book will be found useful by the students and instructors alike. I have benefited
from the assistance of a number of people in reviewing, writing and producing this text. I would
like to take this opportunity to thank the following reviewers who providing many helpful,
construction and suggestions.

—Author

Contents

CHAPTER 1 : MICROPROCESSOR AND MICROCONTROLLER	 1—11

	 1.1	 Introduction	 1
	 1.2	 Microprocessor and Microcontroller	 1
		 1.2.1	 Microprocessor	 1
		 1.2.2	 Microcontroller	 2
		 1.2.3	 Difference between Microprocessor and Microcontroller	 4

	 1.3	 Microcomputer Organization	 5
		 1.3.1	 Introduction	 5
		 1.3.2	 Basic Components of Microcomputer	 5
		 1.3.3	 Program Memory	 6
		 1.3.4	 Data Memory	 6
		 1.3.5	 Input Ports	 6
		 1.3.6	 Output Ports	 6
		 1.3.7	 Clock Generator	 6
		 1.3.8	 Central Processing Unit	 6

	 1.4	 Evolution of Microprocessor	 7
	 1.5	 8051 Flavors	 10
	 1.6	 Summary	 10
	 1.7	 Questions	 11

CHAPTER 2 : NUMBER SYSTEM	 12—27

	 2.1	 Introduction	 12
	 2.2	 Decimal System	 12
	 2.3	 Binary System	 12
	 2.4	 Binary Addition and Subtraction	 13
		 2.4.1	 Binary Addition	 13
		 2.4.2	 Binary Subtraction	 14
	 2.5	 Binary Multiplication and Division	 15
		 2.5.1	 Binary Multiplication	 15
		 2.5.2	 Binary Division	 16
	 2.6	 Converting Decimal Number to Binary	 18
	 2.7	 Converting Binary Number to Decimal	 18

	 2.8	 Negative Number Representation	 19
		 2.8.1	 The Signed Magnitude Method	 19
		 2.8.2	 One’s Complement Method	 20
		 2.8.3	 Two’s Complement Method	 21
	 2.9	 Decimal Components	 21
		 2.9.1	 9’s Complement	 21
		 2.9.2	 10’s Complement	 21
	 2.10	 Octal Number System	 22
	 2.11	 Convert Binary to Octal	 23
	 2.12	 Convert Decimal to Octal	 23
	 2.13	 Hexadecimal 	 24
	 2.14	 Convert Binary to Hexadecimal	 24
	 2.15	 Convert Hexadecimal to Decimal	 24
	 2.16	 Excess-3 Code	 25
	 2.17	 Gray Code	 25
	 2.18	 Summary	 26
	 2.19	 Questions	 26

CHAPTER 3 : THE 8051 ARCHITECTURE	 28—68

	 3.1	 Introduction	 28

	 3.2	 Microcontroller Standard	 28

	 3.3	 The Features of the 8051	 29

	 3.4	 8051 Microcontroller Hardware	 30

		 3.4.1	 8051 Architecture	 30

		 3.4.2	 Pin-out Diagram of 8051	 31

		 3.4.3 	 8051 Oscillator and Clock	 31

		 3.4.4	 Input/output Ports (I/O Ports)	 31

		 3.4.5	 DPTR Register (Date Pointer)	 35

		 3.4.6	 Program Counter	 36

		 3.4.7	 Register Set	 36

		 3.4.8	 Flags and PSW	 38

		 3.4.9	 Stack and Stack Pointer	 39

		 3.4.10	 Special Function Register	 39

	 3.5	 8051 Microcontroller Memory Organization	 40

	 3.6	 Internal Memory	 43

		 3.6.1	 Internal RAM	 43

		 3.6.2	 Additional Memory Block of data memory	 43

	 3.7	 Addressing	 46

		 3.7.1	 Direct Addressing	 46

		 3.7.2	 Indirect Addressing	 46

	 3.8	 External Memory	 46

		 3.8.1	 External Program Memory	 46
		 3.8.2	 External Data Memory	 48
	 3.9	 UART	 (Universal Asynchronous Receiver and Transmitter)	 53
	 3.10	 Generating Baud Rate	 58
	 3.11	 The Power Mode Control (PCON) Special Function Register	 59
	 3.12	 Interrupt	 60
	 3.13	 Summary	 66
	 3.14	 Questions	 67

CHAPTER 4 : MOVING DATA 	 69—81

	 4.1	 Introduction	 69
	 4.2	 Addressing Modes	 69
		 4.2.1	 Immediate Addressing Modes	 69
		 4.2.2	 Register Addressing Modes	 70
		 4.2.3	 Direct Addressing Modes	 70
		 4.2.4	 Indirect Addressing Modes	 70
	 4.3	 Instruction set of 8051 Microcontroller	 71
	 4.4	 Data Transfer Instructions	 72
	 4.5	 External Data Moves	 73
	 4.6	 Code Memory Read-only Data Moves	 75
	 4.7	 Push and POP Opcodes	 76
		 4.7.1	 Push direct	 77
		 4.7.2	 Pop direct	 77
	 4.8	 Data Exchange	 77
	 4.9	 Summary	 80
	 4.10	 Questions	 81

CHAPTER 5 : LOGICAL OPERATIONS	 82—102

	 5.1	 Introduction	 82
	 5.2	 Byte Level Logical Operations	 83
	 5.3	 Bit Level Logical Operations	 93
		 5.3.1	 Internal RAM Bit Addresses	 93
		 5.3.2	 SFR Bit Addresses	 94
		 5.3.3	 Bit Level Boolean Operations	 95
	 5.4	 Rotate and Swap Operations	 96

	 5.5	 Boolean Variable Manipulation Instruction	 98
	 5.6	 Summary	 101
	 5.7	 Questions	 102
CHAPTER 6 : ARITHMETIC OPERATIONS	 103—117

	 6.1	 Introduction	 103
	 6.2	 Flags		 103
		 6.2.1	 Instructions Affecting Flags	 103
	 6.3	 Arithmetic Instruction 	 104
		 6.3.1	 Unsigned and Signed Addition	 104
		 6.3.2	 Unsigned Addition	 104
		 6.3.3	 Signed Addition	 105
	 6.4	 Subtraction	 109
	 6.5	 Increment and Decrement Instructions	 112
	 6.6	 Multiplication and Division	 114
	 6.7	 Decimal Arithmetic	 115
	 6.8	 Summary	 117
	 6.9	 Questions	 117

CHAPTER 7 : JUMP AND CALL OPERATIONS	 118—135

	 7.1	 Introduction	 118
	 7.2	 Jump and Call Instructions	 118
	 7.3	 SJMP		 119
	 7.4	 LJMP		 119
	 7.5	 AJMP		 119
	 7.6	 Relative Offset	 119
	 7.7	 Short Absolute Range	 119
	 7.8	 Long Absolute Page	 119
	 7.9	 Jumps		 120
		 7.9.1	 Bit Jumps	 120
		 7.9.2	 Byte Jumps	 122
		 7.9.3	 Unconditional Jumps	 126
	 7.10	 Call and Subroutines	 128
		 7.10.1	 Calls and Return	 128
	 7.11	 Interrupts and Returns 	 130
	 7.12	 More Details on Interrupts	 131
		 7.12.1	 Interrupt Structure	 131
		 7.12.2	 Interrupt Enable	 131
		 7.12.3	 Interrupt Priorities	 132
		 7.12.4	 Interrupt Control System	 133

		 7.12.5	 Simulating a Third Priority Level in Software	 133
	 7.13	 Summary	 134
	 7.14	 Questions	 134
CHAPTER 8 : THE 8255 PROGRAMMABLE I/O INTERFACE	 136—144

	 8.1	 Introduction	 136
	 8.2	 Features of 8255 A	 136
	 8.3	 Pin Diagram of 8255 A	 137
		 8.3.1	 Explanation of Pinout Diagram	 137
	 8.4	 Read/Write and Control Logic	 139
	 8.5	 Operation Modes	 140
		 8.5.1	 Bit Set Reset (BSR) Mode	 140
		 8.5.2	 I/O Modes	 140
	 8.6	 Control Word Formats	 142
		 8.6.1	 For Bit Set/Reset Mode	 142
		 8.6.2	 For I/O Modes	 142
	 8.7	 Summary 	 143
	 8.8	 Questions	 144

CHAPTER 9 : 8051 APPLICATION	 145—168

	 9.1	 Introduction	 145
	 9.2	 Key Board 	 145
		 9.2.1	 Bouncing of key switch	 146
		 9.2.2	 Key De-bounce using hardware	 146
		 9.2.3	 Key bouncing using software	 147
		 9.2.4	 Matrix Keyboard Interface	 148
	 9.3	 Display Interfacing	 149
		 9.3.1	 Seven Segment Display	 149
		 9.3.2 	 Interfacing to LCD display	 151
	 9.4	 Traffic Light Controller	 154
	 9.5	 ADC Interfacing	 155
	 9.6	 Digital to Analog Converter (DAC)	 165
	 9.7	 Summary	 167
	 9.8 	Questions	 167

CHAPTER 10 : PROGRAM	 169—190

	 10.1	 Introduction	 169
	 10.2	 8-Bit Addition	 169
	 10.3	 8-Bit Subtraction	 170
	 10.4	 16-Bit Addition	 170

	 10.5	 16-Bit Subtraction	 170
	 10.6	 Subtract two 8-bit numbers and exchange digits	 171
	 10.7	 Multiply two 8-bit numbers	 171
	 10.8	 Divide two 8-bit numbers	 171
	 10.9	 Arithmetic and Logic Operations	 172
	 10.10	 Up/Down Counter and Object Counter	 173
	 10.11	 Analog to Digital Converter	 177
	 10.12	 Data Transfer with Parallel Ports	 180
	 10.13	 Digital to Analog Converter	 181
	 10.14	 Stepper Motor Interface	 183
	 10.15	 Matrix Keypad and SSD Interface	 185
	 10.16	 Digital Clock	 188
	 Appendix A	 191—195

	 Appendix B	 196—199

	 Appendix C	 200—206

	 Appendix D	 207—214

	 Bibliography	 215

	 Index		 216

Chapter 1
Microprocessor

and Microcontroller

1.1	 INTRODUCTION

The integrated circuit from an Intel 8742, an 8-bit micro controller that includes a CPU running
at 12 MHz, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip.
	 A microcontroller (also mcu or μc) is a computer-on-a chip. It is a type of microprocessor
emphasizing high integration, low power consumption, self-sufficiency and cost- effectiveness,
in contrast to a general-purpose microprocessor (the kind used in a pc). In addition to the usual
arithmetic and logic elements of a general purpose microprocessor, the micro controller typically
integrates additional elements such as read-write memory for data storage, read-only memory
such as flash for code storage, EEPROM for permanent data storage, peripheral devices and
input/output interfaces. At clock speeds of as little as a few MHz or even lower, microcontroller
often operate at very low speed compared to modern day microprocessors, but this is adequate
for typical application. They consume relatively little power (milliwatts), and will generally have
the ability to sleep while waiting for an interesting peripheral event such as button press to wake
them up again to do power consumption while sleeping may be just nano watts, making them
ideal for low power and long lasting battery applications.

1.2	 Microprocessor and Microcontroller

1.2.1	 Microprocessor

It is the heart of the microcontroller system. It consists of Arithmetic Logic Unit (ALU), registers
and control circuit. The arithmetic and logic operations are carried out by the ALU. The
microprocessor executes the program stored in the memory in a sequence.

	 The microprocessor is a semiconductor device manufactured the VLSI techniques.

2	 Microcontroller Architecture, Programming and Application

Fig. 1.1 Microprocessor Architecture

	 This is about as simple as a microprocessor gets. This microprocessor has:

	 l	 An address bus (that may be 8, 16 or 32 bits wide) that sends an address to memory

	 l	 A data bus (that may be 8, 16 or 32 bits wide) that can send data to memory or receive
data from memory

	 l	 An RD (read) and WR (write) line to tell the memory whether it wants to set or get the
addressed location

	 l	 A clock line that lets a clock pulse sequence the processor

	 l	 A reset line that resets the program counter to zero (or whatever) and restarts
execution

1.2.2	 Microcontroller

The Intel 8051 is single chip microcomputer which was developed by Intel in 1980 for use
embedded system. It was popular in the 1980’s and the early 1990’s, but today it has largely been
superseded.

	 Intel’s original 8051 family was developed using NMOS technology, but later versions
identified by a letter “c” in their name. Example 80C51 used CMOS technology and were less
power hungry than their NMOS predecessors-this made them eminently more suitable for battery
power devices.

	 A particularly useful features of the 8051 core is the inclusion of a Boolean processing engine
which allows bit level Boolean logic operation to be carried out directly and efficiently on internal

	 Microprocessor and Microcontroller	 3

register and RAM. The features of boolean processing helped to cement the 8051’s popularity in
industrial control applications.

	 Another features is that it has form separate register sets, which can be used to greatly reduce
interrupt context in a stack.

	 Microcontrollers are frequently used in automatically controlled products and devices, such as
automobile engine control systems, remote controls, office machines, appliances, power tools and
toys. By reducing the size, cost and power consumption compared to a design using a separate
microprocessor, memory and input/output devices, microcontrollers make it economically to
electronically control many more process.

	 Microcontrollers are hidden inside a surprising number of products these days. If your micro
wave oven has LED or LCD screenland a keypad, it contains a microcontroller and can have as
many as six or seven. The engine is controlled by a microcontroller as are the anti locks brakes,
the cruise control and so on. Any device that has a remote control almost certainly contains a
microcontroller. TVs, UCRs, answering machines, laser printers, telephones (the ones with caller
id, 20 - number memory, etc.) pagers and feature-laden refrigerators, dishwashers, washers and
dryers (the ones with display and keypads) you get the idea, basically, any product or device that
interacts with its users has a microcontroller buried inside.

	 Microcontrollers are “embedded” inside some devices (often a consumer product) so that
they can control the features or actions of the product. Another name for a microcontroller,
therefore is “embedded controller”.

	 Microcontrollers are dedicated to one task and run one specific program. Program is stored
in ROM (read only memory) and generally does not change.

	 Microcontrollers are often lower-power devices. A desktop computer is almost plugged into
a wall socket and might consume 50 watts of electricity. A battery operated microcontroller might
consume 50 milliwatts.

	 A microcontroller has a dedicated input device and often (but not always) has a LED or
LCD display for output. A microcontroller also takes input from the devices it is controlling and
controls the device by sending signals to different components in the device. For example: the
microcontroller controls the channel selector, the speaker system and certain adjustments on the
picture tube electronics such as tint and brightness. The engine controller in a car takes input
from sensors such as the oxygen and knock sensors and controls things like fuel mix and spark
plug timing. A microwave oven controller takes input from a keypad, displays output on an LCD
display and controls the relays that turns the microwave generator on and off. A microcontroller
is often small and low cost components are chosen to minimize size and to be as inexpensive as
possible.

4	 Microcontroller Architecture, Programming and Application

Fig. 1.2 Microcontroller Model

1.2.3	 Difference Between Microprocessor and Microcontroller

Microprocessor Microcontroller

Microprocessor contains ALU, general-1.	
purpose register, stack, pointer, program
counter, clock timing circuit and interrupts
circuit.
It has many operational codes (op codes) for 2.	
moving only data from external memory.
It has one or two bits handling instruction.3.	
Time taken to complete a process is more.4.	
Microprocessor based system requires more 5.	
Hardware.

Microprocessor based system is more flexible 6.	
in designing point of view.
Not capable of handling Boolean function.7.	
Data size in microprocessor varies from 8.	
8-bits to 64-bits.
Less number of pins are multi functioned.9.	
It has single memory map for data and 10.	
code.

1.	 Microcontroller the circuitry of
microprocessor and in addition it has
built in ROM, RAM, input/output devices
timers and counters.

2.	 It has one or two op codes.

3.	 It has many bits handling instruction.
4.	 Time taken to complete a process is less.
5.	 Microcontroller based systems requires

less Hardware reducing PCB size and
increasing the reliability.

6.	 Microcontroller based system is less
flexible in designing point of view.

7.	 Capable of handling Boolean functions.
8.	 Data size in microcontroller varies from

4-bits to 32-bits.
9.	 More number of pins are multifunctional.
10.	 It has separate memory map for data and

code.

	 Microprocessor and Microcontroller	 5

It has CPU, memory addressing circuits and 11.	
interrupt handling circuits. (e.g) 8085, Z80
etc.

11.	 It has CPU with timer’s parallel and serial
input/output and internal RAM, ROM.
(e.g) MCS51, 8048 etc.

1.3	 MICROCOMPUTER ORGANIZATION

1.3.1	 Introduction

In a very general sense any microcomputer (example a pc) is best regarded as a system in
corporating CPU and associated hardware whose purpose is to manipulate data in some passion.
This is exactly what any digital circuit designed using SSIs and MSIs (i.e., gates, flip-flops etc.)
will also do.
	 The microprocessor at the heart of the microcomputer is the best regarded as a general
purpose logic device one can say that a microcomputer is a assembly of a devices, including a
CPU, which manipulates data depending on one or more inputs and according to a program,
in order to generate one or more outputs. With the understanding that one can change the data
manipulation being done, merely by changing the program. This is probably a better definition
of a microcomputer.

1.3.2	 Basic Components of a Microcomputer

The microprocessor is the basic computers of a microcomputer system. The functional blocks
shown in Fig. 1.3.

Fig. 1.3 Block Diagram of Microcomputer

6	 Microcontroller Architecture, Programming and Application

1.3.3	 Program Memory

The program memory is the microcomputer system component where this instructions sequence
is stored. In initialization usually a power up or manual reset – the processor starts by executing
the instruction in a predetermined location in program memory are generally finds its part of
the program stored in read only memory of ROM, i.e., the program memory is implemented in
ROM. Additional program may be located into the data memory by the ROM program.

1.3.4	 Data Memory

The functional blocks in the micro computer used for this storage in the data memory. Note that a
micro controller will typically have some internal register which can also be used, if available for
such storage. The portion of the data memory used as temporary storage, of intermediate results,
or the storing and retrieving data must have read and write capability. The data memory segment
used for this storage is typically implemented using ROM’s, PROM’s, or EPROM’s.

1.3.5	 Input Ports

The input ports allow data to pass from the outside world to the micro computer – data which
will be used in the data manipulation being alone by the micro computer. The key sound will
interface to this system via input port.

1.3.6	 Output Ports

The output ports provide the micro computer the capability to communicate with the outside
world. The output ports are used by the micro computer to send data to devices outside the
system. The output ports will be used to devices the CRT display, and possibly other LED
display.

1.3.7	 Clock Generator

Operation inside the microprocessor, as well as in other parts of the micro computer, is usually
synchronous by nature. The clock needed to perform this synchronous operation is provided
by the clock generator. The user is merely required to put proper additional timing circuitry,
example crystal R-C or L-C network.

1.3.8	 Central Processing Unit

We have shown these components, where each one has been shown connected separately to the
microprocessor (or CPU). This connection is indented to show the direction of the single transfer,
rather than the actual connection.
	 The CPU consists of the Arithmetic/Logical unit and Control Unit.

Fig. 1.4 Microprocessor as CPU

	 Microprocessor and Microcontroller	 7

	 The CPU contains various registers to store data, ALU to perform arithmetic and logical
operations, instruction decoders, and counters and control lines. The CPU reads instruction from
the memory and performs the task specified. It communicates with input / output devices either
to accept or to send data. These devices are also known as peripherals. The CPU is the primary
and center player in communicating with devices. Such as memory, input and output. However,
the timing of the communication process is controlled by the group of circuits called the Control
Unit.

1.4	 Evolution of microprocessor

The CPU in a single LSI or in a single VLSI is called a microprocessor. A digital computer whose
CPU is a microprocessor is called a microcomputer.

First generation microprocessor

	 The microprocessor was introduced in the year by Intel Corporation, USA. It was a 4 bit
microprocessor having 16 pins housed completely in a single chip of PMOS technology. The Intel
Corporation released the INTEL8008 version of the microprocessor in the year 1972.
	 A list of first generation microprocessors are given below:

	 Microprocessor	 Word size

	 * INTEL 4004	 4 bit
	 * INTEL 4040	 4 bit
	 * FAIRCHILD PPS25	 4 bit
	 * NATIONAL IMP4	 4 bit
	 * ROCKWELL PPS4	 4 bit
	 * INTEL 8008	 8 bit
	 * NATIONAL IMP8	 8 bit
	 * ROCKWELL PPS8	 8 bit
	 * MOSTEK 5065	 8 bit
	 * NATIONAL IMP	 16bit
	 * NATIONAL PACE	 16 bit

Applications

	 4 bit microprocessors are used in simple applications such as calculators, electronic toys,
video games etc.

Second-generation microprocessors

	 The second-generation microprocessors were introduced in the year 1973. They were
manufactured using NMOS technology. This technology offers faster operation than PMOS.

	 The INTEL8080 an 8 bit microprocessor designed using NMOS technology. It is much faster
and has many more instructions than INTEL8008.

8	 Microcontroller Architecture, Programming and Application

	 Some of the third generations are given

	 Microprocessor	 Word size
	 INTEL 8080	 8 bit
	 INTEL 8085	 8 bit
	 MOTOROLA MC 6800	 8 bit
	 MOTOROLA MC 6809	 8 bit
	 ZILOG Z-80	 8 bit
	 NATIONAL LMP-8	 8 bit
	 MOSTECH-6100	 8 bit
	 INTERSIC 6100	 12 bit
	 TOSHIBA TLCS-12	 12 bit
	 GENERAL INSTRUMENT CP1600	 16 bit
	 TITMS	 16 bit
	 DEC-W.D.MCP-1600	 16 bit
	 Characteristics of second generation microprocessors:
	 l	40 pins
	 l	 Faster operation
	 l	 Larger chip size
	 l	 More powerful instructions
	 l	 Better interrupt handling capabilities
	 Applications
	 l	 Instrumentation
	 l	 Military applications
	 l	 Processing control systems
	 l	 Complex industrial controls

Third generation microprocessors

	 The first 16 bit microprocessor capable of addressing of 1 MB memory was introduced by Intel
Corporation in the year 1978. Then the same company introduced another 16 bit microprocessor
Intel 8088 in the year 1979.
	 Intel 80816 and 80188 unproved version of Intel 8086 and 8085 respectively.
	 A few generation microprocessors are listed below:
	 Microprocessor	 Word size
	 Intel 8086	 16bit
	 Intel 8088	 16bit
	 Intel 80186	 16bit
	 Intel 80188	 16bit
	 Intel 80286	 16bit
	 Zilog 8000	 16bit

	 Microprocessor and Microcontroller	 9

	 Motorola 68000	 16bit
	 Motorola 68010	 16bit
	 National ns 16016	 16bit
	 Characteristics of third generation microprocessors:
	 l	 Provided with 40/48/64 pins
	 l	 High speed
	 l	 Sizes of internal registers are 8/16/32 bits
	 l	 Very short processing capability
	 Applications
	 l	 Advanced common
	 l	 Distributed and data processing networks
	 l	Business processing applications

Fourth generation microprocessors

	 The fourth generation microprocessor was introduced after 1980. It is HCMOS technology. It
is 32 bit microprocessor.
	 Some of the fourth generation microprocessors are given below:
	 Microprocessor	 Word size
	 Intel 80386		 32 bit
	 Intel 80486		 32 bit
	 Motorola mc 88100	 32 bit
	 Motorola m 68020	 32 bit
	 Motorola m 68030	 32 bit
	 National ns 16032	 32 bit
	 Characteristics:
	 l	 Physical memory space of 2^24 byte = 16 MB
	 l	 Virtual memory space of 2^40 byte = 1 TB
	 l	 Floating point hardware is incorporation

Bit size Model number Application

4 bit HMCS40,COP420

MSC6411,TMS1000,

TLCS47 etc

Appliances and toys

8 bit INTEL8048,INTEL8051

PIC16C56,COP820

PHILIPS7C522,M6805,

ROCKWELL6500

Control and monitoring applications

10	 Microcontroller Architecture, Programming and Application

16 bit H8/532,INTEL80C196

HPC16164

Limited calculations and relatively simple
control strategies

32 bit INTEL80960 To design target robotics, highly intelligent
instrumentation , avionics etc

1.5	 8051 FLAVORS

The 8051 has the widest range of variants of any embedded controller on the market. The
smallest device is the Atmel 89C1051, a 20 Pin FLASH variant with 2 timers, UART, 20mA. The
fastest parts are from Dallas, with performance close to 10 MIPS! The most powerful chip is the
Siemens 80C517A, with 32 Bit ALU, 2 UARTS, 2K RAM, PLCC84 package, 8 x 16 Bit PWM’s, and
other features.
	 Among the major manufacturers are:
	 AMD	 Enhanced 8051 parts (no longer producing 80 × 51 parts)
	 Atmel	 FLASH and semi-custom parts
	 Dallas	 Battery backed, program download, and fastest variants
	 Intel	 8051 through 80c51gb/80c51sl
	 ISSI	 IS80C51/31 runs up to 40MHz
	 Matra	 80c154, low voltage static variants
	 OKI	 80c154, mask parts
	 Philips	 87c748 thru 89c588 - more variants than anyone else
	 Siemens	 80c501 through 80c517a, and SIECO cores
	 SMC	 COM20051 with ARCNET token bus network engine
	 SSI	 80 × 52, 2 × HDLC variant for MODEM use

1.6	S UMMARY

	 l	 A microprocessor is a program controlled device(IC) which fetches, decodes and execute
instructions.

	 l	 Microprocessor is the heart of microcontroller system.
	 l	 Microprocessor consists of ALU, register and control circuit.
	 l	 A digital computer whose CPU is a microprocessor is called microcomputer.
	 l	 The world’s first microprocessor Intel 4004 was released by Intel Corporation in the year

1971. The computing system designed using a microprocessor as its CPU is called a micro
computer.

	 l	 The NMOS process offers faster speed and higher density than PMOS and it is TTL
compatible.

	 l	 The Intel 8051 is a better hardware architecture single chip microcontroller which was
developed by Intel for 1980 for use in embedded systems.

	 l	 Intel’s original 8051 family was developed using NMOS technology, but later versions,
identified by a letter “c” in their names

		 (e.g.) 80c51,used CMOS technology.

	 Microprocessor and Microcontroller	 11

	 l	 The 8057 has the widest range of variants of any embedded controller on the market.
	 l	 The 8051 instruction set is optimized for the one bit operations so often desired in real

world real-time control application.

1.7	 QUESTIONS

	 1.	 Microprocessor is the __________ of the microcontroller system.
	 2.	 The microprocessor is a __________device.
	 3.	 The first generation of microprocessor was introduced in _________ year.
	 4.	 What was the basic unit of a microprocessor?
	 5.	 A microcontroller normally has which of the following devices on-chip?
	 (a)	 RAM	 (b)	 ROM	 (c)	 I/O	 (d)	 All of these

True or false

	 1.	 Microcontrollers are normally less expensive than microprocessors.
	 2.	 A general purpose microprocessor has on-chip ROM.
	 3.	 A microcontroller has on-chip ROM.

Chapter 2
Number System

2.1	 INTRODUCTION

Everywhere, except for computer related operation the main system of mathematical notation
today is the decimal system, which is a base 10 system. As in the other number systems, the
position of a symbol in terms of exponential values of the base. That is in the decimal system,
the quantity represented by any of the ten symbols used 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 depends on
its position in the number.
	 Unlike the decimal system, only two digits 0, 1 suffice is representing the number in the
binary system. The binary system plays a crucial role in computer science and technology.

2.2	 DECIMAL SYSTEM

The base or the radix of a number system is defined as the number of digits it uses to represent
the numbers in the system. Since, the decimal number system uses 10 digits 0 to 9 its base or
radix is 10, the decimal number system is also called base 10 number system. The weight of each
digit of a decimal number system depends on its relative position within the number.
	 Example:
		 2763	 =	 2000 + 700 + 60 + 3
	 in other words,
		 2763	 =	 2 × 103 + 7 × 102 + 6 × 101 + 3 × 10°

2.3	 BINARY SYSTEM

The binary system is a great help in the Nim-like games plainim, Nimble, Turning, Turtle,
Scoring, Northcott’s game etc. More importantly, the binary system underlies modern technology
of electronic digital computers. Computer memory comprises small elements that may only be
in two states — OFF / ON that are associated with digits 0 and 1. Such an element is said to
represent one bit — binary digit.

12

	 Number System	 13

	 For example, 1101
	 To represent numbers the decimal system uses the powers of 10, whereas the binary system
uses in a similar manner the power of 2.
		 (1101)2	 =	 1.23 + 1.22 + 0.2 + 1
	 The numbers are different, In fact
		 (1101)2	 =	 8 + 4 + 0 + 1 = (13)10

Table:

Decimal Binary

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

18 10010

19 10011

20 10100

2.4	 BINARY ADDITION and Subtraction

2.4.1	 Binary Addition

Binary addition is performed in the same manner as decimal addition. Actually, binary arithmetic
is much simpler to learn. The complete table for binary addition as follows,
		 0 + 0	 =	 0

14	 Microcontroller Architecture, Programming and Application

		 0 + 1	 =	 1
		 1 + 0	 =	 1
		 1 + 1	 =	 0 plus a carry over of 1.
	 Examples of binary addition:
	 1.	 7 + 2

Decimal Binary

7
2

111
010

9 1001

	 2.	 4 + 8

Decimal Binary

4
8

100
1000

12 1100

	 3.	 12 + 15

Decimal Binary

12
15

1100
1111

27 11011

	 4.	 17 + 18

Decimal Binary

17
18

10001
10010

35 100011

2.4.2	 Binary Subtraction

Binary subtraction is the inverse operation of addition. The only case in which this occurs with
binary numbers is when 1 is subtracted from 0. The remainder is 1, but it is necessary to borrow
1 from the next column to the left. This is the binary subtract table.

		 0 – 0	 =	 0

		 1 – 0	 =	 1

		 1 – 1	 =	 0

		 0 – 1	 =	 1 with a borrow of 1.

	 Number System	 15

	 Examples of binary Subtraction:
	 1.	 7 – 4

Decimal Binary

7
–4

111
100

3 011

	 2.	 18 – 6

Decimal Binary

18
–6

10010
110

12 1100

	 3.	 16 – 4

Decimal Binary

16
– 4

10000
00100

12 1100

	 4.	 12 – 2

Decimal Binary

12
–2

1100
0010

10 1010

2.5	 BINARY MULTIPLICATION and Division

2.5.1	 Binary Multiplication

The table for binary multiplication is very short, with only four entries instead of the necessary
for decimal multiplication.

		 0 * 0	 =	 0

		 0 * 1	 =	 0

		 1 * 0	 =	 0

		 1 * 1	 =	 1

16	 Microcontroller Architecture, Programming and Application

	 Examples for binary Multiplication:
	 1.	 4 × 3

Decimal Binary

4 × 3

100 × 011
 100
 100
000

12 01100
	 2.	 10 × 4

Decimal Binary

10 × 4

1010 × 100
 0000
 0000
1010

40 101000
	 3.	 102 × 8

Decimal Binary

102 × 8

 1100110 × 1000
 0000000
 0000000
 0000000
1100110

816 1100110000

2.5.2	 Binary Division

It is a very simple. As in the decimal system (or in any other), division by zero is meaningless.
The complete table as,
		 0/1	 =	 0
		 1/0	 =	 1
	 Examples for binary division:	
	 1.	 25 ÷ 5

Decimal
   5

Binary

 101

101

 5 25
25

11001
101

0 0101
0101

0

	 Number System	 17

	 2.	 20 ÷ 4

Decimal
   5

Binary

  100
101

 4 20
20

10001
101

0 00100
00100

 0

	 3.	 18 ÷ 6

Decimal
   6

Binary

 011
110

 3 18
18

10010
011

0 011
011

0

	 4.	 29 ÷ 12

Decimal
   2.416

Binary

1100
10.011010101

12 29
24

11101.00
1100

 50
 48

10100
1100

 20
 12

10000
1100

  80
  72

10000
1100

……..

18	 Microcontroller Architecture, Programming and Application

2.6	 CONVERTING DECIMAL NUMBER TO BINARY

There are several methods for converting a decimal number to a binary number for instance,
suppose that you want to convert decimal into corresponding binary number.
	 For examples of Decimal to Binary:
	 1.

2 74	
2 37 – 0
2 18 – 1
2 9 – 0
2 4 – 1
2 2 – 0

1 – 0
		 (74)10	 =	 (1001010)2

	 2.	
2 93	
2 46 – 1

2 23 – 0
2 11 – 1
2 5 – 1
2 2 – 1

1 – 0
		 (93)10	 =	 (1011101)2

	 3.

2 121	

2 60 – 1

2 30 – 0

2 15 – 0

2 7 – 1

2 3 – 1

1 – 1

		 (121)10	 =	 (1111001)2

2.7	 CONVERTING BINARY number TO DECIMAL

The conversion of binary to decimal may be accomplished by using several techniques.

	 Number System	 19

	 Example of Binary to decimal:
	 1.	 (1 0 1)2

			 1 × 20 = 1 × 1 =	 1

			 0 × 21 = 0 × 2 =	 0

			 1 × 22 = 1 × 4 =	 4
			    5
		 (101)2	 =	 (5)10

	 2.	 (1 0 1 1)2

			 1 × 20 = 1 × 1 =	 1
	
			 1 × 21 = 1 × 2 =	 2
	
			 0 × 22 = 0 × 4 =	 0
		
			 1 × 23 = 1 × 8 =	 8
			 11
		 (1011)2	 =	 (11)10

2.8	 NEGATIVE NUMBER REPRESENTATION

There are three methods usually employed to represent negative integer in binary system. These
methods are known as

	 (i)	 Signed magnitude method

	 (ii)	 One’s complement method

	 (iii)	 Two’s complement method

2.8.1	 The Signed Magnitude Method

	 In this method the signed magnitude method, the sign bit is assigned the value of 1 to denote
that it is a negative number.

	 Examples of signed magnitude method:

	 Example 1:
		 (24)10	 =	 11000
		 (–24)10	 =	 1 11000

20	 Microcontroller Architecture, Programming and Application

2 24	

2 12	 – 0

2 6	 – 0

2 3	 – 0

1	 – 1

	 Example 2:
		 (147)	 =	 10010111
		 (–147)	 =	 1 10010111	 	

2 147	

2 73	 – 1

2 36	 – 1

2 18	 – 0

2 9	 – 0

2 4	 – 1

2 2	 – 0

1	 – 1

2.8.2	 One’s Complement Method

Subtracting using the 1’s complement system is also straight forward. The 1’s complement of a
number is formed by changing each 1 is the number to a 0 and each 0 is the number to 1.
	 When subtracting is performed in the 1s complement system, any end-around carry is added
to the least significant.
	 For examples:
	 1.	 Binary	  11011	 11011
			 10110	 	 1’s 01001
			 00101	 1) 00100
				 1
				 00101
	 2.		 111011 	 	 111011
			 10110	 	 1’s 101010
			 100110	 1 100101
				 1

				 0100110

	 Number System	 21

2.8.3	 Two’s Complement

 The 2s complement of a binary number is formed by simply subtracting each digit (bit) of the
number from the radix minus one and adding a 1 to the least significant bit. Since, the radix
in the binary number system is 2, each bit of the binary number is subtracted from 1. The
application of this rule is actually very simple; every 1 in the number is changed to a 0 and every
0 to a 1. Then, a 1 is added to the least significant bit of the number formed.
	 For examples:
	 1.		 11011	   11011
			 (–)10100	  1’s 01011
				 2’s 1
			 	 01100
				 11011
		 Carry is dropped		 1 00111
	 2.		 11100	  11100
			 (–)00100	  11011
				 1
			 11000
				 11100
				 11100

		 Carry is dropped		 1 11000

2.9	 DECIMAL COMPONENTS

In the decimal system the two types are referred to as the 10’s complement and 9’s
complement.

2.9.1	 9’s Complement

This complement of a decimal number is formed by subtracting each digit of the number from 9.
	 For examples of 9’s complement:
	 (i)	 23 – 9’s	 99
			 23
			 76
	 (ii)	 48 – 9’s	 99
			 48
			 51	

2.9.2	 10’s Complement

The 10’s complement of any number may be formed by subtracting each digit of the number from
9 and then adding 1 to the least significant digit of the number thus formed.

22	 Microcontroller Architecture, Programming and Application

	 For example of 10’s complement:
	 Normal subtracts:	 10’s complement:
	 1.			 78	 78 – 78
 	 –24	 24 – 76
				 54	 carry is dropped  1 54
		 Where,
				 99
				 24
				 75
				 1
				 76

2.10	 Octal Number System

The octal number system has a base or radix; of 8, eight different symbols are used to represent
the numbers. There are commonly 0, 1, 2, 3, 4, 5, 6 and 7. An octal number can be converted
easily into the binary number with a group of three binary digits replacing each digits of octal
system.
	 The relation between the decimal system, octal system, Hexadecimal and binary system is
shown in table.

Decimal Binary Octal HexaDecimal

0 00000 00 0

1 00001 01 1

2 00010 02 2

3 00011 03 3

4 00100 04 4

5 00101 05 5

6 00110 06 6

7 00111 07 7

8 01000 10 8

9 01001 11 9

10 01010 12 A

11 01011 13 B

12 01100 14 C

13 01101 15 D

14 01110 16 E

	 Number System	 23

15 01111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

2.11	 CONVERT BINARY TO OCTAL

There is a simple trick for converting a binary number to an octal number simply group the binary
digits into groups of 3, starting at the octal point and read each set of three binary digits.
	 For example of binary to octal:
		 (011 100)2	 →	(34)8

		 (100111000)2	 →	(470)8

		 (10101)2	 →	(25)8

		 (1001)2	 →	(11)8

		 (1011.110)2	 →	(13.6)8

		 (10101.11)2	 →	(25.6)8

2.12	 CONVERT DECIMAL TO OCTAL

	 1.		

8 487

8 60	 – 7

 7	 – 4

		 (487)10	 =	 (747)8

	 2.

8 200

8 25	 – 0

 3	 – 1

		 (200)10	 =	 (310)8

24	 Microcontroller Architecture, Programming and Application

2.13	 HEXADECIMAL

Most mini computers and microcomputers have their memories organized into sets of bytes,
each consisting of eight binary digits. Each byte either is used as single entities to represent a
single alpha numeric character or is broken into two 4 bit pieces. When the bytes are handles in
two 4 bit pieces the programmer is given the option of declaring each 4 bit character as a piece
of a binary number or as two, BCD numbers. For instance, the byte 00011000 can be declared a
binary number in which case it is equal to 24 decimal, or as two BCD characters in which case it
represents the decimal number 18.
	 When the machine is handling numbers in binary but in groups of four digits it is convenient
to have a code for representing each of these sets of four digits. Since, 16 possible different
numbers can be represented, the digits 0 through 9 will not suffice, so the letters A, B, C, D, E
and F are used.

2.14	 Convert Binary To HexaDecimal

	 Example:
		 1010/1110/1101	→	 (AED)16

		 010/10102	 =	 2A16

		 1010/0010	 =	 A216

2.15	 Convert HexaDecimal To Decimal

1.	 A B 6

		 6 × 160 = 6 × 1 =	 6

		 11 × 161 = 11 × 16 =	 176

		 10 × 162 = 10 × 256 =	 2560
			 2742
		 AB616	 =	 (2742)10

2.		 (1 A 2 E)2

		 14 × 160 = 14 × 1 =	 14

		 2 × 161 = 2 × 16 =	 32
	
		 A × 162 = 10 × 256 =	 2560 				
			
		 1 × 163 = 1 × 4096 =	 4096
			 6702
		 (1A2E)16	 =	 (6702)10

	 Number System	 25

2.16	 EXCESS – 3 CODE

The excess 3 code is another important BCD code. This code has been derived from the standard
BCD code. The excess -3 code for the decimal numbers is obtained by adding 0011 to the code
in standard BCD is 0110. We get the excess 3 code for 6 by adding 0011 to 0110 that is the excess
3 code for 6 is 1001. The excess 3 code is given in table

Decimal Excess-3 Code

0 0001

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

10 0100 0011

20 0101 0011

99 1100 1100

100 0100 0011 0011

2.17	 GRAY CODE

This code is a unit distance code and a non-weighted code. It is not suitable for arithmetic
operations but it is very useful for transducers line shaft position encoders, Input output devices,
analog to digital converters and other peripheral equipments.
	 The relation between the gray code and the natural binary is shown in the table.

Decimal Binary Gray Code

1 0000 0000

2 0001 0001

3 0010 0011

4 0100 0110

5 0101 0111

6 0110 0101

26	 Microcontroller Architecture, Programming and Application

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

2.18	S UMMARY

	 l	 The individual memory cells used in computers are in bistable in operation and capable
of storing a single binary bit.

	 l	It is most practical to use the binary number system to represent numbers and the system
was explained along with conversion techniques to and from decimal.

	 l	 Negative numbers are represented in computer by using a sign bit which is a 1 when the
number is negative and a 0 for positive numbers.

	 l	 Negative numbers are often represented by using 1’s are 2’s complement form.

	 l	 The direct representation of decimal numbers can be accomplished by using a binary
coded decimal representation.

	 l	 The octal and hexadecimal number systems were described.

	 l	 These are useful in representing binary numbers in a compact form and to facilitate
communication of values in written presentation.

	 l	 Computers are often organized with numbers represented in groups of 8 bit which makes
hexadecimal particularly useful at the time.

2.19	 QUESTIONS

Fill up the blanks
	 1.	 Binary 1010 in decimal system is equivalent to _______________.
	 2.	 The decimal equivalent of the binary number 10110.0101011101 is___________.
	 3.	 Binary 101010 is equivalent to decimal number is ___________.
	 4.	 The hexadecimal number A492 is equivalent to decimal number is______________.
	 5.	 The binary number 011 1011011 is equivalent to decimal number _____________
	 6.	 The digit 0 with carry of 1 is the sum of binary addition is ___________.
	 7.	 In BCD code is represented as ___________
	 8.	 Octal 16 is equal to decimal __________.

	 Number System	 27

	 9.	 The sum of (111010)2 and (11011)2 in decimal form will be___________
	 10.	 (100101)2 is _____________
True or false:
	 1.	 As compared to digital computers, micro computers have high cost and big size.
	 2.	 The number of binary digits that make up the word is the word length.
	 3.	 A byte is an 8 binary digit word length.
	 4.	 BCD numbers express each decimal digit as a byte.
	 5.	 For the binary number 101101110 the equivalent octal number is 556.

Chapter 3
The 8051 Architecture

3.1	 INTRODUCTION

The 8051 is an 8 bit microcontroller originally developed by Intel in 1980. It is the world’s popular
microcontroller core made by many independent manufacturer truly multi sourced. There were
126 million 8051s and variants shipped in 1993. A typical 8051 contains.

	 l	 CPU with Boolean processor

	 l	 5 or 6 interrupt. 2 are external and 2 are priority levels.

	 l	 Programmable full duplex serial port baud rate provided by one of the timers.

	 l	 32 input/output lines (four 8 bit ports)

	 l	 RAM

	 l	 ROM/EPROM in some models

	 One strong point of the 8051 is the way it handles interrupts vectoring to fixed 8 byte areas
is convenient and efficient. Most interrupts routines are very short and generally can fit in to the
8 byte area. The 8051 instructions set is optimized for the one bit operations so often desired in
real world, real time control applications. Bit addressing can be used for test pin monitoring or
program control flags.

3.2	 MICROCONTROLLER STANDARD

Microcontrollers’ producers have been struggling for a long time for attracting more and more
choosy customers. Every couple of days a new chip with a higher operating frequency, more
memory and more high-quality A/D converters comes on the market.

	 Nevertheless, by analyzing their structures it is concluded that most of them have the same
(or at least very similar) architecture known in the product catalogs as “8051 compatible”.

	 The whole story began in the far 80s when Intel launched its series of the microcontrollers

28

	 The 8051 Architecture	 29

labeled with MCS 051. Although, several circuits belonging to this series had quite modest features
in comparison to the new ones, they took over the world very fast and became a standard for
what nowadays is meant by a word microcontroller.

	 The reason for success and such a big popularity is a skillfully chosen configuration which
satisfies needs of a great number of the users allowing at the same time stable expanding (refers to
the new types of the microcontrollers). Besides, since a great deal of software has been developed
in the meantime, it simply was not profitable to change anything in the microcontroller’s basic
core. That is the reason for having a great number of various microcontrollers which actually are
solely upgraded versions of the 8051 family.

8051 Microcontroller has Nothing Impressive at First Sight:

	 l	 4 kb program memory is not much at all

	 l	 128 kb ram satisfies basic needs, but it is not imposing amount

	 l	 4 ports having in total of 32 input/output lines are mostly enough to make connections
to peripheral environment and are not luxury to all

The 8051 Microcontroller have Nothing Impressive at First Sight:

	 The whole configuration is obviously envisaged as such to satisfy the needs of most
programmers who work on development of automation device. One of advantage of microcontroller
is that nothing in missing nothing is too much. In other words it is created exactly in advanced
to the average users states and needs. The other advantage is the way ram is organized, the way
central processor unit operates and ports which maximally use all recourses and enable further
upgrading.

3.3	 The Features of the 8051

The features of the 8051 family as follows:

	 l	 8 bit CPU optimized for control application

	 l	 4096 bytes on chip program memory

	 l	 128 bytes on chip data memory

	 l	 64 k program memory address space

	 l	 64 k data memory address space

	 l	 32 bidirectional and individual addressable i/o lines

	 l	 Two 16 bit timer/counter

	 l	 Full duplex UART

	 l	 Extensive Boolean processing capabilities

	 l	 Two level prioritized interrupt structure

	 l	 Direct byte and bit address ability

30	 Microcontroller Architecture, Programming and Application

	 l	 Binary on decimal arithmetic

	 l	 On chip clock oscillator

	 l	 One microseconds instructions cycle with 12MHz crystal

	 l	 Hardware multiple and divide in 4 microseconds.

3.4	 8051 MICROCONTROLLER HARDWARE

3.4.1	 8051 Architecture

The figure shows the internal block diagram of 8051. It consists of a CPU two kinds of memory
sections, input/output ports, specify function register and control logic needed for a variety of
peripheral functions. These elements communicate though an eight bit data bus which runs
throughout the chip referred as internal data bus. This bus is buffered to the outside world
through an I/O port when memory or I/O expansion is desired.

Fig. 3.1 8051 Architecture

	 The 8051 Architecture	 31

3.4.2	 Pin-out Diagram of 8051

The 8051 is packaged in a 40 pin dip. The figure shows the pin diagram of 8051. It is important
to note that many pins of 8051 are used for more than one function. The alternative functions of
pins are shown is bold letters.

Fig. 3.2 Pin-out diagram of 8051

3.4.3	 8051 Oscillator and Clock

The 8051 requires the existence of an external oscillator circuit. The oscillator circuit usually
around 12 MHz although the 8051 is capable of running at a maximum 40 MHz. Each machine
cycle in the 8051 is 12 clock cycles, giving an effective cycle rate at 1 MHz to 3.33MHz.

Fig. 3.3 Using the on chip oscillator

	 The circuit that generates cock pulses, to synchronizes all the internal operations is the heart
of the 8051.XTALI and XTAL pins are used to connecting a resonant network to form a oscillator
basic internal clock frequency is the crystal from 1 MHz to 16 MHz the figure shows the detail
of the oscillator and clock circuit.

3.4.4	 Input/Output Ports (I/O Ports)

All 8051 microcontrollers have 4 I/O ports, each consisting of 8 bits which can be configured
as inputs or outputs. This means that the user has on disposal in total of 32 input/output lines
connecting the microcontroller to peripheral devices.

32	 Microcontroller Architecture, Programming and Application

	 A logic state on a pin determines whether it is configured as input or output: 0 = output,
1 = input. If a pin on the microcontroller needs to be configured as output, then logic zero
(0) should be applied to the appropriate bit on I/O port. In this way, a voltage level on the
appropriate pin will be 0.
	 Similar to that, if a pin needs to be configured as input, then a logic one (1) should be applied
to the appropriate port. In this way, as a side effect a voltage level on the appropriate pin will
be 5V (as it is case with any TTL input). This may sound a bit confusing but everything becomes
clear after studying a simplified electronic circuit connected to one I/O pin.

Fig. 3.4 Input and Output Ports

Input/Output (I/O)pin, ports and circuits

Fig. 3.5 Input/Output Ports and Circuits

	 The 8051 Architecture	 33

	 This is a simplified overview of what is connected to a pin inside the microcontroller. It
concerns all pins except those included in P0 which do not have embedded pull-up resistor.

Fig. 3.6 Input/Output Register

Output pin

	 Logic zero (0) is applied to a bit in the P register. By turning output FE transistor on, the
appropriate pin is directly connected to ground.

Fig. 3.7 Port 1

Input pin

	 Logic one (1) is applied to a bit in the P register. Output FE transistor is turned off. The
appropriate pin remains connected to voltage power supply through a pull-up resistor of high
resistance.

	 A logic state (voltage) on any pin can be changed or read at any moment. A logic zero (0)
and logic one (1) are not equal. Logic one (0) represents almost short circuit to ground. Such a
pin is configured as output.

	 A logic one (1) is “loosely” connected to voltage power supply through resistors of high
resistance. Since, this voltage can be easily “pulled down” by an external signal, such a pin is
configured as input.

34	 Microcontroller Architecture, Programming and Application

Port 0

	 It is specific to this port to have a double purpose. If external memory is used then the lower
address byte (addresses A0–A7) is applied on it. Otherwise, all bits on this port are configured
as inputs or outputs.

	 Another characteristic is expressed when it is configured as output. Namely, unlike other
ports consisting of pins with embedded pull-up resistor (connected by its end to 5 V power
supply), this resistor is left out here. This, apparently little change has its consequences:

Fig. 3.8 Port 0

	 If any pin on this port is configured as input then it performs as if it “floats”. Such input has
unlimited input resistance and has no voltage coming from “inside”.

Fig. 3.9 Port 0 (Data Flow)

	 When the pin is configured as output, it performs as “open drain”, meaning that by writing
0 to some port’s bit, the appropriate pin will be connected to ground (0V). By writing 1, the
external output will keep on “floating”. In order to apply 1 (5V) on this output, an external pull-
up resistor must be embedded.

Note:

	 Only in case P0 is used for addressing external memory (only in that case), the microcontroller
will provide internal power supply source in order to establish logical ones on pins. There is no
need to add external pull-up resistors.

	 The 8051 Architecture	 35

Port 1

	 This is a true I/O port, because there are no role assigning as it is the case with P0. Since, it
has embedded pull-up resistors it is completely compatible with TTL circuits.

Port 2

	 Similar to P0, when using external memory, lines on this port occupy addresses intended
for external memory chip. This time it is the higher address byte with addresses A8–A15. When
there is no additional memory, this port can be used as universal input-output port similar by its
features to the port 1.

Port 3

	 Even though all pins on this port can be used as universal I/O port, they also have an
alternative function. Since each of these functions use inputs, then the appropriate pins have to
be configured like that. In other words, prior to using some of reserve port functions, a logical
one (1) must be written to the appropriate bit in the P3 register. From hardware’s perspective, this
port is also similar to P0, with the difference that its outputs have a pull-up resistor embedded.

Current limitations on pins

	 When configured as outputs (logic zero (0)), single port pins can “receive” current of 10mA.
If all 8 bits on a port are active, total current must be limited to 15mA (port P0: 26mA). If all ports
(32 bits) are active, total maximal current must be limited to 71mA. When configured as inputs
(logic 1), embedded pull-up resistor provides very weak current, but strong enough to activate
up to 4 TTL inputs from LS series.

	 It may be seen from description of some ports, that even though all pins have more or less
similar internal structure, it is necessary to pay attention to which of them will be used for what
and how.

	 For example: If they are used as outputs with high voltage level (5V), then port 0 should be
avoided because its pins do not have added resistor for connection to +5V. Only low logic level
can be obtained therefore, if another port is used for the same purpose, one should have in mind
that pull-up resistors have a relatively high resistance. Consequently, it can be counted on only
several hundreds microamperes of current coming out of a pin.

3.4.5	 DPTR Register (Data Pointer)

These registers are not true ones, because they do not physically exist. They consist of two
separate registers DPH (data pointer high) and (data pointer low). Their 16 bits are used for
external memory addressing. They may be handled as a 16 bit register or as two independent 8
bit registers. The DPTR registers are usually used for storing data and immediate results which
have nothing to do with memory locations.

36	 Microcontroller Architecture, Programming and Application

Fig. 3.10 Data Pointer

3.4.6	 Program Counter

The 8051 has a 16-bit program counter. It is used to hold the address of memory location from
which the next instruction is to be fetched. Due to this the width of the program counter decides
the maximum program length in bytes. For example, 8051 is 16-bit wide. This means that the
8051 can access program address 0000 to FFFFH, a total of 64K bytes of code.

	 The PC is automatically incremented to point the next instruction in the program sequence
after execution of the current instruction. It may also be altered by certain instructions. The PC
is the only register that does not have an internal address.

3.4.7	 Register Set

Register A accumulator:

	 It is an 8 bit register. It holds a source operand and receives the result of the arithmetic
instructions (Addition, Subtraction, Multiplication and Division). The accumulator can be the
source or destination for logical operations and a number of special data movement instructions.
Includes lookup tables and external RAM expansion. Several functions apply exclusively to the
accumulator rotate parity computation, testing for zero and so on.

Fig. 3.11 Accumulator

B registers:

	 B register is used during multiply and divide operations which can be performed only upon
numbers stored in the A and B registers. All other instructions in the program can use this
register as a spare accumulator (A).

	 The 8051 Architecture	 37

Fig. 3.12 B Register

	 Note: During programming, each of registers is called by name so that their exact addresses
are not so important for the user. During compiling into machine code (series of hexadecimal
numbers recognized as instructions by the microcontroller), PC will automatically, instead of
registers’ name, write necessary addresses into the microcontroller.

R Registers (R0–R7)

	 This is a common name for the total 8 general purpose registers (R0, R1, R2 ... R7). Even they
are not true SFRs, they deserve to be discussed here, because of their purposes. The bank is active
when the R registers are in use. Similar to the accumulator, they are used for temporary storing
variables and intermediate results. Which of the banks will be active it depends on two bits
included in the PSW Register. These registers are stored in four banks in the scope of RAM.

Fig. 3.13 RAM

 	 The following example best illustrates the useful purpose of these registers. Suppose that
mathematical operations on numbers previously stored in the R registers should be performed:
(R1 + R2) – (R3 + R4). Obviously, a register for temporary storing results of addition is needed.
Everything is quite simple and the program is as follows:

	 MOV A, R3; Means: move number from R3 into accumulator

	 ADD A, R4; Means: add number from R4 to accumulator (result remains in accumulator)

	 MOV R5, A; Means: temporarily move the result from accumulator into R5

	 MOV A, R1; Means: move number from R1 into accumulator

38	 Microcontroller Architecture, Programming and Application

	 ADD A, R2; Means: add number from R2 to accumulator

	 SUBB A, R5; Means: subtract number from R5 (there are R3 + R4)

3.4.8	 Flags and PSW

PSW Register (Program Status Word)

Fig. 3.14 Program Status Word

	 This is one of the most important SFRs. The Program Status Word (PSW) contains several
status bits that reflect the current state of the CPU. This register contains: Carry bit, Auxiliary
Carry, two register bank select bits, Overflow flag, parity bit, and user-definable status flag. The
ALU automatically changes some of register’s bits, which is usually used in regulation of the
program performing.

	 P – Parity bit. If a number in accumulator is even then this bit will be automatically set (1),
otherwise it will be cleared (0). It is mainly used during data transmission and receiving via serial
communication.

	 Bit 1. This bit is intended for the future versions of the microcontrollers, so it is not supposed
to be here.

	 OV Overflow occurs when the result of arithmetical operation is greater than 255 (decimal),
so that it cannot be stored in one register. In that case, this bit will be set (1). If there is no
overflow, this bit will be cleared (0).

	 RS0, RS1 - Register bank select bits. These two bits are used to select one of the four register
banks in RAM. By writing zeroes and ones to these bits, a group of registers R0–R7 is stored in
one of four banks in RAM.

RS1 RS2 Space in RAM

0 0 Bank0 00h–07h

0 1 Bank1 08h–0Fh

1 0 Bank2 10h–17h

1 1 Bank3 18h–1Fh

	 F0 - Flag 0. This is a general-purpose bit available to the user.

	 AC - Auxiliary Carry Flag is used for BCD operations only.

	 CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift
instructions.

	 The 8051 Architecture	 39

3.4.9	 Stack and Stack Pointer

The stack refers to an area of internal RAM that is used in conjunctions with certain opcodes data
stored and retrieve data quickly. The stack pointer register is used by the 8051 to hold an internal
RAM address that is called top of stack.
	 The stack pointer register is 8 bit wide. It is incremented before data is stored during PUSH
and CALL instructions and decremented after data is restored during POP and RET instructions.
The stack array can reside anywhere in on chip RAM. The stack pointer is initialized to 07H after
a reset. This causes the stack to begin at locations 08H. The operation of stack and stack pointer
is illustrated in figure.

Fig. 3.15 Stack and Stack Pointer

3.4.10	 Special Function Registers

SFRs are a kind of control table used for running and monitoring microcontroller’s operating.
Each of these registers, even each bit they include, has its name, address in the scope of RAM
and clearly defined purpose (for example: timer control, interrupt, serial connection etc.). Even
though there are 128 free memory locations intended for their storage, the basic core, shared by
all types of 8051 controllers, has only 21 such registers. Rest of locations is intentionally left free in
order to enable the producers to further improved models keeping at the same time compatibility
with the previous versions. It also enables the use of programs written a long time ago for the
microcontrollers which are out of production now.

	 8051 uses memory mapped i/o through a set of special function register that are implemented
in the address space immediately above the 128 bytes of RAM. Figure shows special function bit
address. All access to the four I/O ports, the CPU registers, interrupt control registers, the timer/
counter, UART and power control are performed through registers between 80H and FFH.

40	 Microcontroller Architecture, Programming and Application

Fig. 3.16 Special Function Register

3.5	 8051 MICROCONTROLLER MEMORY ORGANIZATION

The microcontroller memory is divided into Program Memory and Data Memory. Program
Memory (ROM) is used for permanent saving program being executed, while Data Memory
(RAM) is used for temporarily storing and keeping intermediate results and variables. Depending
on the model in use (still referring to the whole 8051 microcontroller family) at most a few Kb of
ROM and 128 or 256 bytes of RAM can be used. However…
	 All 8051 microcontrollers have 16-bit addressing bus and can address 64 kb memory. It is
neither a mistake nor a big ambition of engineers who were working on basic core development. It is
a matter of very clever memory organization which makes these controllers a real “programmers’
tidbit“.

	 The 8051 Architecture	 41

Program Memory
	 The oldest models of the 8051 microcontroller family did not have internal program memory.
It was added from outside as a separate chip. These models are recognizable by their labels
beginning with 803 (for ex. 8031 or 8032). All later models have a few Kbytes ROM embedded,
Even though it is enough for writing most of the programs, there are situations when additional
memory is necessary. A typical example of it is the use of so called lookup tables. They are used
in cases when something is too complicated or when there is no time for solving equations
describing some process. The example of it can be totally exotic (an estimate of self-guided rockets’
meeting point) or totally common (measuring of temperature using non-linear thermo element
or asynchronous motor speed control). In those cases, all needed estimates and approximates are
executed in advance and the final results are put in the tables (similar to logarithmic tables).

Fig. 3.17 Program Memory

	 How does the microcontroller handle external memory depend on the pin EA logic state:

Fig. 3.18 Additional Memory

42	 Microcontroller Architecture, Programming and Application

	 EA = 0 In this case, internal program memory is completely ignored, only a program stored
in external memory is to be executed.
	 EA = 1 In this case, a program from builtin ROM is to be executed first (to the last location).
Afterwards, the execution is continued by reading additional memory.
	 In both cases, P0 and P2 are not available to the user, because they are used for data and
address transmission. Besides, the pins ALE and PSEN are used too.

Data Memory

As already mentioned, Data Memory is used for temporarily storing and keeping data
and intermediate results created and used during microcontroller’s operating. Besides, this
microcontroller family includes many other registers such as: hardware counters and timers,
input/output ports, serial data buffers etc. The previous versions have the total memory size
of 256 locations, while for later models this number is incremented by additional 128 available
registers. In both cases, these first 256 memory locations (addresses 0-FFh) are the base of the
memory. Common to all types of the 8051 microcontrollers. Locations available to the user occupy
memory space with addresses from 0 to 7Fh. First 128 registers and this part of RAM is divided
in several blocks.
	 The first block consists of 4 banks each including 8 registers designated as R0 to R7. Prior to
access them, a bank containing that register must be selected. Next memory block (in the range
of 20h to 2Fh) is bit- addressable, which means that each bit being there has its own address from
0 to 7Fh. Since, there are 16 such registers, this block contains in total of 128 bits with separate
addresses (The 0th bit of the 20h byte has the bit address 0 and the 7th bit of the 2Fh byte has the
bit address 7Fh). The third group of registers occupies addresses 2Fh-7Fh (in total of 80 locations)
and does not have any special purpose or feature.

Addressing

While operating, processor processes data according to the program instructions. Each instruction
consists of two parts. One part describes what should be done and another part indicates what to
use to do it. This later part can be data (binary number) or address, where the data is stored. All
8051 microcontrollers use two ways of addressing depending on which part of memory should
be accessed:
Direct Addressing
	 On direct addressing, a value is obtained from a memory location while the address of that
location is specified in instruction. Only after that, the instruction can process data (how depends
on the type of instruction: addition, subtraction, copy…). Obviously, a number being changed
during operating a variable can reside at that specified address. For example:
	 Since, the address is only one byte in size (the greatest number is 255), this is how only the
first 255 locations in RAM can be accessed in this case the first half of the basic RAM is intended
to be used freely, while another half is reserved for the SFRs.
	 MOV A,33h; Means: move a number from address 33 hex. to accumulator
Indirect Addressing
	 On indirect addressing, a register which contains address of another register is specified in
the instruction. A value used in operating process resides in that another register. For example:
Only RAM locations available for use are accessed by indirect addressing (never in the SFRs).
For all latest versions of the microcontrollers with additional memory block (those 128 locations

	 The 8051 Architecture	 43

in Data Memory), this is the only way of accessing them. Simply, when during operating, the
instruction including “@” sign is encountered and if the specified address is higher than 128
(7F hex.), the processor knows that indirect addressing is used and jumps over memory space
reserved for the SFRs.
	 MOV A, @R0; Means: Store the value from the register whose address is in the R0 register
into accumulator
	 On indirect addressing, the registers R0, R1 or Stack Pointer are used for specifying 8-bit
addresses. Since, only 8 bits are avilable, it is possible to access only registers of internal RAM
in this way (128 locations in former or 256 locations in latest versions of the microcontrollers).
If memory extension in form of additional memory chip is used then the 16-bit DPTR Register
(consisting of the registers DPTRL and DPTRH) is used for specifying addresses. In this way it
is possible to access any location in the range of 64K.

3.6	 Internal memory

The 8051 has internal RAM and ROM memory. Additional memory can be added externally
using suitable circuits.

3.6.1	 Internal RAM

First 128 register this part of ram is divided in several blocks.

Fig. 3.19 Internal RAM

	 The first bank consists of four banks each including 8 registers designated as R0–R7, the four
register banks are bank0, bank1, bank2 and bank3.location available to the user occupy memory
space with addresses from 00–FF.
	 Next memory block is bit addressable which means that each bit being there has its own
address from 00–7FH. Since, there are 16 such registers, this block contain in total of 128 bits with
separate addresses.
	 The third group of registers occupies addresses 2fh–7fh and does not have any special
purpose or features.

3.6.2	 Additional Memory Block of Data Memory

In order to satisfy the programmers’ permanent hunger for Data Memory, producers have
embedded an additional memory block of 128 locations into the latest versions of the 8051
microcontrollers. Naturally, it’s not so simple. The problem is that electronics performing
addressing has 1 byte (8 bits) on disposal and due to that it can reach only the first 256 locations.

44	 Microcontroller Architecture, Programming and Application

In order to keep already existing 8-bit architecture and compatibility with other existing models
a little trick has been used.
	 Using trick in this case means that additional memory block shares the same addresses with
existing locations intended for the SFRs (80h–FFh). In order to differentiate between these two
physically separated memory spaces, different ways of addressing are used. A direct addressing
is used for all locations in the SFRs, while the locations from additional RAM are accessible using
indirect addressing.

Fig. 3.20 Additional Memory Block

	 In case on-chip memory is not enough, it is possible to add two external memory chips with
capacity of 64Kb each. I/O ports P2 and P3 are used for their addressing and data transmission.

	 The 8051 Architecture	 45

.

Fig. 3.21 RAM and ROM Memory

	 From the users’ perspective, everything functions quite simple if properly connected, because
the most operations are performed by the microcontroller itself. The 8051 microcontroller has
two separate reading signals RD# (P3.7) and PSEN#. The first one is activated byte from external
data memory (RAM) should be read, while another one is activated to read byte from external
program memory (ROM). These both signals are active at logical zero (0) level. A typical example
of such memory extension using special chips for RAM and ROM is shown on the previous
picture. It is called Hardware architecture.
	 Even though the additional memory is rarely used with the latest versions of the
microcontrollers, it will be described here in short what happens when memory chips are
connected according to the previous schematic. It is important to know that the whole process is
performed automatically, i.e., with no intervention in the program.
	 l	 When the program during execution encounters the instruction which resides in external

memory (ROM), the microcontroller will activate its control output ALE and set the first
8 bits of address (A0–A7) on P0. In this way, IC circuit 74HCT573 which “lets in” the first
8 bits to memory address pins is activated.

	 l	 A signal on the pin ALE closes the IC circuit 74HCT573 and immediately afterwards 8
higher bits of address (A8–A15) appear on the port. In this way, a desired location in
additional program memory is completely addressed. The only thing left over is to read
its content.

	 l	 Pins on P0 are configured as inputs, the pin PSEN is activated and the microcontroller
reads content from memory chip. The same connections are used both for data and lower
address byte.

		 Similar occurs when it is a needed to read some locations from external Data Memory. Now,

46	 Microcontroller Architecture, Programming and Application

addressing is performed in the same way, while reading or writing is performed via signals
which appear on the control outputs RD or WR.

3.7	A DDRESSING

While operating, processor processes data according to the program instructions. Each instruction
consists of two parts. One part describes what should be done and another part indicates what to
use to do it. This later part can be data (binary number) or address where the data is stored. All
8051 microcontrollers use two ways of addressing depending on which part of memory should
be accessed.

3.7.1	 Direct Addressing

On direct addressing, a value is obtained from a memory location while the address of that
location is specified in instruction. Only after that, the instruction can process data (how depends
on the type of instruction: addition, subtraction, copy…). Obviously, a number being changed
during operating a variable can reside at that specified address. For example:
	 Since, the address is only one byte in size (the greatest number is 255), this is how only the
first 255 locations in RAM can be accessed in this case the first half of the basic RAM is intended
to be used freely, while another half is reserved for the SFRs.
	 MOV A, 33h; Means: move a number from address 33 hex. to accumulator

3.7.2	 Indirect Addressing

On indirect addressing, a register which contains address of another register is specified in the
instruction. A value used in operating process resides in that another register.
For example:
	 Only RAM locations available for use are accessed by indirect addressing (never in the SFRs).
For all latest versions of the microcontrollers with additional memory block (those 128 locations
in Data Memory), this is the only way of accessing them. Simply, when during operating, the
instruction including “@” sign is encountered and if the specified address is higher than 128
(7F hex.), the processor knows that indirect addressing is used and jumps over memory space
reserved for the SFRs.
	 MOV A, @R0; Means: Store the value from the register whose address is in the R0 register
into accumulator.
	 On indirect addressing, the registers R0, R1 or Stack Pointer are used for specifying 8-bit
addresses. Since only 8 bits are available, it is possible to access only registers of internal RAM
in this way (128 locations in former or 256 locations in latest versions of the microcontrollers).
If memory extension in form of additional memory chip is used then the 16-bit DPTR Register
(consisting of the registers DPTRL and DPTRH) is used for specifying addresses. In this way, it
is possible to access any location in the range of 64K.

3.8	 EXTERNAL MEMORY

3.8.1	 External Program Memory

External Program Memory and external Data Memory may be combined if desired by applying
the RD and PSEN signals to the inputs of an AND gate and using the output of the gate as the
read strobe to the external Program/Data memory.

	 The 8051 Architecture	 47

	 The hardware configuration for external program execution is shown in Fig. 3.23. Note that
16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external Program Memory
fetches. Port 0 (P0 in Fig. 3.23) serves as a multiplexed address/data bus. It emits the low byte of
the Program Counter (PCL) as an address, and then goes into a float state awaiting the arrival
of the code byte from the Program Memory. During the time that the low byte of the Program
Counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address
latch. Meanwhile, Port 2 (P2 in Fig. 3.23) emits the high byte of the Program Counter (PCH). Then
PSEN strobes the EPROM and the code byte is read into the microcontroller.

Fig. 3.22 External Program Memory

Fig. 3.23 Executing from External

Program Memory

Program Memory addresses are always 16 bits wide, even though the actual amount of Program
Memory used may be less than 64K bytes. External program execution sacrifices two of the 8-bit
ports, P0 and P2, to the function of addressing the Program Memory.

48	 Microcontroller Architecture, Programming and Application

3.8.2	 External Data Memory

Fig. 3.24 External Data Memory

	 Figure 3.24 shows a hardware configuration for accessing up to 2K bytes of external RAM.
The CPU in this case is executing from internal ROM. Port 0 serves as a multiplexed address/
data bus to the RAM, and 3 lines of Port 2 are being used to page the RAM. The CPU generates
RD and WR signals as needed during external RAM accesses.

Fig. 3.25 Accessing External Data Memory

	 If the Program Memory is Internal, the other bits of P2 are available as I/O. There can be up
to 64K bytes of external Data Memory. External Data Memory addresses can be either 1 or 2
bytes wide. One-byte addresses are often used in conjunction with one or more other I/O lines

	 The 8051 Architecture	 49

to page the RAM, as shown in Fig. 3.25. Two-byte addresses can also be used, in which case the
high address byte is emitted at Port 2.

Counters and Timers

As explained in the previous chapter, the main oscillator of the microcontroller uses quartz crystal
for its operating. As the frequency of this oscillator is precisely defined and very stable, these
pulses are the most suitable for time measuring (such oscillators are used in quartz clocks as
well). In order to measure time between two events it is only needed to count up pulses from this
oscillator. That is exactly what the timer is doing. Namely, if the timer is properly programmed,
the value written to the timer register will be incremented or decremented after each coming
pulse, i.e., once per each machine cycle cycle. Taking into account that one instruction lasts 12
quartz oscillator periods (one machine cycle), by embedding quartz with oscillator frequency
of 12MHz, a number in the timer register will be changed million times per second, i.e., each
microsecond.
	 The 8051 microcontrollers have 2 timer counters called T0 and T1. As their names tell, their
main purposes are to measure time and count external events. Besides, they can be used for
generating clock pulses used in serial communication, i.e., Baud Rate.

Timer T0

As it is shown in the picture below, this timer consists of two registers – TH0 and TL0. The numbers
these registers include represent a lower and a higher byte of one 16-digit binary number.

Fig. 3.26 Timer T0

	 This means that if the content of the timer 0 is equal to 0 (T0 = 0), then both registers it
includes will include 0. If the same timer contains for example, number 1000 (decimal), then the
register TH0 (higher byte) will contain number 3, while TL0 (lower byte) will contain decimal
number 232.

Fig. 3.27 Timer Lower Byte and Higher Byte

	 Formula used to calculate values in registers is very simple:
		 TH0 × 256 + TL0	 =	 T
	 Matching the previous example it would be as follows:

50	 Microcontroller Architecture, Programming and Application

		 3 × 256 + 232	 =	 1000

Fig. 3.28 Formula used in Timer 0

	 Since, the timers are virtually 16-bit registers, the greatest value that could be written to them
is 65 535. In case of exceeding this value, the timer will be automatically reset and afterwards
that counting starts from 0. It is called overflow. Two registers TMOD and TCON are closely
connected to this timer and control how it operates.

TMOD Register (Timer Mode)

This register selects mode of the timers T0 and T1. As illustrated in the following picture, the
lower 4 bits (bit0–bit3) refer to the timer 0, while the higher 4 bits (bit4–bit7) refer to the timer 1.
There are in total of 4 modes and each of them is described here in this book.

Fig. 3.29 TMOD

	 Bits of this register have the following purpose:
	 l	 GATE1 starts and stops Timer 1 by means of a signal provided to the pin INT1 (P3.3):
	 m	 1 - Timer 1 operates only if the bit INT1 is set
	 m	 0 - Timer 1 operates regardless of the state of the bit INT 1
	 l	 C/T1 selects which pulses are to be counted up by the timer/counter 1:
	 m	 1 - Timer counts pulses provided to the pin T1 (P3.5)
	 m	 0 - Timer counts pulses from internal oscillator
	 l	 T1M1,T1M0 These two bits select the Timer 1 operating mode.

T1M1 T1M0 Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

	 l	 GATE0 starts and stops Timer 1, using a signal provided to the pin INT0 (P3.2):
	 m	 1 - Timer 0 operates only if the bit INT0 is set
	 m	 0 - Timer 0 operates regardless of the state of the bit INT0

	 The 8051 Architecture	 51

	 l	 C/T0 selects which pulses are to be counted up by the timer/counter 0:
	 m	 1 - Timer counts pulses provided to the pin T0(P3.4)
	 m	 0 - Timer counts pulses from internal oscillator
	 l	 T0M1,T0M0 These two bits select the Timer 0 operating mode.

T0M1 T0M0 Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

Timer 0 in mode 0 (13-bit timer)

This is one of the rarities being kept only for compatibility with the previous versions of the
microcontrollers. When using this mode, the higher byte TH0 and only the first 5 bits of the
lower byte TL0 are in use. Being configured in this way, the Timer 0 uses only 13 of all 16 bits.
How does it operate? With each new pulse coming, the state of the lower register (that one with
5 bits) is changed. After 32 pulses received it becomes full and automatically is reset, while the
higher byte TH0 is incremented by 1. This action will be repeated until registers count up 8192
pulses. After that, both registers are reset and counting starts from 0.

Fig. 3.30 TMOD Register

Timer 0 in mode 1 (16-bit timer)

All bits from the registers TH0 and TL0 are used in this mode. That is why for this mode is being
more commonly used. Counting is performed in the same way as in mode 0, with difference that
the timer counts up to 65 536, i.e., as far as the use of 16 bits allows.

52	 Microcontroller Architecture, Programming and Application

Fig. 3.31 Timer Mode 1

Timer 0 in mode 2 (Auto-Reload Timer)

What does auto-reload mean? Simply, it means that such timer uses only one 8-bit register for
counting, but it never counts from 0 but from an arbitrary chosen value (0 – 255) saved in another
register.
	 The advantages of this way of counting are described in the following example: suppose
that for any reason it is continuously needed to count up 55 pulses at a time from the clock
generator.

Fig. 3.32 Timer 0 in Mode 2

	 When using mode 1 or mode 0, it is needed to write number 200 to the timer registers and
check constantly afterwards whether overflow occurred, i.e., whether the value 255 is reached
by counting. When it has occurred, it is needed to rewrite number 200 and repeat the whole

	 The 8051 Architecture	 53

procedure. The microcontroller performs the same procedure in mode 2 automatically. Namely,
in this mode it is only register TL0 operating as a timer (normally 8-bit), while the value from
which counting should start is saved in the TH0 register. Referring to the previous example,
in order to register each 55th pulse, it is needed to write the number 200 to the register and
configure the timer to operate in mode 2.

Timer 0 in Mode 3 (Split Timer)

By configuring Timer 0 to operate in Mode 3, the 16-bit counter consisting of two registers TH0
and TL0 is split into two independent 8-bit timers. In addition, all control bits which belonged
to the initial Timer 1 (consisting of the registers TH1 and TL1), now control newly created Timer
1. This means that even though the initial Timer 1 still can be configured to operate in any mode
(mode 1, 2 or 3), it is no longer able to stop, simply because there is no bit to do that. Therefore,
in this mode, it will uninterruptedly “operate in the background.”

Fig. 3.33 Timer 0 in Mode 3

	 The only application of this mode is in case two independent ‘quick’ timers are used and the
initial Timer 1 whose operating is out of control is used as baud rate generator.

3.9	 UART (UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER)

One of the features that make this microcontroller so powerful is an integrated UART, better
known as a serial port. It is a duplex port, which means that it can transmit and receive data
simultaneously. Without it, serial data sending and receiving would be endlessly complicated
part of the program where the pin state continuously is being changed and checked according to
strictly determined rhythm. Naturally, it does not happen here because the UART resolves it in
a very elegant manner. All the programmer needs to do is to simply select serial port mode and
baud rate. When the programmer is such configured, serial data sending is done by writing to
the register SBUF while data receiving is done by reading the same register. The microcontroller
takes care of all issues necessary for not making any error during data exchange.

54	 Microcontroller Architecture, Programming and Application

Fig. 3.34 Serial Buffer

	 Serial port should be configured prior to being used. That determines how many bits one
serial “word” contains, what the baud rate is and what the pulse source for synchronization is.
After controlling this all bits are stored in the SFR Register SCON (Serial Control).

Fig. 3.35 Serial Control

	 l	 SM0 - bit selects mode
	 l	 SM1 - bit selects mode
	 l	 SM2 - bit is used in case that several microcontrollers share the same interface. In

normal circumstances this bit must be cleared in order to enable connection to function
normally.

	 l	 REN - bit enables data receiving via serial communication and must be set in order to
enable it.

	 l	 TB8 - Since, all registers in microcontroller are 8-bit registers, this bit solves the problem
of sending the 9th bit in modes 2 and 3. Simply, bits content is sent as the 9th bit.

	 l	 RB8 - bit has the same purpose as the bit TB8 but this time on the receiver side. This
means that on receiving data in 9-bit format, the value of the last (ninth) appears on its 	
location.

	 l	 TI - bit is automatically set at the moment the last bit of one byte is sent when the USART
operates as a transmitter. In that way processor “knows” that the line is available for
sending a new byte. Bit must be clear from within the program!

	 l	 RI - bit is automatically set once one byte has been received. Everything functions in
the similar way as in the previous case but on the receive side. This is line a “doorbell”
which announces that a byte has been received via serial communication. It should be
read quickly prior to a new data takes its place. This bit must also be also cleared from
within the program!

	 As seen, serial port mode is selected by combining the bits SM0 and SM2:

SM0 SM1 Mode Description Baud Rate

0 0 0
8-bit Shift
Register

1/12 the quartz frequency

0 1 1 8-bit UART Determined by the timer 1

1 0 2 9-bit UART
1/32 the quartz frequency
(1/64 the quartz frequency)

1 1 3 9-bit UART Determined by the timer 1

	 The 8051 Architecture	 55

Fig. 3.36 Serial Buffer

	 In mode 0, the data are transferred through the RXD pin, while clock pulses appear on the
TXD pin. The bout rate is fixed at 1/12 the quartz oscillator frequency. On transmit; the least
significant bit (LSB bit) is being sent/received first. (Received).

	 TRANSMIT - Data transmission in form of pulse train automatically starts on the pin RXD
at the moment the data has been written to the SBUF register. In fact, this process starts after
any instruction being performed on this register. Upon all 8 bits have been sent, the bit TI in the
SCON register is automatically set.

Fig. 3.37 Transmit Data

	 RECEIVE - Starts data receiving through the pin RXD once two necessary conditions are met:
bit REN=1 and RI=0 (both bits reside in the SCON register). Upon 8 bits have been received, the
bit RI (register SCON) is automatically set, which indicates that one byte is received.

56	 Microcontroller Architecture, Programming and Application

Fig. 3.38 Receive Data

	 Since, there are no START and STOP bits or any other bit except data from the SBUF register,
this mode is mainly used on shorter distance, where the noise level is minimal and where
operating rate is important. A typical example for this is I/O port extension by adding cheap IC
circuit (shift registers 74HC595, 74HC597 and similar).
Mode 1

Fig. 3.39 Mode 1

	 In Mode1 10 bits are transmitted through TXD or received through RXD in the following
manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit (always 1) last. The START
bit is not registered in this pulse train. Its purpose is to start data receiving mechanism. On
receive the STOP bit is automatically written to the RB8 bit in the SCON register.
	 TRANSMIT - A sequence for data transmission via serial communication is automatically
started upon the data has been written to the SBUF register. End of 1 byte transmission is indicated
by setting the TI bit in the SCON register.

Fig. 3.40 Transmit Data

	 The 8051 Architecture	 57

	 RECEIVE - Receiving starts as soon as the START bit (logic zero (0)) appears on the pin RXD.
The condition is that bit REN=1and bit RI=0. Both of them are stored in the SCON register. The
RI bit is automatically set upon receiving has been completed.

Fig. 3.41 Receive Data

	 The Baud rate in this mode is determined by the timer 1 overflow time.
Mode 2

Fig. 3.42 Mode 2 Transmit and Receive Data

	 In mode 2, 11 bits are sent through TXD or received through RXD: a START bit (always 0),
8 data bits (LSB first), additional 9th data bit and a STOP bit (always 1) last. On transmit; the
9th data bit is actually the TB8 bit from the SCON register. This bit commonly has the purpose
of parity bit. Upon transmission, the 9th data bit is copied to the RB8 bit in the same register
(SCON).The baud rate is either 1/32 or 1/64 the quartz oscillator frequency.
	 TRANSMIT - A sequence for data transmission via serial communication is automatically
started upon the data has been written to the SBUF register. End of 1 byte transmission is indicated
by setting the TI bit in the SCON register.

Fig. 3.43 Transmit Data

58	 Microcontroller Architecture, Programming and Application

	 RECEIVE - Receiving starts as soon as the START bit (logic zero (0)) appears on the pin RXD.
The condition is that bit REN=1and bit RI=0. Both of them are stored in the SCON register. The
RI bit is automatically set upon receiving has been completed.

Fig. 3.44 Receive Data

Mode 3
	 Mode 3 is the same as Mode 2 except the baud rate. In Mode 3 is variable and can be
selected.
	 Note: The parity bit is the bit P in the PSW register. The simplest way to check correctness of
the received byte is to add this parity bit to the transmit side as additional bit. Simply, immediately
before transmit, the message is stored in the accumulator and the bit P goes into the TB8 bit in
order to be “a part of the message”. On the receive side is the opposite : received byte is stored
in the accumulator and the bit P is compared with the bit RB8 (additional bit in the message). If
they are the same- everything is OK!

3.10	 GENERATING BAUD RATE

Baud Rate is defined as a number of send/received bits per second. In case the UART is used,
baud rate depends on: selected mode, oscillator frequency and in some cases on the state of the
bit SMOD stored in the SCON register. All necessary formulas are specified in the table:

Baud Rate BitSMOD

Mode 0 Fosc. / 12

Mode 1
1 Fosc.

16 12 (256-TH1)
BitSMOD

Mode 2
Fosc. / 32

Fosc. / 64
1
0

Mode 3
1 Fosc.

16 12 (256-TH1)

Timer 1 as a baud rate generator

Timer 1 is usually used as a baud rate generator, because it is easy to adjust various baud rates
by the means of this timer. The whole procedure is simple:
	 l	 First, Timer 1 overflow interrupt should be disabled
	 l	 Timer T1 should be set in auto-reload mode
	 l	 Depending on necessary baud rate, in order to obtain some of the standard values one

of the numbers from the table should be selected. That number should be written to the
TH1 register. That’s all.

	 The 8051 Architecture	 59

Baud Rate
Fosc. (MHz)

Bit SMOD
11.0592 12 14.7456 16 20

150 40 h 30 h 00 h 0

300 A0 h 98 h 80 h 75 h 52 h 0

600 D0 h CC h C0 h BB h A9 h 0

1200 E8 h E6 h E0 h DE h D5 h 0

2400 F4 h F3 h F0 h EF h EA h 0

4800 F3 h EF h EF h 1

4800 FA h F8 h F5 h 0

9600 FD h FC h 0

9600 F5 h 1

19200 FD h FC h 1

38400 FE h 1

76800 FF h 1

3.11	 THE POWER MODE CONTROL (PCON) SPECIAL FUNCTION REGISTER

Conditionally said microcontroller is the most part of its “lifetime” is inactive for some external
signal in order to takes its role in a show. It can make a great problem in case batteries are used
for power supply. In extremely cases, the only solution is to put the whole electronics to sleep in
order to reduce consumption to the minimum. A typical example of this is remote TV controller: it
can be out of use for months but when used again it takes less than a second to send a command
to TV receiver. While normally operating, the AT89S53 uses current of approximately 25 mA, which
shows that it is not too sparing microcontroller. Anyway, it doesn’t have to be always like this, it can
easily switch the operation mode in order to reduce its total consumption to approximately 40uA.
Actually, there are two power-saving modes of operation: Idle and Power Down.

Fig. 3.45 PCON

60	 Microcontroller Architecture, Programming and Application

Idle Mode

Immediately upon instruction which sets the bit IDL in the PCON register, the microcontroller
turns off the greatest power consumer- CPU unit while peripheral unit’s serial port, timers and
interrupt system continue operating normally consuming 6.5mA. In Idle mode, the state of all
registers and I/O ports remains unchanged.
	 In order to terminate the Idle mode and make the microcontroller operate normally, it is
necessary to enable and execute any interrupt or reset. Then, the IDL bit is automatically cleared
and the program continues executing from instruction following that instruction which has set
the IDL bit. It is recommended that three first following one which set NOP instructions. They
do not perform any operation but keep the microcontroller from undesired changes on the I/O
ports.

Power Down Mode

When the bit PD in the register PCON is set from within the program, the microcontroller is set
to Power down mode. It and turns off its internal oscillator reducing drastically consumption in
that way. In power- down mode the microcontroller can operate using only 2V power supply
while the total power consumption is less than 40uA. The only way to get the microcontroller
back to normal mode is reset.
	 During Power Down mode, the state of all SFR registers and I/O ports remains unchanged,
and after the microcontroller is put get into the normal mode, the content of the SFR register is
lost, but the content of internal RAM is saved. Reset signal must be long enough approximately
10 mS in order to stabilize quartz oscillator operating.

Fig. 3.46 Power Control

	 The purpose of the Register PCON bits:
	 l	 SMOD By setting this bit baud rate is doubled.
	 l	 GF1 General-purpose bit (available for use).
	 l	 GF1 General-purpose bit (available for use).
	 l	 GF0 General-purpose bit (available for use).
	 l	 PD by setting this bit the microcontroller is set into power down
	 l	 IDL by setting this bit the microcontroller is set into idle mode

3.12	 INTERRUPT

8051 Microcontroller Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5 different
events that can interrupt regular program execution. Each interrupt can be enabled or disabled
by setting bits in the IE register. Also, as seen from the picture below the whole interrupt system
can be disabled by clearing bit EA from the same register.
	 Now, one detail should be explained which is not completely obvious but refers to external

	 The 8051 Architecture	 61

interrupts- INT0 and INT1. Namely, if the bits IT0 and IT1 stored in the TCON register are
set, program interrupt will occur on changing logic state from 1 to 0, (only at the moment). If
these bits are cleared, the same signal will generate interrupt request and it will be continuously
executed as far as the pins are held low.

Fig. 3.47 8051 Microcontroller Interrupt

IE Register (Interrupt Enable)

Fig. 3.48 Interrupt Enable

	 l	 EA - bit enables or disables all other interrupt sources (globally)
	 m	 0 - (when cleared) any interrupt request is ignored (even if it is enabled)
	 m	 1 - (when set to 1) enables all interrupts requests which are individually enabled
	 l	 ES - bit enables or disables serial communication interrupt (UART)
	 m	 0 - UART System cannot generate interrupt
	 m	 1 - UART System enables interrupt
	 l	 ET1 - bit enables or disables Timer 1 interrupt
	 m	 0 - Timer 1 cannot generate interrupt
	 m	 1 - Timer 1 enables interrupt
	 l	 EX1 - bit enables or disables INT 0 pin external interrupt
	 m	 0 - change of the pin INT0 logic state cannot generate interrupt
	 m	 1 - enables external interrupt at the moment of changing the pin INT0 state
	 l	 ET0 - bit enables or disables timer 0 interrupt

62	 Microcontroller Architecture, Programming and Application

	 m	 0 - Timer 0 cannot generate interrupt
	 m	 1 - enables timer 0 interrupt
	 l	 EX0 - bit enables or disables INT1 pin external interrupt
	 m	 0 - change of the INT1 pin logic state cannot cause interrupt
	 m	 1 - enables external interrupt at the moment of changing the pin INT1 state

Interrupt Priorities

It is not possible to predict when an interrupt will be required. For that reason, if several interrupts
are enabled. It can easily occur that while one of them is in progress, another one is requested.
In such situation, there is a priority list making the microcontroller know whether to continue
operating or meet a new interrupt request.
	 The priority list consists of 3 levels:
	 1.	 Reset! The absolute master of the situation. If an request for Reset omits, everything is

stopped and the microcontroller starts operating from the beginning.
	 2.	 Interrupt priority 1 can be stopped by Reset only.
	 3.	 Interrupt priority 0 can be stopped by both Reset and interrupt priority 1.
	 Which one of these existing interrupt sources has higher and which one has lower priority is
defined in the IP Register (Interrupt Priority Register). It is usually done at the beginning of the
program. According to that, there are several possibilities:
	 l	 Once an interrupt service begins. It cannot be interrupted by another interrupt at the

same or lower priority level, but only by a higher priority interrupt.
	 l	 If two interrupt requests, at different priority levels, arrive at the same time then the

higher priority interrupt is serviced first.
	 l	 If the both interrupt requests, at the same priority level, occur one after another, the one

who came later has to wait until routine being in progress ends.
	 l	 If two interrupts of equal priority requests arrive at the same time then the interrupt to

be serviced is selected according to the following priority list :
	 1.	 External interrupt INT0
	 2.	 Timer 0 interrupt
	 3.	 External Interrupt INT1
	 4.	 Timer 1 interrupt
	 5.	 Serial Communication Interrupt

IP Register (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

Fig. 3.49 Interrupt Priority

	 l	 PS - Serial Port Interrupt priority bit
	 m	 Priority 0

	 The 8051 Architecture	 63

	 m	 Priority 1
	 l	 PT1 - Timer 1 interrupt priority
	 m	 Priority 0
	 m	 Priority 1
	 l	 PX1 - External Interrupt INT1 priority
	 m	 Priority 0
	 m	 Priority 1
	 l	 PT0 - Timer 0 Interrupt Priority
	 m	 Priority 0
	 m	 Priority 1
	 l	 PX0 - External Interrupt INT0 Priority
	 m	 Priority 0
	 m	 Priority 1

Handling Interrupt

Once some of interrupt requests arrives, everything occurs according to the following order:
	 1.	 Instruction in progress is ended
	 2.	 The address of the next instruction to execute is pushed on the stack
	 3.	 Depending on which interrupt is requested, one of 5 vectors (addresses) is written to the

program counter in accordance to the following table:

Interrupt Source Vector (address)

IE0 3 h

TF0 B h

TF1 1B h

RI, TI 23 h

All addresses are in hexadecimal format

	 4.		 The appropriate subroutines processing interrupts should be located at these addresses.
Instead of them, there are usually jump instructions indicating the location where the
subroutines reside.

	 5.	 When interrupt routine is executed, the address of the next instruction to execute is poped
from the stack to the program counter and interrupted program continues operating
from where it left off.

Interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external interrupts, 2 timer interrupts and the
serial port interrupt. What follows is an overview of the interrupt structure for the 8051. Other
MCS-51 devices have additional interrupt sources and vectors as shown in Table 1. Refer to the
appropriate chapters on other devices for further information on their interrupts.

64	 Microcontroller Architecture, Programming and Application

Interrupt Enables

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit
in the SFR named IE (Interrupt Enable). This register also contains a global disable bit, which can
be cleared to disable all interrupts at once. Figure 3.50 shows the IE register for the 8051.

Fig. 3.50 IE(Interrupt Enable) Register in the 8051

Interrupt Priorities

Each interrupt source can also be individually programmed to one of two priority levels by
setting or clearing a bit in the SFR named IP (Interrupt Priority). Figure 3.51 shows the IP register
in the 8051. A low-priority interrupt can be interrupted by a high priority interrupt, but not
by another low-priority interrupt. A high-priority interrupt can’t be interrupted by any other
interrupt source. If two interrupt requests of different priority levels are received simultaneously,
the request of higher priority level is serviced. If interrupt requests of the same priority level are
received simultaneously, an internal polling sequence determines which request is serviced. Thus
within each priority level there is a second priority structure determined by the polling sequence.
Figure 19 shows, for the 8051, how the IE and IP registers and the polling sequence work to
determine which if any interrupt will be serviced.

Fig. 3.51 IP(Interrupt Priority) Register in the 8051

	 The 8051 Architecture	 65

Fig. 3.52 8051 Interrupt Control System

	 In operation, all the interrupt flags are latched into the interrupt control system during State
5 of every machine cycle. The samples are polled during the following machine cycle. If the
flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to
the appropriate location in Program Memory, unless some other condition blocks the interrupt.
Several conditions can block an interrupt, among them that an interrupt of equal or higher
priority level is already in progress. The hardware-generated LCALL causes the contents of the
Program Counter to be pushed onto the stack, and reloads the PC with the beginning address of
the service routine. As previously noted (Figure 3), the service routine for each interrupt begins
at a fixed location.
	 Only the Program Counter is automatically pushed onto the stack, not the PSW or any other
register. Having only the PC be automatically saved allows the programmer to decide how much
time to spend saving which other registers. This enhances the interrupt response time, albeit at
the expense of increasing the programmer’s burden of responsibility. As a result, many interrupt
functions that are typical in control applications toggling a port pin, for example, or reloading
a timer, or unloading a serial buffer scan often be completed in less time than it takes other
architectures to commence them.

Simulating A Third Priority Level In Software

Some applications require more than the two priority levels that are provided by on-chip
hardware in MCS-51 devices. In these cases, relatively simple software can be written to produce
the same effect as a third priority level. First, interrupts that are to have higher priority than 1
are assigned to priority 1 in the IP (Interrupt Priority) register. The service routines for priority 1
interrupts that are supposed to be interruptible by “priority 2” interrupts are written to include
the following code:

66	 Microcontroller Architecture, Programming and Application

	 As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is
re-defined so as to disable all but “priority 2” interrupts. Then, a CALL to LABEL executes the
RETI instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point any
priority 1 interrupt that is enabled can be serviced, but only “priority 2” interrupts are enabled.
POPping IE restores the original enable byte. Then a normal RET (rather than another RETI) is
used to terminate the service routine. The additional software adds 10 ms (at 12 MHz) to priority
1 interrupts.

3.13	S UMMARY

	 l	 The Intel 8051 is an 8 bit microcontroller which means that most available operator are
limited to 8 bit.

	 l	 There are 3 basic “sizes” of the 8051: short standard and extended.
	 l	 Some of the features that have made the 8051 popular are
	 (i)	 8 bit data bus
	 (ii)	 16 data bus address bus
	 (iii)	 34 general purpose registers each of 8 bits
	 (iv)	 16 bit timers (usually 2,but may have more or less)
	 (v)	 3 internal and 2 external interrupt.
	 (vi)	 Bit as well as byte addressable ram area AF 16 bytes.
	 (vii)	 Four 8-bit ports, short models have two 8-bit ports.
	 (viii)	 16-bit program computer and data pointer.
	 l	 8051 family chips make up over 50% of the embedded chip market.
	 l	 8051 is a 40- pin dip IC.
	 l	 8051 was introduced in 1980 by Intel corporation.
	 l	 A typical 8051 contain CPU with Boolean processor 5 or 6 interrupts:2 are extended 2

priority level Programmable full-duplex serial port (based rate provided by one if the
timers) 32 input output lines (four 8-bit ports) Ram Rom/EPROM in some models.

	 l	 Serial port pins can “receive” current of 10ma.
	 l	 If all 8 bits on a port are achieve, total current must be limited to 71ma.
	 l	 The microcontroller memory is divided into program memory and data memory.
	 l	 All 8051 microcontrollers have 16-bit addressing bus and can address 64kb memory.
	 l	 Special function register(SFPS)are a kind of control table used for running and monitoring

microcontrollers operating.
	 l	 Accumulator once an arithmetic operation is performed by the ALU, the result is placed

into the accumulator.

	 The 8051 Architecture	 67

	 l	 B register is used during multiply and divide operations.
	 l	 The program status word (PSW) contains several status bits that reflect the current state

of the CPU.
	 l	 PSW register contains carry bit overflow flag parity bit and user definable status flag.
	 l	 DPTR (data pointer) consists of two separate registers DPH (data pointer high) and DPL

(data pointer low).
	 l	 The DPTR register is usually used for strong data and intermediate results which have

nothing location.
	 l	 The 8051 microcontrollers have 2 times counters called t0 and t1 .

	 l	 Timer t0 consists of two registers THO and TLO.
	 l	 TCON – timer control register.
	 l	 TMODE register – timer diode register.
	 l	 UART universal asynchronous receiver and transmitter.
	 l	 Icon register – serial port control register.
	 l	 Baud rate – is defined as a number of send/received bits per second.
	 l	 The priority bits consists of the situation if an register for reset omits, everything is

stopped and the microcontrollers starts operating from the beginning.
	 l	 Interrupt priority 1 can be stopped by reset only.
	 l	 Interrupt priority 0 can be stopped by both reset and interrupt priority.
	 l	 PC (program counter) points to the address of the next instruction.
	 l	 Stack pointer (sp): the register used to access the stack is called stack pointer.

3.14	 QUESTIONS

	 1.	 If a microcontroller has both 8 bit and 16 bit versions which of the following statements
is true.

	 (a)	 The 8 bit software will run on the 16 bit system.
	 (b)	 The 4 bit software will run on the 16 bit system.
	 (c)	 The 2 bit software will run on the 24 bit system.
	 (d)	 The 8 bit software will run on the 8 bit system.
	 2.	 The 8051 has _____________ on-chip timers.
	 3.	 The 8051 microcontrollers has _________ pins for input output.
	 4.	 Registers r0 – r7 are all ____________ bits wide.
	 5.	 Name a 16 bit register in the 8051.
	 6.	 The PSW in a ________ bit register.
	 7.	 The 8751 on chip ROM is of type __________.
	 8.	 Internal data memory addresses are always _______byte.
	 9.	 The program memory can be up to _________bytes and data memory external to the

chip.
	 10.	 On power of the 8051 uses bank ______for registers r0 – r7.

68	 Microcontroller Architecture, Programming and Application

	 11.	 The 8051 dip package is a _____pin package.
	 12.	 ALE is an _______pin.
	 13.	 RST is an ________pin.
	 14.	 Find the machine cycle for the following crystal frequencies connected to x1 and x2

12 mhz 20 mhz 25 mhz 30 mhz.
	 15.	 PSEN stands for _______.
	 16.	 Which mode of the timer is used to set the band rate?
	 17.	 SCON stands for _______and it is a_________bit register.
	 18.	 Which timer of the 8051 is used to set the band rate?
	 19.	 To which register does the SMOD bit belong?
	 20.	 State its roll in the rate of data transfer.
	 21.	 The stack pointer in the 8051 microcontroller is a ______________.
	 22.	 The Intel 8051 microcontroller has the internal ROM of ______________ bytes and internal

ram of ______________ bytes.
	 23.	 They are ______________ external interrupt in 8051.
	 24.	 The number of math flags in 8051 work?
	 (a)	 2		 (b) 3		 (c) 4		 (d) 7
	 25.	 DPTR can address _______bytes.
	 (a)	 128 bytes	 (b) 1 kbytes	 (c) 64 bytes () 32 kbytes
 26.	 The internal clock frequency of the microcontroller ranges from _______.

Chapter 4
Moving Data

4.1	 INTRODUCTION

The microcontroller 8051 instructions set includes 110 instructions, 49 of which are single byte
instructions, 45 are two bytes instructions and 17 are three bytes instructions. The instructions
format consists of a function mnemonic followed by destination and source field.
	 All the instructions of microcontroller 8051 may be classified based on the functional aspect
are given below
	 l	 Data transfer group.
	 l	 Arithmetic group.
	 l	 Logical group.
	 l	 Bit manipulation group.
	 l	 Branching or Control transfer group.

4.2	 ADDRESSING MODES

The instructions of 8051 may be classified based on the source or destination type
	 l	 Register addressing.
	 l	 Direct addressing.
	 l	 Register Indirect addressing.
	 l	 Immediate addressing.
	 l	 Base register + Index register.

4.2.1	 Immediate Addressing Modes

When the 8051 executes an immediate data move, the program counter is automatically
incremented to point to the byte(s) following the opcode byte in the program memory. Whatever,
data is found there is copied to the destination address. The mnemonic for immediate data is
the pound sign (#).

69

70	 Microcontroller Architecture, Programming and Application

	 MOV A, # 20H	: Load 20H into A
	 MOV R2, #42H	: Load the decimal value 42H into R2
	 MOV R0, # 24H	: Load the decimal value 24H into R0
	 MOV DPTR, #4000H	: DPTR=4000H
	 Although, the DPTR register is 16-bit, it can also be accessed as two 8-bit register, DPH &
DPL where,
	 DPH is the high byte
	 DPL is the Low byte
	 That is MOV DPTR, # 4250H is the same as
	 MOV DPL, #50H
	 MOV DPH, # 42 H
	 Also, notice that the following would produce an error, since the value is larger that 16-bit
	 MOV DPTR, # 425000; illegal!! Values > 42000

4.2.2	 Register Addressing Modes

Register addressing modes involves the use of register to hold the data to be manipulated.
Example of register addressing mode follow.
	 MOV A, R! 	 ; Copy the contents of R1 into A
	 MOV R0, A 	 ; Copy contents of A into R2
	 ADD A, R5 	 ; Add the contents of R5 to contents
	 MOV R5, A 	 ; save accumulator of R5

4.2.3	 Direct Addressing Modes

There are 128bytes of RAM is the 8051, The Internal RAM uses addressing from 00H to 7FH to
address each byte.
	 l	 RAM locations 00-1FH are assigned to the from bands of eight working register R0 to

R7
	 l	 RAM locations 20-2FH are set aside as bit addressable space to save single bit data
	 l	 RAM locations 30-7FH are available as a place to save byte sized data.
Example of Direct addressing mode
	 MOV R1, 20H		 ; same content of RAM location 20H in R1
	 MOV 42H, A 		 ; same content of A is RAM location 42H
	 The SFR addresses between 80H to FFH, since the addresses 00H to 7FH are addresses of
RAM memory inside the 8051. All the address spaces of 80 to FF are not used bytes the SFR,
The unused locations 80H to FFH are reserved and must not be used by the 8051 programmer.

4.2.4	 Indirect Addressing Mode

In the register indirect addressing mode, a register is used the contents of R0 and R1 often called
a data pointer, as a pointer to location in 256 bytes block and the 256 bytes of internal RAM or
the lower, 256 bytes of external data memory execution of PUSH and POP is also uses indirect
addressing.

	 Moving Data	 71

Example:
	 MOV @ R0, # n 	; copy immediate byte A to the address in R0
	 MOV @ R0, A	; copy A to RAM location RO pointers
	 MOV A, @ Rp 	; copy the contents of the address in Rp to A.
Note:
	 Number in register Rp must be RAM address
	 R0 or R1 register for indirect addressing
	 Table opcode using immediate, register direct & indirect addressing mode
	 Mnemonic			 Operations
	 MOV A, @ R0 	 	 Copy the content of the address in R0 to the A register
	 MOV @ R1, #35H	 	 Copy the number 35H to the address in R1
	 MOV ADD,@R0	 	 Copy the content of the address in R0 to Add
	 MOV @ R1 & A 	 	 Copy the content of the address in R1 to A register
	 MOV @ R0, 80	 	 Copy the content 80 the port o pins to the address into R0
Example of Indirect Addressing mode
	 It is widely used is accessing data elements of from program memory an indirect move
from the location whose address in the sum of a base register (DPTR or PC) and index register
accumulator. These mode facilities lookup accesses.
	 This instruction used for the purpose is “MOV A,@A + DPTR “
		 MOV DPTR, # 4200 Copy the number of 4200 to DPTR
		 MOV A, # 25 Copy the number 25 to A
		 MOV A, @ A + DPTR copy the content of 4225 to A
Note:
	 4200 + 25 =>4225
	 Another type of indexed addressing is used is the “case jump” instruction. In this case, the
destination address of a jump instruction is completed as the sum of the base pointer and the
accumulator data.

4.3	 INSTRUCTION SET OF 8051 MICROCONTROLLER

All members of the 8051 family execute the same instructions set. The 8051 instructions set
is optimized for 8-bit content application. The Intel 8051 has excellent and most powerful
instructions set offers possibilities in control area, serial Input/Output, arithmetic, byte and bit
manipulation.
	 It has 111 instructions they are
	 l	 49 single byte instructions
	 l	 45 two bytes instructions
	 l	 17 three bytes instructions
	 The instructions set is divided into four groups, they are
	 l	 Data transfer instructions
	 l	 Arithmetic instructions

72	 Microcontroller Architecture, Programming and Application

	 l	 Logical instructions
	 l	Call and Jump instructions

4.4	 DATA TRANSFER INSTRUCTIONS

There instructions are used to copy a data between different memory and register locations,
#signifies immediate addressing 8051 instructions set.
	 Data transfer instruction
		 MOV <dest-byte>, <src-byte>
	 Function: Move byte variable
	 Description: The byte variable indicated by the second operand is copied into the location
specified by the first operand. The source byte is not affected. No, other register or flag is
affected.
	 This is by bar the most flexible operation fifteen combinations of source and destination
addressing modes are allowed.
	 Example: Internal RAM locations 30H holds 40H. The value of RAM location 40H is 10H.
The data present at I/P port 1 is 1100 1010B (0CAH)
	 MOV R0, #30H 	 ; R0 < = 30H
	 MOV A, @R0 	 ; A <= 40H
	 MOV R1, A 	 ; R1 < = 40H
	 MOV B, @R1 	 ; B <=10H
	 MOV @R1, P1	 ; RAM (40H) <= 0CAH
	 MOV P2, P1	 ; P2 #0CAH
	 Leaves the value 30H in register 0, 40H is both the accumulator and register 1, 10H in register
B and CAH(11001010B) both in RAM location 40H and output on port2.
	 MOV A, Rn
	 Operation: (A) (Rn)
Example: MOV A, R2;
	 This instruction copies the content of the register R2 of selected register bank to the
accumulator.

Before Execution After Execution

A R2 A R2

05 B4 B4 B4

	 One byte instruction
	 One machine cycle
	 MOV A, direct
	 Operation: MOV (A) (direct)
	 Example: MOV A, 20H; this instruction copies the content of memory location whose address
is 20H to the accumulator.

	 Moving Data	 73

Before Execution After Execution

A M A M

0A 20 20 20

	 Two bytes instruction
	 One machine cycle
	 MOV A, ACC is not a valid instruction.
	 MOV A, @Ri
	 Operation: MOV (A)  ((Ri))
	 Example: MOV A, @R0. This instruction copies the content of memory location whose address
is specified in the register R0 from selected register bank.
	 One byte instruction
	 One machine cycle
	 MOV A, #data
	 Operation: MOV A  #data
	 Example: MOV A, #25H. This instruction copies data given with in instruction (25H) into
the accumulator.

Before Execution After Execution

A A

B2 25

	 Two bytes instruction
	 One machine cycle

4.5	 EXTERNAL DATA MOVES

It is possible to expand RAM and ROM memory space by adding external memory chips to the
8051 microcontroller.

Fig. 4.1 8051 External Memory.

74	 Microcontroller Architecture, Programming and Application

	 The external memory can be as large as 64k for each of the RAM and ROM memory areas.
Opcodes that access this external memory always use indirect addressing to specify the external
memory. Figure 4.1 shows the register R0, R1 and apply named DPTR can be used to hold the
address of the data byte in external RAM.
	 R0 and R1 are limited to external RAM address range of 00H to 0FFH, while the DPTR
register can address the maximum RAM space of 0000H to 0FFFFH. An X is added to the Mov
mnemonics to serve as a reminder that the data move is external to the 8051.
Note :
	 l	 All external data moves must involve the A register.
	 l	 Rp can address 256 bytes; DPTR can address 64K bytes.
	 l	 MovX is normally used with external RAM or I/O addresses.
	 l	 Note that there are two sets of RAM addresses between 00H and 0FFH: one internal and

one external to the 8051.
MOVX <dest-byte>, <src-byte>
	 Function: Move External
	 Description: The MOVX instructions transfer data between the Accumulator and a byte of
external data memory, hence the “X” appended to MOV. There are two types of instructions,
differing in whether they provide an eight-bit or sixteen-bit indirect address to the external data
RAM.
	 In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit
address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion decoding
or for a relatively small RAM array. For somewhat larger arrays, any output port pins can be used
to output higher-order address bits. These pins would be controlled by an output instruction
preceding the MOVX.
	 In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address.
P2 outputs the high-order eight address bits (the contents of DPH) while P0 multiplexes the low
order eight bits (DPL) with data. The P2 Special Function Register retains its previous contents
while the P2 output buffers are emitting the contents of DPH. This form is faster and more
efficient when accessing very large data arrays (up to 64K bytes), since no additional instructions
are needed to set up the output ports.
		 It is possible in some situations to mix the two MOVX types. A large RAM array with its
High-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOVX instruction using R0 or R1.
	 Example: An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155
RAM/I/O/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H.
	 Location 34H of the external RAM holds the value 56H. The instruction sequence,
	 MOVX A, @ R1
	 MOVX @ R0, A
	 copies the value 56H into both the Accumulator and external RAM location 12H.
MOVX A, @Ri
	 Function : Move data from External memory into accumulator

	 Moving Data	 75

	 Description : The MOVX instructions transfer data from specified external data memory
location to accumulator, There are two types of instructions, differing in whether they provide
an eight-bit or sixteen-bit indirect address to point the external data memory. In this case, the
pointer R0 or R1 provides eight bit address.
	 Operation : (A)  ((Ri))
	 One byte instruction.
	 Two machine cycle.
MOVX A, @ DPTR
	 Function : Move data from External memory into accumulator
	 Description : The MOVX instructions transfer data from specified external data memory
location to accumulator, There are two types of instructions, differing in whether they provide
an eight-bit or sixteen-bit indirect address to point the external data memory. In this case DPTR
provides 16 bit address.
	 Operation: (A)  ((DPTR))
	 One byte instruction.
	 Two machine cycle.
MOVX @Ri, A
	 Function: Move data from accumulator into External memory.
	 Description: The MOVX instructions transfer data from specified external data memory
location to accumulator, there are two types of instructions, differing in whether they provide an
eight-bit or sixteen-bit indirect address to point the external data memory. In this case the pointer
R0 or R1 provides eight bit address.
	 Operation: ((Ri))  (A).
	 One byte instruction.
	 Two machine cycle.
MOVX @DPTR, A
	 Function: Move data from accumulator into External memory.
	 Description: The MOVX instructions transfer data from specified external data memory
location to accumulator, there are two types of instructions, differing in whether they provide
an eight-bit or sixteen-bit indirect address to point the external data memory. In this case DPTR
provides 16 bit address.
	 Operation: ((DPTR))  (A).
	 One byte instruction.
	 Two machine cycle.

4.6	 CODE MEMORY READ-ONLY DATA MOVES

Data moves between RAM locations and 8051 registers are usually of a temporary and disappears
when the system is powered down.
	 There are times when access to a preprogrammed mass of data is needed, such as when suing
tables of predefined bytes. This data must be permanent to be of repeated use and is stored in

76	 Microcontroller Architecture, Programming and Application

the program ROM using assemblers directives that store programmed data anywhere in ROM
that the programmer wishes.
	 Access to this data is made possible by using indirect addressing.
MOV C A, @A +16 bit reg
	 The letter C is added to the Mov mnemonic to highlight the use of the opcodes for moving
data.
	 The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumulator
contents and the contents of a sixteen-bit base register, which may be either the Data Pointer or
the PC. In the latter case, the PC is incremented to the address of the following instruction before
being added with the Accumulator; otherwise the base register is not altered.
	 Sixteen-bit addition is performed so a carry-out from the low-order eight bits may
propagate through higher-order bits. No flags are affected.
Note :
	 l	 All data is moved from the code memory accumulator.
	 l	 MOV C is normally used with internal or external ROM and can address 64K of internal

or 64K of external code.
MOVC A, @A + DPTR
	 This instruction loads the accumulator from the contents of program memory whose address
is given by the sum of the contents of accumulator and contents of DPTR register.
	 Operation : (A)  (A) + (DPTR)
	 One byte instruction
	 Two machine cycle
MOVC A, @A +PC
	 This instruction loads the accumulator from the contents of program memory whose address
is given by the sum of the contents of accumulator and contents of program counter. The current
contents of program counter are incremented by 1 before summation.
	 Operation:	 (PC)  (PC) + 1
	 	 (A)  ((A) + (PC))
	 One byte instruction.
	 Two machine cycle.

4.7	 PUSH AND POP OPCODES

Push and pop instructions are used to more the data b/w internal RAM shell and internal RAM.
The operant on of the stack pointer as data is pushed or poped to the stack are in internal RAM.
The stack pointer holds an internal RAM address that is called the top of the stack.
Note:
	 l	 The stack pointer is set to w 07H when the 8051 is reset, which is the same direct address

in internal RAM as register R1 in bank. The first PUSH opcode would unit data to R0
of bank!. The stack pointer should be unutilized by programmer to point to an internal
RAM address above the register address likely to be used by the program.

	 Moving Data	 77

	 l	 When the stack pointer reaches FFH it “rolls over “tom 00H (R0).
	 l	 RAM ends at address 7FH: PUSH above the register bank.
	 l	 The stack pointer is usually set at address above the register bank.
	 l	 The stack pointer may be pushed and poped to the stack.

4.7.1	 PUSH direct

Function: Push into stack
	 Description: The stack pointer is increment by one. The content of the indirect variable is
than copied into the internal RAM location addressed by the stack pointer. Otherwise, no flags
are affected.
Example:
		 On entering an interrupt routine the stack pointer 09H. The data pointer holds the value
0123H. The instruction sequence,
	 PUSH DPL
	 PUSH DPH
	 Will leave the stack pointer set to OBH & store 23H and 01H in internal RAM location 0AH
& 0BH, respectively
	 Operation: PUSH
		 (SP)		 (SP)+1
		 ((SP))		 (direct)
	 Two bytes instruction.
	 Two machine cycle.

4.7.2	 POP direct

Function: POP from stack
	 Description: The content of the internal RAM location addressed by the stack pointer is
read, and the stack pointer is decrement by one. The value read is than transferred to the directly
addressed bytes indirected. No, flags are affected.
Example:
 	 The stack pointer originally contains the 32H & internal RAM location 30H through 32H
contains the value 20H, 23H & 01H respectively. The instruction sequence,
	 POP DPH
	 POP DPL
	 Will leave the stack pointer set to 20H. Note that in this special case the stack pointer was
decrement to 2FH before being loaded with the value popped (20H).
	 Operation : POP
		 (direct)		 ((stack pointer)).
		 (direct)		 (stack pointer)-1.

4.8	 DATA EXCHANGE

MOV, PUSH and POP instructions all invdve copying the data round in the source address to the

78	 Microcontroller Architecture, Programming and Application

destination address the original data in the source is not changed. Exchange instruction actually
move data in two directions: From source to destination and from destination to source.
	 Description: XCH loads the accumulator with the content of the indirected variable, at the
same time they the original accumulator constants to the indirected variable.
Note:
	 l	 All addressing modes except immediate may be used in the XCH (exchange)

instruction.
	 l	 All exchanges use register A.
	 l	 When using XCHD, the upper nibble of A and the upper nibble os the addresss location

in Rp do not change.
XCH A, (byte)
	 Function: exchange accumulator with byte
	 Description: XCH loads the accumulator with the content of the indirected variable at
the same time using the original accumulator contents to the indirected variable. The some /
destination operand can use register, direct or register indirect addressing.
	 Example: Ro contains the address 20H. The accumulator holds the value 3Fh (00111111B0.
Internal RAM location 20H holds the value 75H (01110101B).
	 The instruction. XCH A, @ Ro
	 Will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in
the accumulator.

 Before execution After execution
A Ro (address) A Ro (address)
3F 75 75 3F

	 XCH A, (byte)
	 Operation:	 (A)		(Rn)
		 	
	 Example: XCH A, Ro
 	 This instruction exchange contents of accumulator with the contents of register Ro of selected
register bank.

 Before execution After execution
A Ro (address) A Ro (address)
2F 72 72 2F

	 One byte instruction.
	 One machine cycle.
XCH A, direct
	 Operation:	 (A)		(diect)
			 
	 Example: XCH A, 40H;
	 This instruction exchange content of accumulator with the content of memory whose address
is given with in the location (40H)

	 Moving Data	 79

 Before execution After execution
A Memory (40H) A Memory (40H)
42 3A 3A 42

	 Two bytes instruction.
	 One machine cycle.
XCH A, @ Ri
	 Operation:	 (A)		(Ri)
			 
	 Example: MOV A, @Ri
	 This instruction exchange content of accumulator with the content of memory whose address
is given by the content by register R1 of selected bank.

 Before execution After execution
A @R1 A @R1
2A 4E 4E 2A

	 One byte instruction.
	 One machine cycle.
XCHD A, @ Ri

	 Function: Exchange digit

	 Description: XCHD exchange the low order nibble of the accumulator (bit 3-0) generally
representing a hexadecimal or BCD digit, with that of the internal RAM location indirect addressed
by the specified register. The high order nibbles (bit7-4) of each register are not affected no flages
are affected.

	 Example: Ro contains the address 20H. The accumulator holds the value 36H (00110110B).
Internal RAM location 20H holds the value 75H is (01110101B).

	 The instruction,
XCHD A,@Ro
	 Will leave RAM location 20H holding the values 75H (01110110B) and 35 (00110101B) in the
accumulator.
	 Operation:	 (A3-0)		 (Ri 3-0)
			 

	 One byte instruction.

	 One machine cycle.

Note:

	 The opcode that moves data between location with in 8051 and between the 8051 and external
memory have been discussed of this instruction are as follows.
	 Instruction Type	 Result
	 MOV destination, source	 Copy data from the internal RAM source

80	 Microcontroller Architecture, Programming and Application

		 Address to the internal RAM destination
		 Address
	 MOV CA, Source	 Copy internal or external program memory byte from

		 the source is register A

	 MOV X destination, source	 Copy byte to or from external RAM to register A

	 PUSH Source	 Copy byte from to internal RAM stack

		 From internal RAM source.

	 POP destination	 Copy byte from internal RAM stack to

		 Internal RAM destination.

	 XCH A, Source	 Exchange data b/w register A and the

		 Internal RAM source

	 XCHD A, Source	 Exchange lower nibble b/w register A

 		 And the internal RAM source.

	 There are from addressing modes in immediate number, a register name, a direct internal
RAM address, and an indirect address contained in a register.

4.9	S UMMARY

Moving Data

	 l	 WHICH MODE OF THE 8051  immediate ,register, direct and indirect.

	 l	 All numbers must STRAT with a decimal number (0–9) or the assembler assumes the
number is a label.

	 l	 Register to register moves using the register addressing mode occur between register a
& R0–R7.

	 l	 R0 & R7 are limited to entered ram address range of 00H to 0FFH.

	 l	 Only register R0 or R1 may be used for indirect addressing.

	 l	 All data is moved from the code memory to the register A.

	 l	 A push opcode copies data from the source address to the stack.

	 l	 A pop opcode copies data from the stack to the destination address.

	 l	 The SP is usually set at addresses above the register bank the sp may be pushed & poped
to the stack.

	 l	 All exchanges use register A.

	 l	 Move is normally used with internal or external ROM & can address 4K of internal or
64K of entered code.

	 l	 MOV X is normally used with external ram or i/o addresses.

	 l	 The number in register Rp must be a ram address.

	 Moving Data	 81

4.10	 QUESTIONS

	 1.	 Data is stored at a ________address and moved to a _______address.
	 2.	 Give four addressing modes.
	 3.	 Register A, DPTR, and R0–R7 may be named as part of the________.
	 4.	 ________ and________ hold the BANK select bits, RSO and RS1.
	 5.	 Indirect addressing for MOV opcodes uses register R0 or R1 often called a ________.
	 6.	 The DPTR register can address the maximam RAM space of 0000H to 0FFFFH.
	 7.	 Data moves between RAM location and 8051 register are made by using ________ and

________opcodes.
	 8.	 Define stack pointer.
	 9.	 The first push opcode would write data to R0 of ________.
	 10.	 A ________ copy data from stack to destination address.
	 11.	 The rotate and swamp operation are limited to _________.

Chapter 5
Logical Operations

5.1	 INTRODUCTION

The logical instructions that perform Boolean operations.

AND

OR

EX-OR

NOT

	 On bytes performs the operation on a bit by bit basis. That is, if the accumulator contains
00110101B and <byte> contains 01010011B, then
	 ANL A, <byte>
	 Will leave the accumulator holding 00010001B
	 The rotate instructions,
	 RL rotate a byte to the left.
	 RLC rotate a byte and carry bit left.
	 RR rotate a byte to the right.
	 RRC rotate a byte and the carry to the right.
	 SWAP exchange the low and high nibbles in a byte.
	 Shift the accumulator 1-bit to the left or right. For a left rotation, the MSB rolls into the LSB
position. For a right rotation, the MSB rolls into the LSB position. For a right rotation, the LSB
rolls into the MSB position.
	 The SWAP A instruction interchanges the high and low nibbles with in the accumulator. This
is a useful operation in BCD manipulations.

82

	 Logical Operations	 83

5.2	 BYTE LEVEL LOGICAL OPERATIONS

That all such operations are done using each individual bit of the destination and source bytes.
These operations, called byte-level Boolean operations. All addressing modes may be used in
byte level logical operations.
	 List of the 8051 logical operations
	 ANL A, #n
	 ANL A, add
	 ANL A, Rr
	 ANL A, @Rp
	 ANL add, A
	 ANL add, #n
	 ORL A, #n
	 ORL A, add
	 ORL A, RL
	 ORL A, @Rp
	 ORL add, A
	 ORL add, #n
	 XRL A, #n
	 XRL A, add
	 XRL A, RL
	 XRL A, @Rp
	 XRL add, A
	 XRL add, #n
	 CLR A
	 CPL A
ANL <dest-byte>, <src-byte>
	 Function : Logical – AND
	 Description : ANL performs the bitwise logical – AND operation between the variables
indicated and stores the result in the destination variable – No flags are affected.
	 The two operands allow six addressing mode combinations. When the destination is the
accumulator, the source can use register, direct, register-indent, or immediate addressing; when
the destination is a direct address, the source can be the accumulator or immediate data.
Note: When this instruction is used to modify an output port, the value used as the original port
data will be read from the output data latch, no the input pins.
	 Example : If the accumulator holds 7.2 (01110010B) and register 0 holds 85H(10000101B) I the
accumulator.
	 ANL A,R0		
	 A → 72 – 01110010
	 R0 → 85 – 10000101

	 10000000

84	 Microcontroller Architecture, Programming and Application

Before Execution After Execution

A R0 A R0

72 85 80 85

	 Will leave 80H (10000000B) in the accumulator. When the destination is a directly addresses
byte, this instruction with clear combinations of bits in any RAM location or hardware register.

	 The instruction,

	 ANL P1, #0111011B

D7 D6 D5 D4 D3 D2 D1 D0

P1 = 0 1 1 1 0 0 1 1

	 With clear bits 7, 3 and 2 of output Port 1.

	 ½ /3 byte instruction.

	 1 machine cycle.

ANL A, Rn

	 Operation : (A) ← (A) ^ (Rn)

	 Example : ANL A, R2 ; Logically ANDs A and R2 and stores result in A,

		 A = 42 → 01000010

		 R2 = 79 → 01111001

		 01000000

Before Execution After Execution

A R2 A R2

42 79 40 79

	 1 byte instruction.
	 1 machine cycle.
ANL A, direct
	 Operation : (A) ← (A) ^ (direct)
	 Example : ANL A, 20H; Logically ANDs contents of A and memory location whose address
is 20H and stores result in A.
		 A = A8	→	 10101000
		 (Memory Location) 20H = 87	→	 10000111

				 10000000

	 Logical Operations	 85

Before Execution After Execution

A Memory Location 20H A Memory Location 20H

A8 87 80 87

	 2 bytes instruction.
	 1 machine cycle.
ANL A, @R1
	 Operation : (A) ← (A) ^ ((Ri))
	 Example : ANL A, @R1 ; Logically ANDs contents of A and memory location whose address
is given by R1 and stores result in A.
	 Address of R0 = 55
	 Accumulator = 00110010
	 Content of RAM address at 55 = 00100010

				 00100010

Before Execution After Execution

A Memory Location 55H A Memory Location 55H

32 22 22 22

	 1 byte instruction.
	 1 machine cycle.
ANL A, #data
	 Operation : (A) ← (A) ^ # data
	 Example : Logically ANDs contents of A and immediate data and stores result in A.
		 A = 89 → 10001001
		 Data = 45 → 01000101

		 00000001

Before Execution After Execution

A Data A data

89 45 01 45

	 2 bytes instruction.
	 1 machine cycle.
ANL direct, A
	 Operation : (direct) ← (direct) ^ (A)
	 Example : ANL 20H, A; Logically ANDs contents of A with the contents of memory location

86	 Microcontroller Architecture, Programming and Application

20H and stores result in memory location 20H.
 A = 75 → 01110101
	 (Memory Location) 20H = 89 → 10001001

			 00000001

Before Execution After Execution

A Memory Location 20H A Memory Location 20H

75 89 75 01

	 2 bytes instruction.
	 1 machine cycle.
ANL direct, #data
	 Operation : (direct) ← (direct) ^ #data
	 Example : ANL 40H, #40H; logically ANDs the contents of memory location 40H with data
40H and stores result in memory location 40H.
		 (Memory Location) 40H	 =	 45 → 01000101
		 Data	 =	 24 → 00100100

			 00000100

Before Execution After Execution

Memory Location 40H Data Memory Location 40H data

45 24 04 24

	 3 bytes instruction.
	 2 machine cycle.
ORL<dest-byte> <src-byte>
	 Function : Logical – OR for byte variables
	 Description : ORL performs the bitwise logical – OR operation between indicated variables,
storing the results in the destination byte. No flags are affected.
	 The two operands allow six addressing mode combinations. When the destination is the
accumulator the same can user register, direct, register – indirect or immediate addressing, when
the destination is a direct address, the source can be the accumulator or immediate data.
	 Note : When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
	 Example : If the accumulator holds A3H(10100011B) and R0 holds 55H (01010101B), then the
instruction

	 Logical Operations	 87

ORL A, R0
	 A – 10100011
	 R0 – 01010101

	    11110111

Before Execution After Execution

A R0 A R0

A3 55 F7 55

	 Will leave the accumulator holding the value F7H.

	 When the destination is a directly addressed byte, the instruction can set combination of bits
in any RAM locations or hardware register. The pattern of bits to be set is determined by a mask
byte, which may be either a constant data value in the instruction or a variable computed in the
accumulator at run-time. The instruction,
ORL P1, #00110010B

D7 D6 D5 D4 D3 D2 D1 D0

P1 = 0 0 1 1 0 0 1 0

	 Will set bits 5, 4 and 1 of output port 1.
	 ½/3 byte instruction.
	 ½ machine cycle.
ORL A, Rn
	 Operation : (A) ← (A) V (Rn)

	 Example : ORL A, R2; Logically ORs the contents of A and R2 and stores result in A

		 A = 42 → 01000010

		 R2 = 72 → 01110010

		 01110010

Before Execution After Execution

A R2 A R2

42 72 72 72

	 1 byte instruction.
	 1 machine cycle.
ORL A, direct
	 Operation: (A) ← (A) v (direct)
	 Example: ORL A, 20H; Logically ORs the contents of A and memory location 20H and stores
result in A.

88	 Microcontroller Architecture, Programming and Application

		 A	 =	 30 → 00110000
		 (Memory Location) 20H	 =	 61 → 01100000

				    01110000

Before Execution After Execution

A Memory Location 20H A Memory Location 20H

30 61 70 61

	 2 bytes instruction.
	 1 machine cycle.
ORL A, @R:
	 Operation : (A) ← (A) v ((Ri))
	 Example : ORL A, @R1; Logically ORs the contents of A and memory location whose address
is given by register R1 and stores result in A.
		 A 	=	 35 → 00110101
	 (Memory Location) R1 → 40H
		 R1	 =	 22 → 00100010

				    00110111

Before Execution After Execution

A Memory Location of R1 40H A Memory Location of R1 40H

35 22 37 22

	 1 byte instruction.
	 1 machine cycle.
ORL A, #data
	 Operation : (A) ← (A) v #data
	 Example: ORL A, #32H; Logically ORs the contents of A with 32H and stores result in A
		 A	 =	 07 → 00000111
		 data	 =	 32 → 00110010

					 00110111

Before Execution After Execution

A Data A Data

07 32 37 32

	 Logical Operations	 89

	 2 bytes instruction.
	 1 machine cycle.
ORL direct, A
	 Operation : (direct) ← (direct) v (A)
	 Example : ORL, 20H, A; Logically ORs contents of A with the contents of memory location
20H and stores result of memory location 20H.
		 A	 =	 B2 → 10110010
		 (Memory Location) 20H	 =	 07 → 00000111

					 10110111

Before Execution After Execution

A Memory Location 20H A Memory Location 20H

B2 07 B2 B7

	 2 bytes instruction.

	 1 machine cycle.

ORL direct, data

	 Operation: (direct) ← (direct) v # data

	 Example: ORL 20H, #25H; Logically ORs the contents of memory location 20H and data 25H
and stores result at memory location 20H.

		 (Memory Location) 20H	 =	 30 → 00110000

		 Data	 =	 25 → 00100101

				     00110101

Before Execution After Execution

Memory Location 20H Data Memory Location 20H data

30 25 35 25

	 3 bytes instruction.
	 2 machine cycle.
XRL <dest-byte>,<src-byte>
	 Function: Logical exclusion-OR for byte variables.
	 Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated
variable, storing the results in the destination. No flags are affected. The two operands allow six
addressing, mode combinations. When the designation is the accumulator, the source can use
register, direct, register-indirect or immediate address, when the designation is a direct address,
the same can be the accumulator to immediate data.

90	 Microcontroller Architecture, Programming and Application

	 Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
	 Example : If the accumulator holds C3H(11000011B) and R0 holds AAH(10101010B), then
instruction.
XRL A, R0
		 A	 =	 C3 → 11000011
		 R0	 =	 AA → 10101010

				    01101001

Before Execution After Execution

A R0 A R0

C3 AA 69 AA

	 Will leave the accumulator holding the value 69H(01101001B). When the designation is
directly addressed byte, the instruction can complement combination of bits in any RAM location
or hardware register. The pattern of bits to be complemented is then determined by a mask byte,
either a constant contain in the instruction or a variable computed in the accumulator at run-time.
The instruction,
XRL P1, #00110001B
	 Will complement bits 5, 4 and 0 of output Port1

D7 D6 D5 D4 D3 D2 D1 D0

P1 = 0 0 1 1 0 0 0 1

	 ½ byte instruction.
	 1 machine cycle.
XRL A, Rn
	 Operation : (A) ← (A) V (Rn)
	 Example : XRL A, R2; Logically XORs the contents of A and R2 and stores result in A.
		 A	 =	 AB → 10101011
		 R2	 =	 D2 → 11010010

				    01111001

Before Execution After Execution

A R2 A R2

AB D2 79 D2

	 1 byte instruction.
	 1 machine cycle.

	 Logical Operations	 91

XRL A, direct
	 Operation: (A) ← (A) V (direct)
	 Example : XRL A, 20H; Logically XORs the contents of A with memory location 20H and
stores result in A.
		 A	 =	 3C → 00111100
		 (Memory Location) 20H	 =	 42 → 01000010

				    01111110

Before Execution After Execution

A Memory Location 20H A Memory Location 20H

3C 42 7E 42

	 2 bytes instruction.
	 1 machine cycle.
XRL A, @Ri
	 Operation: (A) ← (A) V ((Ri))
	 Example : XRL A,@R2; Logically XORs the contents of A and the memory location whose
address is given R1 and stores result in A.
		 A	 =	 72 → 01110010
		 (Memory Location) R2	 =	 4A → 01001010

					 00111000

Before Execution After Execution

A Memory Location R2 A Memory Location R2

72 4A 38 4A

	 1 byte instruction.
	 1 machine cycle.
XRL A, #data
	 Operation: (A) ← (A) V #data
	 Example: XRL, #40H; Logically XORs the contents of A with data 40H and stores result in
A.
		 A	 =	 9C → 10011100
		 data	 =	 32 → 01001000

				    11010100

92	 Microcontroller Architecture, Programming and Application

Before Execution After Execution

A Data A Data

9C 48 D4 48

	 2 bytes instruction.
	 1 machine cycle.
XRL direct, A
	 Operation: (direct) ← (direct) V A
	 Example: XRL 20H, A; Logically XORs the contents at 20H and the A and stores the result at
30H.
		 A	 =	 4E → 01001110
		 20H	 =	 F2 → 11110010

		 30H	 =	 BC → 10111100

Before Execution After Execution

A
Memory

Location 20H
Memory

Location 30H
A

Memory
Location 20H

Memory
Location 30H

4E F2 00 4E F2 BC

	 2 bytes instruction.

	 1 machine cycle.

XRL direct, #data

	 Operation: (direct) ← (direct) V #data

	 Example : XRL 30H, #40H; Logically XORs the contents at 30H and data 40H and stores the
result at 30H.

		 (Memory location) 30H	 =	 25 → 00100101

		 Data	 =	 40 → 01000000

					 01100101

Before Execution After Execution

Memory
Location

30H
Data

Memory
Location

30H
Data

25 40 65 40

	 2 bytes instruction.
	 1 machine cycle.

	 Logical Operations	 93

CLR A
	 Function: Clear Accumulator
	 Description: The accumulator is cleared (all bits set on zero). No flags are affected.
	 Examples: The accumulator contains 95H(10010101B). The instruction,
CLR A
	 Will leave the accumulator set to 00H (00000000B).
	 Operation (A) ← 0
	 1 byte instruction.
	 1 machine cycle.
CPL A
	 Function: Complement Accumulator
	 Description: Each bit of the accumulator is logically complement (one’s complement) bits
which previously contained a one are changed to a zero and vice versa. No flags are affected.
	 Example: The accumulator contains 55H(01010101B). The instruction,
CPL A

Before Execution After Execution

A A

55 AA

	 Will leave the accumulator set to AAH (10101010B)
	 Operation: (A) ← (Ā)
	 Note that instruction, then can use the SFR port latches us designations are ANL, ORL and
XRL.
Note:
	 1.	 If the direct address designation is one of the port SFRs, the data latched in the SFR, not

the pin data is used.
	 2.	 No flags are affected unless the direct address is the PSW.
	 3.	 Only internal RAM or SFRS may be logically manipulated.

5.3	 BIT LEVEL LOGICAL OPERATIONS

Certain internal RAM (bytes 20 to 2F) and SRFs(A, B, IE, IP, P0, P1, P2, P3, PSW TCON SCON)
can be addressed by then byte addresses or by the address of each bit within a byte.
	 Bit addressing is very easy, to after a single bit of a byte, in a control register. The Assembler
equates bit address to labels, which make the program more readable.
	 The need for a RAM area is due to the ability of individual bit operation. The bit addresses
are numbered 00H to 7F in the RAM area.

5.3.1	 Internal RAM Bit Addresses

Internal RAM bytes address 20 to 2F is both byte and bit addressable. RAM is very efficient to
store bit information, while the internal RAM are addressed as individual bit addresses.

94	 Microcontroller Architecture, Programming and Application

	 The table shows the relation between byte and bit addresses.

Byte Address(hex) Bit Address(hex)

20 00–07

21 08–0F

22 10–17

23 18–1F

24 20–27

25 28–2F

26 30–37

27 38–3F

28 40–47

29 48–4F

2A 50–57

2B 58–5F

2C 60–67

2D 68–6F

2E 70–77

2F 78–7F

5.3.2	 SFR Bit Addresses

Specified function reg A, B, IE, IP, P0, P1, P2, P3, PSW, TCON, SCON are addressed at the byte
level or at the bit level. The bit address is by using five MSB’s of the direct address of SFR,
together with B LSB’s.
	 The table shows the list of bit addressable SFR’s and their correspond bit addresses

SFR Direct Address(hex) Bit Addresses(hex)

A 0E0 0E0–0E7

B 0F0 0F0–0F7

IE 0A8 0A8–0AF

IP 0B8 0B8–0BF

P0 80 80–87

P1 90 90–97

P2 0A0 0A0–0A7

P3 0B0 0B0–0B7

	 Logical Operations	 95

PSW 0D0 0D0–0D7

TCON 88 88–8F

SCON 98 98–9F

	 Note: The SFRs are also bit addressable form the bit address by using the five most significant
bits of the direct address for that SFR, together with the three least significant bits the identify
the bit position from position 0(LSB) to 7(MSB).
	 l	 Bit 0E3H is bit-3 of the A reg.
	 l	 The assembles can also understand “more descriptive mnemonics, such as P0.5 for bit-5

of Port0, which is more formally addressed as 85H.

5.3.3	 Bit Level Boolean Operations

The bit level Boolean logical opcodes operators on any addressable RAM or SFR bit.
Bit Addressable Control Register
	 The following table lists the Boolean bit level operation.

Mnemonic

ANL c,b

ANL c,/b

ORL c,b

ORL c,/b

CPL c

CPL b

CLR c

CLR b

MOV c,b

MOV b,c

SET B C

SET B b

	 Note that no flags, other the C flag are affected, unless the flag is an addressed bit.
Bit Level Logical Operation Examples

Mnemonic Operation

SET B 00h Bit 0 of RAM byte 20h = 1

MOV C, 00h C = 1

MOV 7Fh, C Bit 7 of RAM byte 2Fh = 1

ANL C,/00h C=0; bit 0 of RAM byte 20h = 1

96	 Microcontroller Architecture, Programming and Application

ORL C, 00h C = 1

CPL 7Fh Bit 7 of RAM byte 2Fh = 0

CLR C C = 0

ORL C, /7Fh C=1; bit 7 of RAM byte 2Fh = 0

5.4	 ROTATE AND SWAP OPERATIONS

The Rotate instructions (RLA, RLC A, etc) shift the accumulator 1 bit to the left or right. For a
left rotation, the MSB rolls into the LSB position. For a right rotation, the LSB rolls into the MSB
position.
	 The SWAP A instruction interchanges the high and low nibbles with in the accumulator. This
is a useful operand in BCD manipulations. For e.g. if the accumulator contains as binary number
which is known to be less than 450, it can be quickly converted to BCD by the following code.
	 MOV b, #10
	 DIV AB
	 SWAP A
	 ADD A, B
	 Directing the number by 10 leaves the tens digit in the low nibble of the accumulator and
the ones digit in the B register. The SWAP and ADD instructions move the tens digit to the high
nibble of the accumulator and the one’s digit to the low nibble.

Mnemonic

RL A

RLC A

RR A

RRC A

SWAP A

RLA
	 Function: Rotate accumulator left.
	 Description: The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated
into the bit0 position. No flags are affected.
	 Example: The accumulator holds the value 02AH(00101010B). The instruction,
RLA

Before Execution Rotation After Execution

Cy A Cy A Cy A

1 2A 1 0 0 1 0 1 0 1 0 0 54

0 0 1 0 1 0 1 0 0

	 Will leave the accumulator holding the value 54H (01010100B) with the unaffected
operation.

	 Logical Operations	 97

		 (An+1)	←	 (An) n = 0-6
		 (A0)	←	 (A1)
	 1 byte instruction.
	 1 machine cycle.
RLC A
	 Function: Rotate accumulator left through the carry flag.
	 Description: The eight bits in the accumulator and the carry flags are together rotated one
bit to the left. Bit 7 moves into the carry flag; the original state of the carry flag moves into the
bit0 position. No other flags are affected.
	 Example: The accumulator holds the value 02AH(00101010B). The instruction,
RLC A

Before Execution Rotation After Execution

Cy A Cy A Cy A

1 2A 1 0 0 1 0 1 0 1 0 0 55

0 0 1 0 1 0 1 0 1

	 Leaves the accumulator holding the value 55(01010101B). No flags are affected.
	 Operation:	 (An+1)	←	 (An)n = 0-6
		 (A0)	←	 (C)
		 (C)	←	 (A7)
	 1 byte instruction.
	 1 machine cycle.
RRA
	 Function: Rotate accumulator right.
	 Description: The eight bits in the accumulator are rotated one bit to the right bit 0 rotated
into the bit 7 position. No flags are affected.
	 Example: The accumulator holds the value 02AH(00101010B). The instruction,
RRA

Before Execution Rotation After Execution

Cy A Cy A Cy A

1 2A 1 0 0 1 0 1 0 1 0 0 15

0 0 0 0 1 0 1 0 1

	 Leaves the accumulator holding the value 015H (00010101B) with the carry unaffected.
	 Operation:	 (An)	←	 (An+1) = 0-6
		 (A7)	←	 (A0)
	 1 byte instruction.
	 1 machine cycle.

98	 Microcontroller Architecture, Programming and Application

RRC A
	 Function: Rotate accumulator right through carry flag.
	 Description: The accumulator holds the value 02AH(00101010B), the carry is zero. The
instruction,
RRC A

Before Execution Rotation After Execution

Cy A Cy A Cy A

1 2A 1 0 0 1 0 1 0 1 0 0 95

0 1 0 0 1 0 1 0 1

	 Leaves the accumulator holding the value 95(10010101B), the carry is zero.

	 Operation:	 (An)	←	 (An+1) n = 0-6

		 (A7)	←	 (C)

		 (C)	←	 (A0)

	 1 byte instruction.

	 1 machine cycle.

SWAP A

	 Function: Swap nibbles with in the accumulator.

	 Description: Swap A interchanges the low and high order nibbles (four bit fields) of the
accumulator (bit3-0 and bits7-4). The operation can also be through of as a four bit rotate
instruction number flags are affected.

	 Example: The accumulator value(2A)(001010101). The instruction,
SWAP A

Before Execution After Execution

A A

2A A2

	 Leaves the accumulator holding the A2H(10100010B).
	 Operation: SWAP
		 (A3-0)	←	 (A7-4)
	 1 byte instruction.
	 1 machine cycle.

5.5	 BOOLEAN VARIABLE MANIPULATION INSTRUCTION

CLR bit
	 Description: The indicated bit is cleaned (reset to zero). No other flags are affected. ELR can
operate a carry flag or any directly addressable bit.
	 Example: Port1 has previously been written with EAH(11101010B). The instruction,

	 Logical Operations	 99

CLR P1.3
	 Will leave the port set to E2 (1110 0010B)
	 1 byte instruction.
	 1 machine cycle.
CLR C
	 Operation (C) ← 0
	 1 byte instruction.
	 1 machine cycle.
CLR bit
	 Operation: CLR
	 (bit) ← 0
	 2 bytes instruction.
	 1 machine cycle.
SETB <bit>
	 Function: Set Bit
	 Description: SETB sets the indicated bit to one SETB can operate on the carry flag or any
directly addressable bit. No other flags are affected.
	 Example: The carry is cleared. Output Port1 has been written with the value 34H (00110100B).
The Instruction,
	 SET B C
	 SET B P1.0
	 Will leave the carry flag set to 1 and change the data output in Port1 to 35H (00110101B)
	 ½ byte instruction.
	 1 machine cycle.
SET B C
	 Operation (C) ← 1
	 1 byte instruction.
	 1 machine cycle.
SET B bit
	 Operation: SET B
	 (bit) ← (1)
	 2 bytes instruction.
	 1 machine cycle.
CPL bit
	 Function: Complement bit
	 Description: The bit variable specified is complemented. A bit which had been a one is
change to zero and vice-versa. No other flags are affected CLR can operate on the carry or any
directly addressable bit.

100	 Microcontroller Architecture, Programming and Application

	 Note: When this instruction is used to modify an input pin, the value used as the original
data will be read from the output data latch, not the input pin.
	 Example: Port 1 has previously been written with FF(11111111B). The instruction,
UPL P1.1
	 Will leave the port set to FDH (11111101B)
	 ½ byte instruction.
	 1 machine cycle.
CPL C
	 Operation: (C) ← (C)
	 CPL bit
	 Operation: (bit) ← (bit)
ANL C,<src - bit>
	 Function: Logical –AND for bit variables.
	 Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag;
otherwise leaves the carry flag in its current state. A slash (“/”) preceding the operand in the
assembly language indicates that the logical complement of the addressed bit is used as the
source value, but the source bit itself is not affected. No flags are affected.
	 Only direct addressing is allowed for the source operand.
Example:
	 Set the carry flag if, and only if,
	 P1.0 = 1, ACC.7 = 1, and 0V = 0
	 MOV C, P1.0; Load carry with input pin state
	 ANL C, ACC.7; AND carry with ACC.Bit7
	 ANL C, /0V; AND with inverse of overflow flag.
	 2 bytes instruction.
	 2 machine cycle.
ANL C, bit
	 Operation: ANL
	 (C) ← (C) ^ (bit)
	 2 bytes instruction.
	 2 machine cycle.
ANL C, /bit
	 Operation: ANL
	 (C) ← (C) ^ (bit)
	 2 bytes instruction.
	 2 machine cycle.
MOV <dest – bit>, <src – bit>	
	 Function: Move bit data

	 Logical Operations	 101

	 Description: The Boolean variables indicated by the second operand is copied into the
location specified, by the first operand. One of the operands must be the carry flag; the may be
any directly addressable bit. No other register flag is affected.

	 Example: The carry flag is originally set. The data present at input Port 3 is (11000101B). The
data previously written to output Port 1 is C5H (11000101B)

	 MOV P1.3, C

	 MOV C, P3.3

	 MOV P1.2, C will leave carry cleared and change

	 Port 1 to 39 H(00111001B)

	 2 bytes instruction.

	 ½ machine cycle.

MOV C, bit

	 Operation: MOV

	 (C) ← (bit)

	 2 bytes instruction.

	 1 machine cycle.

MOV bit, C

	 Operation: MOV

	 (bit) ← (C)

	 2 bytes instruction.

	 2 machine cycle.

5.6	S UMMARY

	 l	 The byte level logical operations use all 4 addressing modes for the source of a data
byte

	 l	 Logical operations that use the port as a source, but not as a destination

	 l	 Only internal ram or SFR’s may be logically manipulated

	 l	 No flags are affected unless the direct address is PSW

	 l	 The bit level boolean logical opcodes operate on addressable ram or SFR bit

	 l	 The swap instruction can be thought of as a rotation of nibbles in the register A

	 l	 Only the SFRs that have been identified as bit addressable may be used in bit
operations

	 l	 The carry flags in RRC and RLC are affected

	 l	 Rotation and flag operations are limited to the register A

	 l	 The CJNE instruction that any RN register can be compared with an immediate value

102	 Microcontroller Architecture, Programming and Application

5.7	 QUESTIONS

	 1.	 Give two data levels.
	 2.	 Define byte level boolean operations.
	 3.	 Many of these byte levels operations use a ________ addresser.
	 4.	 The big level boolean logical opcodes operate on any addressable ________ or

________.
	 5.	 The A register can be rotated one bit position to the left or right with or without including

the ________flag in the rotation.
	 6.	 Give an example of swap instruction.
	 7.	 Give any two rotate instructions.
	 8.	 Define SET B.
	 9.	 IP stands for ________.
	 10.	 List the bit addressable SFR and corresponding bit addresses.
	 11.	 The rotate and swap operations are limited to _________.

Chapter 6
Arithmetic Operations

6.1	 INTRODUCTION

Application of microcontroller often involves performing mathematical calculation on data in
order to alter program flow and modify program actions. The 24 arithmetic opcodes are grouped
into the following types:

Mnemonics Operation

INC destination increment destination by one

DEC destination decrement destination by one

ADD/ADDC destination source add source to destination without/with carry flag

SUBB destination source subtract with carry, source from destination

MUL AB multiply the contents of register A & B

DIV AB divide the contents of register A by the contents of register B

DAA decimal adjust the A register

6.2	FLA GS

A key part of performing arithmetic operations is the ability to store in the certain results of those
operations that affect the way in which the program operates.
 	 The 8051 has several dedicated latches or flags that store the results of arithmetic operations.
It has a form of arithmetic flags. The carry and auxiliary carry overflow and parity.

6.2.1	 Instructions Affecting Flags

Instruction mnemonics Flags affected

ADD C AC OV

ADDC C AC OV

103

104	 Microcontroller Architecture, Programming and Application

ANL C, direct C

CJN E C

CLR C C = 0

CPL C C = C

DA A C

DIV C = 0 OV

MOV C, direct C

MUL C = 0 OV

ORL, C, direct C

RLC C

RRC C

SET B C C = 1

SUB B C AC OV

	 1.	 Note that flags are all stored in the PSW any instruction that can modify a bit or byte in
that register (MOV, SET B; XCH etc) changes the flag.

	 2.	 The Parity flag is affected by every instruction executed.
	 (i)	 Parity flag will be set to 1 for add on of 1’s in A.
	 (ii)	 Parity flag will be set to 0 for even number of is in register A.

6.3	 ARITHMETIC INSTRUCTION

6.3.1	 Unsinged and signed Addition

Number may be unsigned or signed number for addition signed numbers use 7th bit as a sign
it(MSB) remaining 0 to 6th bit, expresses the magnitude of the number for signed number 7th bit
shows one for negative sign and shows zero for positive sign.

6.3.2	 Unsigned Addition

Unsigned numbers make use of the carry flag to detect when the reset an ADD operation is a
number larger than FFh. If the carry is set to 1 after an ADD, then the carry can be added to a
higher order byte. So that the sum is not lost,
For e.g.
	 Decimal	 Binary	 Hexa
	 97	 01100001	 61H
	 183	 10110111	 B7H

	 280	 1)	00011000	 1)	18H

	 Arithmetic Operations	 105

6.3.3	 Signed Addition

Signed numbers may be added two ways additions of like signed number and addition of unlike
signed numbers. If unlike signed numbers are added then it is not possible for the result to be
larger than – 128d or +127d, and the sign of the result will always be corrected.
For e.g
	 ADD A, <src-bytes>
	 Function: ADD
	 Description: ADD adds the byte variables indicated to the accumulator, leaving the result in
the accumulator. The carry and auxiliary carry flags are set, respectively. If there is carry out from
bit-7 or bit-3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an
overflow occurred.
	 When adding signed integers, OV indicates a negative number produced as the sum of two
positive operands or a positive sum from two negative operands.
	 Four source operand addressing modes are allowed:
	 Register, direct, register-direct, immediate.
	 byte: ½
	 cycle: 1
	 Example: The accumulator holds 89H (10001001B) and register 0 holds 95H (10010101B) .The
instruction,
		 ADD A, R0
	 Will leave 1E (00011110B) in the accumulator with the AC flag cleared and both the carry flag
and OV set to 1.
		 A = 2A	→	 00101010
		 R0 = 04	→	 00000100
		 -----		 -------------
		 2E		 00101110
		 -----		 -------------

Before
Execution

After
Execution

A R0 A R0

2A 04 2E 04

ADD A, Rn
	 Operation: (A) ← (A) + (Rn)
	 Example: ADD A, R2; Adds contents of A and R2 and stores result in A.
		 A	 =	 05
		 R2	 =	 71

				 76

106	 Microcontroller Architecture, Programming and Application

Before
Execution

After
Execution

A R2 A R2

05 71 76 71

	 1 byte instruction
	 1 machine cycle
ADD A, direct
	 Operation: (A) ← (A) + (direct)
	 Example: ADD A, 20H: Adds contents of A and memory whose address is 20H and store
result in A.
		 A	 =	 25
		 (Memory Location) 20H	 =	 43

Before Execution After Execution

A Memory Location
20H

A Memory Location
20H

25 43 68 43

	 2 bytes instruction
	 1 machine cycle
ADD A, @Ri
	 Operation: (A) ← (A) + ((Ri))
	 Example: ADD A, @R2; Adds contents of A and memory whose address is given by register
R2, and stores result in A.
		 A	 =	 02
		 Address of R2	 =	 2A

				 2C

Before Execution After Execution

A Address of R2 A Address of R2

02 2A 2C 2A

	 1 byte instruction
	 1 machine cycle
ADD A, #data
	 Operation: (A) ← (A) + #data
	 Example: ADD A, # 20H; Adds the contents of A and 20H.
		 A	 =	 42H

	 Arithmetic Operations	 107

		 Data	 =	 20H

				 62H

Before Execution After Execution

A Data A Data

42 20 62 20

	 2 bytes instruction
	 1 machine cycle
ADDC A, <src – byte>
	 Function: Add with carry
	 Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the
accumulator contents, leaving the result in the accumulator. The carry and auxiliary – carry flags
are set respectively, if there is a carry-out from bit-7 or bit-3 and cleared otherwise. When adding
unsigned integers, the carry flag indicates an overflow occurred.
	 OV is set if there is a carry-out of bit-6 but now of bit-7, or a carry-out of bit-7 but not out of
bit-6;
	 Otherwise, OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands or a positive sum from two negative operands.
	 Four source operand addressing modes are allowed: register, direct, register – indirect, or
immediate.
	 ½ byte instruction
	 1 machine cycle
	 Example: The accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B)
with the carry flag set. The instruction,
ADDC A, R0
	 Will leave 6EH (01101110B) in the accumulator with AC cleared and both the carry flag and
or set to 1.
ADDC A, Rn
	 Operation: (A) ← (A) + (C) + (Rn)
	 Example: ADDC A, R2; Adds the contents of A, R2 and carry flag and stored result in A.
		 A	 =	 15
		 CY	 =	 1
		 R0	 =	 25

				 3B

108	 Microcontroller Architecture, Programming and Application

Before Execution After Execution

A CY R0 A CY R0

15 1 25 3B 0 25

	 1 byte instruction
	 1 machine cycle
ADDC A, direct
	 Operation: (A) ← (A) + (C) + (direct)
	 Example: ADDC A, 20H; adds the contents of A, memory location whose address is 20H and
the carry flag and stores result in A.
		 A	 =	 14
		 CY	 =	 1
		 (Memory Location) 20H	 =	 25

				 3A

Before Execution After Execution

A CY Memory Location 20H A CY Memory Location 20H

14 1 25 3A 0 25

	 2 bytes instruction
	 1 machine cycle
ADDC A, @Ri
	 Operation: (A) ← (A) + (C) + ((Ri))
	 Example: ADDC A, @R2; Adds the contents of A, memory location whose address is given
by register R2 and the carry flag and stores result in the A.
		 A	 =	 1A
		 CY	 =	 1
		 (Address of R2) 20H	 =	 A4

				 BF

Before Execution After Execution

A CY (Address of R2) 20H A CY (Address of R2) 20H

1A 1 A4 BF 0 A4

	 1 byte instruction
	 1 machine cycle

	 Arithmetic Operations	 109

ADDC A, #data
	 Operation: (A) ← (A) + (C) + #data
	 Example: ADDC A, #20H; Adds the contents of A and carry flag and 20H and stores result
in A.
		 A	 =	 B5
		 CY	 =	 1
		 Data	 =	 20

				 D6

Before
Execution

After Execution

A CY Data A CY Data

B5 1 20 D6 0 20

	 2 bytes instruction
	 1 machine cycle

6.4	 SUBTRACTION

SUBB A, <src-byte>
	 Function: Subtract with borrow.
	 Description: SUBB subtracts the indicated variable and the carry flag together from the
accumulator, leaving the result in the accumulator, SUBB sets the carry (borrow) flag if a borrow
is needed for bit-7 and clears otherwise. If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction.
So, the carry is subtracted from the accumulator along with the source operand1. AC is set if a
borrow is needed for bit 3 and cleared otherwise. OV is set if a borrow is needed into bit-6, but
not into bit-7 or into bit but not bit-6.
	 When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value or a positive result when a positive number is subtracted
from a negative number.
	 The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.
	 Example: The accumulator holds C9H (11001001B), register, 2 holds 54H (01010100B) and the
carry flag is set. The instruction,
SUBB A, R2
		 A	 =	 C9
		 R2	 =	 59

				 75

110	 Microcontroller Architecture, Programming and Application

Before Execution After Execution

A R2 A R2

C9 59 75 59

	 2 bytes instruction
	 1 machine cycle
	 Will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV Set.
	 Notice that C9H minus 54H is 75H. The difference between this and the above results is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a CLR
C instruction.
SUBB A, Rn
	 Operation: (A) ← (A) – (C) – (Rn)
	 Example: SUBB A, R3; Subtracts contents of R3 and carry together from A and stores results
in A.
		 A	 =	 45
		 R3	 =	 25
		 CY	 =	 1

				 19

Before Execution After Execution

A R3 CY A R3 CY

45 25 1 19 25 1

	 1 byte instruction
	 1 machine cycle
SUBB A, direct
	 Operation: (A) ← (A) – (C) – (direct)
	 Example: SUBB A, 20H; Subtracts the contents of memory location 20H and carry together
from A and stores result in A.
		 A	 =	 45
		 R3	 =	 25
		 CY	 =	 1

				 19

	 Arithmetic Operations	 111

Before Execution After Execution

A R3 CY A R3 CY

45 25 1 19 25 1

	 2 bytes instruction
	 1 machine cycle
SUBB A, @Ri
	 Operation: (A) ← (A) – (C) – ((Ri))
	 Example: SUBB A, @R2; subtracts the contents of memory location whose address is given
by R2 and carry together from A and stores result in A.
		 A	 =	 45
		 R3	 =	 25
		 CY	 =	 1

				 19

Before Execution After Execution

A R3 CY A R3 CY

45 25 1 19 25 1

	 1 byte instruction
	 1 machine cycle
SUBB A, #data
	 Operation: (A) ← (A) – (C) - #data
	 Example: SUBB A, #20H; Subtracts 20H from A and stores result in A.
		 A	 =	 77
		 Data	 =	 23

				 54

Before Execution After Execution

A Data A Data

77 23 54 23

	 After executing SUBB A, #data the accumulator 77 and data 23 and CY flag is cleared.
	 2 bytes instruction
	 1 machine cycle

112	 Microcontroller Architecture, Programming and Application

6.5	 Increment And Decrement InstructionS

INC<byte>
	 Function: Increment
	 Description: INC increment the indicated variable by 1. An original value of 0FFH will
overflow to 00H. No flags are affected. Three addressing modes are allowed. Register, direct or
register-indirect.
	 Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
	 Example: Register 0 contains 7EH (011111111). Internal RAM locations 7EH and 7FH contain
0FFH and 40H respectively. The instruction sequence,
	 INC @R0
	 INC R0
	 INC @R0
	 Will leave register0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively)
00H and 41H.
	 ½ byte instruction.
	 1 machine cycle.
INC Rn
	 Operation: (A) ← (A) + 1
	 Rn → 5F

Before Execution After Execution

Rn Rn

5F 60

	 1 byte instruction.
	 1 machine cycle.
INC direct
	 Operation: INC
		 (direct)	←	 (direct) + 1
	 Add a 1 to content of the direct memory address. Assume initially the internal memory
location 25H contains data 60H. After executing INC 25H, the location will have the updated
value 26H.
	 2 bytes instruction.
	 1 machine cycle.
INC @Ri
	 Operation: ((Ri)) ← ((Ri)) +1
	 Example: INC @ R1; increment contents of memory location whose address is given by
register R1 by 1.

	 Arithmetic Operations	 113

Note Ri may be R0 or R1
	 Assume the pointer R0 contains 42H and the internal memory location 42 contains 2AH.
After executing INC @ R0, the internal memory location 42H will have updated value 2BH.
	 1 byte instruction.
	 1 machine cycle.
INC DPTR
	 Function: Increment Data pointer
	 Description: Increment the 16-bit data pointers by 1. A 16-bit increment (modulo 216) is
performed; an overflow of the low order byte of the data pointer (DPL) from FFH to 00H will
increment the high-order byte DPH. No flags are affected.
	 Example: Registers DPH and DPL contain 12H and FEH respectively. The instruction
sequence,
	 INC DPTR
	 INC DPTR
	 INC DPTR
Will change DPH and DPL to 13H and 01H
	 Operation: (DPTR) ← (DPTR) + 1
	 1 byte instruction.
	 2 machine cycles.
DEC byte
	 Function: Decrement
	 Description: The variable indicate is decremented by 1. An original value of 00H will
underflow to 0FFH. No flags are affected. Four operand addressing modes are allowed:
accumulator, register-direct, register-indirect.
	 Note: Register0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain
00H and 40H respectively. The instruction sequence,
	 DEC @R0
	 DEC R0
	 DEC @R0
	 Will leave register 0 set to 7EH and internal RAM locations 7EH & 7FH and 7FH set to 0FFH
and 3FH.
	 ½ byte instruction.
	 1 machine cycle.
DEC A
	 Operation: (A) ← (A)–1
	 Subtract a 1from accumulator
	 Let us assume A = 23H, after executing the instruction DEC A, there will contain 22H.
	 1 byte instruction.
	 1 machine cycle.

114	 Microcontroller Architecture, Programming and Application

DEC Rn
	 Operation: (Rn) ← (Rn)–1
	 Example: DEC R3; decrements the contents of R3 by 1

Before Execution After Execution

R3 R3

3E 3D

	 1 byte instruction.
	 1 machine cycle.
DEC direct
	 Operation: (direct) ← (direct) –1
	 Example: DEC 20H; decrements the contents of memory location whose address is 20H
by 1.
	 2 bytes instruction.
	 1 machine cycle.
DEC @Rn
	 Operation: ((R1)) ← ((Ri)) – 1
	 Example: DEC @R2; decrements the contents of memory location whose address is given by
register R2 by 1.
	 1 byte instruction.
	 1 machine cycle.
Note:
	 1.	 No math flags are affected.
	 2.	 All 8-bit address contents overflow FFh to 00h.
	 3.	 DPTR is 16-bit; DPTR overflows from FFFFh to 0000h.
	 4.	 The 8-bit address contents underflow from 00h to FFh.
	 5.	 There is no DEC DPTR to match the INC DPTR.

6.6	 MULTIPLICATION AND DIVISION

MUL AB
	 Function: Multiply
	 Description: MUL AB the unsigned eight bit integers in the accumulators and register B. The
low-order byte of the sixteen-bit product is left in the accumulator and the high-order byte in B.
If the product is greater than 255(FFH) the overflow flag is set; otherwise it is cleared. The carry
flag is always cleared.
	 Example: Originally, the accumulator holds the value 80(50H). Register B holds the value
160(0A0H). The instruction,
MUL AB
	 Will give the product 12,800(3200H), 80B is changed to 32H (00110010B) and the accumulator
is cleared. The overflow flag is set, carry is cleared.

	 Arithmetic Operations	 115

	 Operation: (A)7-0 ← (A) X (B)
	       (B)15-8

		 A	 =	 58H
		 B	 =	 11H

Before Execution After Execution

A B A B

58 11H D8 05

Examples:
	 MOV A, #12
	 MOV B, #05
	 MUL AB
	 ;A = 5A; B = 00	
	 1 byte instruction.
	 4 machine cycles.
DIV AB
	 Function: Divide
	 Description: DIV AB divides the unsigned eight bit integer in the accumulator by the unsigned
eight-bit integer in register B. The accumulator receives the integer part of the quotient; register
B receives the integer remainder. The carry and or flags will be cleared.
	 Exception if B had originally contained 00H, the values returned in the accumulator and
B register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.
	 Example: The accumulator contains 250(0FBH or 11111010B) and B contains 18(12H or
00010010B). The instruction,
DIV AB
	 Will leave B in the accumulator (0DH or 00001101B) and the value 16(10H or 00010000B) in
B. Since, 250 = (13 × 18) + 16 carry and OV will both be cleared.
Operation DIV
		 (A)15-8	←	 (A) / (B)
		 (B)7-0

	 1 byte instruction.
	 4 machine cycles.

6.7	 DECIMAL ARITHMETIC

DA A
	 Function: Decimal – adjust accumulator for addition.
	 Description: DA A adjusts the eight bit value in the accumulator resulting form the earlier
addition of two variables (each in packed BCD format), producing two four-bit digits. Any ADD
or ADDC instruction may be used to perform the addition.

116	 Microcontroller Architecture, Programming and Application

	 If accumulator bits 3-0 are greater than nine (XXXX1010XXXX1111), or if the AC flag is one,
51x is added to the accumulator producing the proper BCD digit in the low order nibble. This
internal addition would set the carry flag if a carryout of the low order four-bit field propagated
through all high-order bits but it would not clear the carry flag otherwise.
	 If the carry flag is now set, or if the four high order bits now exceed nine (1010XXXX-111XXXX)
these high order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry out of the high-order bits, but
would not clear the carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater then 100, allowing multiple precision decimal addition. OV is not affected.
	 All of there occur during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66 to the accumulator, depending on initial
accumulator and PSW conditions.
	 Note: DA A cannot simply convert a hexadecimal number in the accumulate to BCD notation,
not does
DA A apply to decimal subtraction.
	 Example: The accumulator holds the value 56H (01010110B) representing the packed BCD
digits of the decimal number 56. Register 3 contains the value 67(01100111B) representing the
packed BCD digits of the decimal number 67. The carry flag is set. The instruction sequence,
	 ADDC A, R3
	 DA A
	 Will first perform a standard two’s complement binary addition, resulting the value 0BEH
(10111110) in the accumulator. The carry and auxiliary carry flag will be cleared.
	 The decimal adjust instruction will then alter the accumulator to the value 24H(00100100B),
indicating the packed BCD digits of the decimal number 24, the low-order two digits of the
decimal sum of 56, 67 and the carry in. The carry flag will be set by the decimal adjust instruction,
indicating that a decimal overflow occurred. The true sum 56, 67 and 1 is 124.
	 BCD variables can be incremented or decremented by adding 01H or 99H. If the accumulator
initially holds 30H (representing the digit of 30 decimal), then the instruction sequence.
ADD A, #99
	 DA A
	 Will leave the carry set and 29H in the accumulator, since, 30 + 99 = 129. The low order byte
of the sum can be interpreted to mean 30 – 1 = 29.
	 Operation: DA
	 IF[[(A3-0)>9] OR [(AC)] = 1]
	 Then (A3-0) ← (A3-0) + 6
AND
	 IF[[(A7-4) > 9] OR [(C) = 1]]
	 Then (A7-4) ← (A7-4) + 6
	 1 byte instruction.
	 1 machine cycle.

	 Arithmetic Operations	 117

6.8	S UMMARY

	 l	 Arithmetic
	 l	 The c, ac and 0 be flags are arithmetic flags.
	 l	 The parity flag is affected.
	 l	 The parity is an elementary error checking method.
	 l	 All shift address contents over flow from 77h to 00h.
	 l	 There is no dec DPTR to match the inc DPTR.
	 l	 No math flags are affected.
	 l	 Multiplication operations use register A and B as both source and destination for

operation.
	 l	 Division operations use register A and B as both source and destination for operation.
	 l	 There is no comma between A and B in the division mnemonic.
	 l	 Four bits are required to represent the decimal numbers from 0 – 9 (0000 – 1001) and the

numbers are often called binary coded decimal (BCD).
	 l	 Only add and ADDC are adjusted to BCD by DAA.

6.9	 QUESTIONS

	 1.	 The instruction add is used to add __________ operands.
	 2.	 DAA stands for __________ .
	 3.	 In an 8 bit operand bit __________ is used for the sign bit.
	 4.	 In this valid 8051 instruction? Explain your answer ”MUL A, R1”.
	 5.	 A general is that if the __________ flag is set, then complement the sign.
	 6.	 Define add instruction with example.

Chapter 7
Jump and Call Operations

7.1	 INTRODUCTION

A single “ JMP add” instruction, but in fact there are three SJMP, JMP, and AJMP which different
in the format of the destination address JMP is a generic mnemonic which can be used of the
mnemonic does not can which way the jump encoded.
	 In all cases the programmer specifies are destination address to the assembler in the same
way: as a label or as a 16bit constant. The assembler will put the destination address into the
correct format for the given instruction. If the format required by the instruction will not support
the distance to the specified destination address a destination out of range message is written
into the list file.
	 A single “CALL address “instruction, but there are two of them LCALL and ACALL which
differ to the CPU. CALL is a generic mnemonic which can be used if the programmer does not
came which way the address is encoded.

7.2	 JUMP and CALL INSTRUCTIONS

All these jumps specify the destination address by the relative of set method, and so are limited
to a jump instance of –128 to +127 bytes from the instruction.
	 The jump instructions are three types
	 I	 Unconditional
	 II	 Conditional
	 III	 Indexed or Absolute
	 The conditional jumps test against zero or compare two signed or unsigned operands. The
indexed jumps index tables of displacement found in the current segment. They are used is
implement case statement. All jumps are program counter-relative and all displacement are
measured in bytes, relative to the first byte of case instruction (recorded in saved PC).
	 Note: Most of the jump opcodes add signed displacement, obtained by sign extending alpha, to
the unsigned PC. The only unsigned jump displacement are in the jump indexed instructions.

118

	 Jump and Call Operations	 119

7.3	 SJMP

The SJMP instruction coded the destination additional as a relative offset. The instruction is 2
byte long, consisting of code and the relative offset byte. The jump distance is limited to a range
of –128 to +127 bytes relative to the instruction following the SJMP.

7.4	 LJMP

The LJMP instruction encoded the destination address as a 16bit constant. The instruction is 3byte
long; the destination address can be any where in the 64k program memory space.

7.5	 AJMP

The AJMP instruction encodes the destination address as an 11bit constant. The instruction is 2
bytes long, constants of the opcode, enrich itself constant 3 of the 11 address bytes, following by
another byte containing the low 8 bit of the destination address. When the instruction is executed,
this 11 byte is simply substituted for the low 11 bit in the PC. The high 5 bit stays the same. Hence,
the destination has to be with the same 2k block as the instruction in following the AJMP.

7.6	 RELATIVE OFFSET

The destination address for these jumps is specified to the assembler by a label or by an actual
address in program memory. However, the destination address assemble to a relative offset
byte which is added to the (two’s complement) offset byte which is added to the PC in two’s
complement with arithmetic if the jump is executed. The range of the jump is therefore –128 to
+127 program memory byte following the instruction.

Mnemonic Opcode Execution time (us)

JMP adder Jump to addr 2

JMP @ A +DPTR Jump to A +DPTR 2

CALL addr Call Subroutine at addr 2

RET Return from subroutine 2

RE T1 Return from interrupt 2

NOP No Operation 1

7.7	 SHORT ABSOLUTE RANGE

Absolute range makes use of the concept of dividing memory into logical divisions called “pages”.
Program memory is divided into a series of pages of any binary sizes, such as 256 bytes 2k, 4k
etc. Or addresses from 0000H to FFFFH.

7.8	 LONG ABSOLUTE PAGE

Addresses that can access the entire program space from 0000H to FFFFH use long range
addressing. It requires more byte of code by specify and are relocatable only at the being of 64K
pages.

120	 Microcontroller Architecture, Programming and Application

7.9	 JUMPS

Jumps instruction used to respond quickly to changes in conditions. 8051 has a rich set of jump
that can operate at the bit and byte levels. These jumps opcodes are one reason, the 8051 is such
a powerful microcontroller.

7.9.1	 Bit Jumps

Bit jumps operant according to the status of the carry flag in the PSW or the status of any bit
addressable location. All bit jumps are relative to PC.
	 The table –shows the jump instruction that list for bit conditions
Mnemonic operation:
	 1.	 JC radd	 jump relative if the carry flag is set to I
	 2.	 JNC radd	 jump relative if the carry flag is reset to 0	
	 3.	 JB b, radd	 jump relative if addressable bit is set to I
	 4.	 JNB b, radd	 jump relative if addressable bit is reset to 0
	 5.	 JBC b, radd	 jump relative if addressable bit is set, and clear the addressable bit to 0
	 Note that numbers of flags are affected unless the bit in JBC is a flag bit in the program status
word. When the bit used in a JBC instruction is a port bit, the SFR latch for that port is read,
tested and altered.
JC rel
	 Function: Jump if carry is set.
	 Description: If the carry flag is set, branch to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative
displacement in the second instruction byte to the PC, after incrementing the PC twice. No flags
are affected.
	 Example: The carry flag is cleared. The instruction sequence
		 JC		 LABEL 1
		 CPL		 C
		 JC		 LABEL 2
	 Will set the carry and cause program execution to continue at the instruction identified by
the label LABEL 2.
	 Operation:	 (PC)	←	 (PC) +2
		 1F (C)	 =	 1
		 THEN
		 (PC)	←	 (PC) + rel
	 Two bytes instruction.
	 Two machine instruction.
JB rel
	 Function: Jump if bit set.
	 Description: If the indicated bit is me, jump to the address inducted; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative –

	 Jump and Call Operations	 121

displacement in the third instruction byte to the PC, after incrementing the PC to the first byte
of the next instruction. The bit tested is no modified. No flags are affected.
	 Example: The data present at input port 1 is 11001010B, the accumulator holds 56(01010110B).
The instruction sequence,
	 JB P1.2, LABEL 1
	 JB ACC.2, LABEL 2
	 Will cause program execution to branch to the instruction at label LABEL 2.
	 Operation:	 (PC)	←	 (PC) + 3
		 1F (bit)	 =	 1
		 THEN
		 (PC)	←	 (PC) + rel
	 Three bytes instruction.
	 Two machine cycle.
JNB bit, rel
	 Function: Jump if bit not set
	 Description: If the indicated bit is a zero, branch to the indicated address; otherwise
proceed with the instruction. The branch destination is computed by adding the signed
relative – displacement in the third instruction byte to the PC, after incrementing the PC to the
first byte of the next instruction. The bit tested is not modified. No flags are not modified. No
flags are affected.
	 Example: The data present at input port 1 is 11001010B. The accumulator holds 56H
(01010110B). The instruction sequence,
	 JNB P!.6, LABEL1
	 JNB ACC.3 LABEL 2
	 Will cause program execution to continue at the instruction label LABEL 2.
	 Operation:	 (PC)	←	 (PC) + 3
		 1F bit	 =	 0\
		 THEN
		 (PC)	←	 (PC) + rel
	 Three bytes instruction.
	 Two machine cycle.
JBC bit, rel
	 Function: Jump if bit set and clear bit
	 Description: If the indicated bit is a zero, branch to the indicated address; otherwise
proceed with the instruction. The branch destination is computed by adding the signed
relative – displacement in the third instruction byte to the PC, after incrementing the PC to the
first byte of the next instruction. The bit tested is not modified. No flags are not modified. No
flags are affected.
	 Note: When this instruction used to test an output pin, the value used as the original data
will be read from the output data latch, hold input pin.

122	 Microcontroller Architecture, Programming and Application

	 Example: The accumulator holds 56H (01010110B). The instruction sequence
	 JBC ACC.3 LABEL 1
	 JBC ACC.2 LABEL 2
	 Will cause program execution to continue at the instruction identified by the label LABEL 2,
with the accumulator modified to 52H (01010010B).
	 Operation:	 (PC)	←	 (PC) + 3
		 1F (bit)	 =	 1
		 THEN
		 (bit)	←	 0
		 (PC)	←	 (PC) + rel
	 Three bytes instruction.
	 Two machine cycle.

7.9.2	 Byte Jumps

Byte jumps instruction tested, bytes of data. If tested condition is true, the jump is taken. If the
condition is false, the instruction after the jump is executed. All bytes jumps are relative to the
PC.
CJNE < dest – byte >, < scr – byte> rel
	 Function: Compare and jump if not equal.

	 Description: CJNE compare the magnitudes of the first two operands, and branches if
their values are not equal. The branch destination is computed by adding the signed relative –
displacement is the last instruction byte to next instruction. The carry flag is set if the unsigned
integer value of <dest- byte> is less than the unsigned integer value of < scr- byte >; otherwise,
the carry is cleared. Neither operand is affected.

	 Example: The all contain 45h. Register 7 contains 60h. The first instruction in the sequence.

	 CJNE R7, #60h, NOT_EQ

	 ;

	 ;…………………………. ; R7=60h

	 ;

	 ;

	 NOT_EQ : JC REQ_LOW ;IF R7&<60h

	 ; …………………………… ;IF R7>60h

	 Sets the carry flag and branches to the instruction at lable NOT_EQ. By testing the carry flag,
this instruction determines whether R7 is greater or lesser than 60h. If the data being presented
to port1 is also 45H, then the instruction.
WAIT: CJNE A, P!, WAIT
	 Clears the carry flag and continues with the next instruction in sequence, since the accumulator
does equal the data read from p1. (If some other value was being input on p1, the program will
loop at this point until the p1 data changes to 45h).

	 Jump and Call Operations	 123

CJNE A, direct, rel
	 Operation:	 (PC)	←	 (PC)+3
		 IF(A)	< >	(direct)
		 THEN
		 (PC)	←	 (PC)+ relative offset
		 IF (A)	 <	 (direct)
		 THEN
 	 (C)	 ←	 1
		 ELSE (C)	←	 0
	 3 bytes instruction.
	 2 machine cycle.
CJNE A, #data, rel
	 Operation:	 (PC)	←	 (PC)+ 3
		 IF (A)	< >	data
		 THEN
		 (PC)	←	 (PC) + Relative offset
		 IF (A)	 <	 data
		 THEN
		 (C)	←	 1
		 ELSE
		 (C)	←	 0
	 3 bytes instruction.
	 2 machine cycle.
CJNE Rn, #data, rel
	 Operation:	 (PC)	←	 (PC) + 3
		 IF (Rn)	< >	data
		 THEN
		 (PC)	←	 (PC) + relative offset
		 If (Rn)	 <	 data
		 THEN
		 (C)	←	 1
		 ELSE
		 (C)	←	 0
	 3 bytes instruction.
	 2 machine cycle.
CJNE @R1,# data, rel
	 Operation: 	 (PC)	←	 (PC) + 3
		 IF ((Ri))	< >	data

124	 Microcontroller Architecture, Programming and Application

		 THEN
		 (PC)	←	 (PC) + relative offset
		 IF (Ri)	 <	 data
		 THEN
		 (C)	←	 1
		 ELSE
		 (C)	←	 0
	 3 bytes instruction.
	 2 machine cycle.
DJNZ < byte >, (rel_ addr)
	 Function: Jump if NOT ZERO
	 Description: DJNZ decreases the location indicated by 1, and branches to the add indicated
by the second operand if the resulting value is not zero. Original values of 00h will underflow
to 0FFH. No flag are affected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after increasing the PC to
the first byte of the following instruction. The location increased may be a register or directly
addressed byte.
	 Note: When this instruction may be used to modify n output port, the value used as the
original data port will be read from the o/p data latch, not the input pins.
	 Example: Internal RAM locations 40H, 50H and 60H contain the values 01H, 70H & 15H
respectively. The instruction sequence,
	 DJZN 40h, LABEL_1
	 DJZN 50h, LABEL_2
	 DJZN 60h, LABEL_3
	 Will cause a jump to the instruction at label LABEL_2 with the values 00h, 6fh & 15h in the
three RAM locations. The first jump was not taken, because the result was zero.
	 The instruction provides a simple way a executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycle) with a single instruction.
The instruction sequence,
		 Mov R2, #08
	 REPEAT:	 CPL P1 .6
			 DJZN R2, REPEAT
	 Will REPEAT P1.6 eight times, causing four output pulses to appear at bit 6 of output port 1.
Each pulse will last three machine cycle, two for DJZN and to alter the pin
DJZN Rn, rel
	 Operation:	 (PC)	←	 (PC) + 2
		 (Rn)	←	 (Rn) –1
		 IF (Rn)	 >	 0 or (Rn) < 0
		 THEN
		 (PC)	←	 (PC) + rel

	 Jump and Call Operations	 125

	 2/3 bytes instruction.
	 2 machine cycle.
DJZN direct, rel
	 Operation :	 (PC)	←	 (PC) +2
		 (direct)	←	 (direct) –1
		 IF (direct)	 >	 0 or(Rn) < 0
		 THEN
		 (PC)	←	 (PC) + rel
	 3 bytes instruction.
	 2 machine cycle.
JZ rel
	 Function: Jump if accumulator is zero.
	 Description: If all bits of the accumulator are zero, branch to the address indicated; otherwise
proceed with the next instruction. The branch destination is computed by adding to signed
relative – displacement in the second instruction bytes to the PC, after incrementing the PC twice.
The accumulator is not modified. No flags are affected.
	 Example: The accumulator originally contains 01H. The instruction sequence,
		 JN		 LABEL 1
		 DEC		 A
		 JZ		 LABEL 2
	 Will change the accumulator to 00H and cause program executions to continue at the
instruction identified by the label LABEL 2.
	 Operation:	 (PC)	←	 (PC) +2
		 IF (A)	 =	 0
		 THEN
		 (PC)	←	 (PC) + rel
	 2 bytes instruction.
	 2 machine cycle.
JNZ rel
	 Function: Jump if accumulator is not zero.
	 Description: If any bit of the accumulator is a one, branch to the indicated address, otherwise
proceed with the next instruction. The branch destination is computed by adding the signed
relative – displacement in the second instruction bytes to the PC, after incrementing the PC twice.
The accumulator is not modified. No flags are affected.
	 Example: The accumulator originally holds 00H. The instruction sequence,
		 JNZ		 LABEL 1
		 INC		 A
		 JNZ		 LABEL 2
	 Will set the accumulator to 01H and continued at label LABEL 2.

126	 Microcontroller Architecture, Programming and Application

	 Operation:	 (PC)	←	 (PC) + 2
		 IF (A)	 =	 ? 0
		 THEN
		 (PC)	←	 (PC) + rel
	 2 bytes instruction.
	 2 machine cycle.
	 Note that if the direct address used in a DJNZ is a port, the port SFR is decremented and
tested for 0.

7.9.3	 Unconditional Jumps

This type of jump occurs relative without testing the condition of any bit or byte. All jump range
(relative, short, and long) is found in this stamp of jumps. There are the only jumps that can jump
to any location in memory.
Example of Unconditional jumps
	 Mnemonic 		
	 1.	 JMP @ A +DPTR		
	 2.	 AJMP sadd
	 3.	 LJMP ladd
	 4.	 SJMP radd
	 5.	 NOP
JMP @ A +DPTR
	 Function: Jump indirect
	 Description: Add the eight – bit unsigned contacts of the accumulator with the sixteen – bit
data pointer, and load the resulting sum to the program counter. This will be the address for
subsequent instruction fetcher. Sixteen – bit addition is performed. (Modulo 2^16); a carry – out
from the low- order eight bits propagator through the higher order bits. Neither the accumulator
nor the data pointer is allocated. No flags are affected.
	 Example: An even number from 0 to 6 is in the accumulator. The following sequence of the
instruction will branch to one of four AJMP instructions in a JUMP table stinting at JMP _ TBL:
	 MOV DPTR, # JMP_TBL
	 JMP @ A + DPTR
	 JMP_TBL:	 AJMP LABEL 0
		 AJMP LABEL 1
	 	 AJMP LABEL 2
	 	 AJMP LABEL 3
	 If the accumulator equals 04h. When starting this sequence, execution will jump to label
LABEL 2. Remember that AJUMP is a two byte instruction, so the jump instruction start at every
other address.
	 Operation:	 (PC)	←	 A + (DPTR)
	 1 byte instruction.
	 2 machine cycle.

	 Jump and Call Operations	 127

AJMP addr 11
	 Function: Absolute jump
	 Description: AJUMP transfer program execution to the indicated address ,which is formed at
the run time by concatenating the high order five bits of the pc (after incrementing the PC twice),
opcode bits 7–5 and the second byte of the instruction. The destination must therefore be within
the same 2k block of the program memory as the first byte of the instruction following AJMP.
	 Example: The label “JMPADR” is at program memory location 0125h. The instruction
	 AJMP JMPADR is at location 2345h and will load the PC with 0125h.
	 Operation:	 AJUMP
		 (PC)	←	 (PC) + 2
		 (PC10-0)	←	 page address
	 2 bytes instruction.
	 2 machine cycle.x
LJMP addr 16
	 Function: Long JUMP
	 Description: LJUMP causes an unconditional branch to the indicated address by a loading the
higher order and lower order bytes of the PC (respectively) with the second and third instruction
bytes. The destination may therefore by anywhere in the full 64k program memory address
space. No flags are affected.
	 Example: The label “JMPADR” is assigned to the instruction at program memory location
1234H. The instruction
LJMP JMPADR
	 At location 0123H will load the program counters with 1234H
	 Operation:	 LJMP
		 (PC)	←	 addr15 - 0

	 3 bytes instruction.
	 2 machine cycle.
SJMP rel
	 Function: Short jump
	 Description: Program contained unconditionally to the completed by the adding the signed
displacement in the second instruction byte to the PC, after incrementing the PC twice. Therefore,
the range of destination allowed is from 128 bytes preceding this instruction to 127 bytes following
it.
	 Example: The label “RELADR” is assigned to an instruction at program memory location
0123h. The instruction
SJMP RELADR
	 Will assemble in to location 0100H. After the instruction is executed, the PC will contain the
value 0123H.
	 (Note: Under the above condition the instruction following)

128	 Microcontroller Architecture, Programming and Application

	 SJMP will be at 102H. Therefore, the displacement byte of the instruction will be the relative
offset (0123H-0102H) +21H Put another an SJMP with a displacement of 0FEH would be the
instruction infinite loop.
	 Operation:	 sjmp
		 (PC)	←	 (PC) + 2
		 (PC)	←	 (PC) + rel
	 2 bytes instruction.
	 2 machine cycle.
NOP
	 Function: No operation
	 Description: Execution continues at the following instruction other than the PC, no registers
or flags are affected.
	 Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly
5 cycles. A simple / CLR sequence world generate in one cycle pulse, so four additional cycles
must be inserted. This may be done (assuming no interrupts are enable with the instruction
sequence).
	 CLR P2.7
	 NOP
	 NOP
	 NOP
	 NOP
SET B P2.7
	 Operation:	 (PC)	←	 (PC) + 1
	 One byte instruction.
	 1 machine cycle.

7.10	 CALL AND SUBROUTINES

A single “CALL addr” instruction, but there are two of them – LCALL and ACALL which differ
in the format in which the subroutine address is given to the CPU. CALL is a generic mnemonic
which can be used if the programme does not come which wary the address is encoded. The
LCALL instruction uses the 16 bit addition format and the subroutine can be anywhere in
the 64K program memory space. The ACALL instruction uses the 11 bit format and the subroutine
must be in the same 2k block as the instruction following the ACALL.
	 In any case the programmer specifies the subroutine address to the assembler in the same
way: as a label or as a 16-bit constant. The assembler will put the address into the correct format
for the given instructions.
	 Subroutines should end with a RET instruction, which returns execution to the instruction
following the CALL.

7.10.1	 Calls and Return

CALLS use short and long range addressing; returns have no addressing mode specified but are
always long range. The following table shows examples of CALL opcodes.

	 Jump and Call Operations	 129

Mnemonic

ACALL sadd

LCALL ladd

RET

ACALL Address11

	 Function: Absolute call

	 Description: ACALL unconditionally calls a subroutine loaded at the indicated address. The
instructions increments the PC twice to obtain the address of the following instruction, then
pushes the 16-bit result onto the stack (low order byte first) and increments the stack pointer
twice. The destination address is obtained by successively concatenating the five high-order bits
of the incremented PC, opcode bits 7-5 and the second byte of the instruction. The subroutine
called must therefore start with in the same 2k block of the program memory as the first byte of
the instruction following ACALL. No flags are affected.

	 Example: Initially, SP equals 08H. The Label “SUBRTN” is at program memory location
0345H. After executing the instruction,

ACALL SUBRTN

	 At location 0125H, SP will contain 0AH, internal RAM locations 09H and 0AH instruction
contain 27H and 01H respectively and the PC will contain 0345H.

	 Operation: ACALL

		 (PC)	←	 (PC) + 2

		 (SP)	←	 (SP) + 1

		 ((SP))	←	 (PC 7-0)

		 (SP)	←	 (SP + 1)

		 ((SP))	←	 (PC5-8)

		 (PC10-0)	←	 Page address

	 2 bytes instruction.

	 2 machine cycle.

LCALL address16

	 Function: Long CALL

	 Description: LCALL calls subroutines located at the indicated address. The instruction adds
three to the program counter to generate the address of the next instruction and then pushes the
16-bit result onto the stack (low byte first), incrementing the stack pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K byte program memory address space.
No flags are affected.

130	 Microcontroller Architecture, Programming and Application

	 Example: Initially, the stack pointer equals 07H. The label “SUBRTN” is assigned to program
memory location 1234H. After executing the instruction,
LCALL SUBRTN
	 At location 0123H, the stack pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 0H1 and the PC will contain 1234H.
	 Operation: LCALL
		 (PC)	←	 (PC) + 3
		 (SP)	←	 (SP) + 1
		 ((SP))	←	 (PC7-0)
		 (SP)	←	 (SP) + 1
		 ((SP))	←	 (PC15-8)
		 (PC)	←	 address 15-0
	 3 bytes instruction.
	 2 machine cycle.
RET
	 Function: Return from subroutine
	 Description: RET pops the high and low order bytes of the PC successively from the stack,
decrementing the stack pointer by the two program execution continues at the resulting address,
generally the instruction immediately following an ACALL or LCALL. No flags are affected.
	 Example: The stack pointer originally contains the value OBH. Internal RAM locations OAH
and OBH contain the values 23H and 01H respectively. The instruction
RET
	 Will leave the stack pointer equal to the value 09H. Program execution will continue at
location 123H.
	 Operation: RET
		 (PC15-8)	←	 ((SP))
		 (SP)	←	 (SP) -1
		 (PC7-0)	←	 ((SP))
		 (SP)	←	 (SP) – 1

7.11	 INTERRUPTS AND RETURNS

RET1 is used to return from an interrupt service routine. The only difference between RET and
RET1 is that RET1 tells the interrupt control system that the interrupt in progress is done. If there
is no interrupt in progress at the time RET1 is executed, then the RET1 is functionally identical
to RET.
	 The following table shows the interrupt subroutine addresses

Interrupt Address (hex) called

IE0 0003

	 Jump and Call Operations	 131

TF0 000B

1E1 0013

TFL 001B

SERIAL 0023

RET1

	 Function: Return from interrupt

	 Description: RET1 pops the high and low order bytes of the PC successively from the stack,
and restores the interrupt logic to accept additional interrupts at the same priority level as the
are just processed. The stack pointer is left decremented by two. No other registers are affected;
the PSW is not automatically restored to its per-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which the
interrupt request was detected. If a lower-or same-level interrupt had been pending interrupt is
processed.

	 Example: The stack pointer originally contains the value 0BH. An interrupt was detected
during the instruction ending at location 0122H. The internal RAM locations 0AH and 0BH
contain the values 23H and 01H respectively. The instruction,

RET1

	 Will leave the stack pointer equal to 09H and return program execution to location 0123H.

	 Operation: RET1

		 (PC15-8)	←	 ((SP))

		 (SP)	←	 (SP) – 1

		 (PC7-0)	←	 ((SP))

		 (SP)	←	 (SP)-1

	 1 byte instruction.

	 2 machine cycle.

7.12	 MORE DETAILS ON INTERRUPTS

7.12.1	 Interrupt Structure

The 8051 core provides 5 interrupt sources: 2 external interrupts, 2 timers interrupts and the
serial port interrupt. What follows is an overview of the interrupt structure for the 8051. Other
MCS-51 devices have additional interrupt sources and vectors as shown in Table 1. Refer to the
appropriate chapters on other devices for further information on their interrupts.

7.12.2	 Interrupt Enable

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit
in the SFR named IE (Interrupt Enable). This register also contains a global disable bit, which can
be cleared to disable all interrupts at once. Figure 7.1 shows the IE register for the 8051.

132	 Microcontroller Architecture, Programming and Application

Fig, 7.1 (Interrupt Enable) Register in the 8051

7.12.3	 Interrupt Priorities

Each interrupt source can also be individually programmed to one of two priority levels by
setting or clearing a bit in the SFR named IP (Interrupt Priority). Figure 7.2 shows the IP register
in the 8051.
	 A low-priority interrupt can be interrupted by a high priority interrupt, but not by another
low-priority interrupt. A high-priority interrupt can’t be interrupted by any other interrupt
source.
	 If two interrupt requests of different priority levels are received simultaneously, the request
of higher priority level is serviced. If interrupt requests of the same priority level are received
simultaneously, an internal polling sequence determines which request is serviced. Thus, within
each priority level there is a second priority structure determined by the polling sequence.
	 Figure 7.2 shows, for the 8051, how the IE and IP registers and the polling sequence work to
determine which if any interrupt will be serviced.

Fig. 7.2 Register in the 8051

	 Jump and Call Operations	 133

7.12.4	 Interrupt Control System

Fig. 7.3 8051 Interrupt Control System

	 In operation, all the interrupt flags are latched into the interrupt control system during State
5 of every machine cycle. The samples are polled during the following machine cycle. If the
flag for an enabled interrupt is found to be set (1), the interrupt system generates an LCALL to
the appropriate location in Program Memory; unless some other conditions block the interrupt.
Several conditions can block an interrupt, among them that an interrupt of equal or higher
priority level is already in progress.
	 The hardware-generated LCALL causes the contents of the Program Counter to be pushed
onto the stack and reloads the PC with the beginning address of the service routine. As previously
noted (Figure 3), the service routine for each interrupt begins at a fixed location.
	 Only the Program Counter is automatically pushed onto the stack, not the PSW or any other
register. Having only the PC be automatically saved allows the programmer to decide how much
time to spend saving which other registers. This enhances the interrupt response time, albeit at
the expense of increasing the programmer’s burden of responsibility. As a result, many interrupt
functions that are typical in control applications -toggling a port pin, for example, or reloading
a timer, or unloading a serial buffer - can often be completed in less time than it takes other
architectures to commence them.

7.12.5	 Simulating A Third Priority Level In Software

Some applications require more than the two priority levels that are provided by on-chip hardware
in MCS-51 devices. In these cases, relatively simple software can be written to produce the same
effect as a third priority level.
	 First, interrupts that are to have higher priority than 1 are assigned to priority 1 in the IP
(Interrupt Priority) register. The service routines for priority 1 interrupts that are supposed to be
interruptible by “priority 2’’ interrupts are written to include the following code:

134	 Microcontroller Architecture, Programming and Application

	 PUSH IE
	 MOV IE, #MASK
	 CALL LABEL
	 (Execute service routine)
	 POP IE
	 RET
	 LABEL: RETI
	 As soon as any priority 1 interrupt is acknowledged, the IE (Interrupt Enable) register is re-
defined so as to disable all but “priority 2” interrupts. Then, a CALL to LABEL executes the RETI
instruction, which clears the priority 1 interrupt-in-progress flip-flop. At this point, any priority
1 interrupt that is enabled can be serviced, but only “priority 2’’ interrupts are enabled.
	 POPing IE restores the original enable byte. Then, a normal RET (rather than another RETI) is
used to terminate the service routine. The additional software adds 10 ms (at 12 MHz) to priority
1 interrupts.

7.13	S UMMARY

	 l	 We use a loop inside a loop, which is called a nested loop.

	 l	 Absolute range makes use of the concept of dividing memory into logical division called
pages.

	 l	 All jump addresses such as ADDA and ADDR.

	 l	 Must be within +127d, –127d of the instruction following the jump opcode.

	 l	 DJNZ decrement first, then checks for 0. A location set is 00H and then decremented goes
to FFH then FEH and so no down on 00H.

	 l	 CJNE does not change the contents of any register or ram location. It can change the
carry flag to, if the destination byte is less than the source byte.

	 l	 JMP @ a TDPTR does not change a, DPTR or any flags.

	 l	 A sub routine is a program that may be used many times in the execution of a larger
program.

	 l	 Use the LCALL instruction if your subroutines are normally placed at the end of your
program.

	 l	 CJNE combines a compare & a jump into one compact instruction.

7.14	 Questions

	 1.	 LJMP is an _________ long jump.
	 2.	 SJMP is a______ byte instruction.
	 3.	 LJMP is a _______ byte instruction.
	 4.	 _______ is a 3 byte instruction.
	 5.	 Define nested loop?
	 6.	 What is the advantage of using SJMP over LJMP?

	 Jump and Call Operations	 135

	 7.	 All bits, jumps are related to
	 (a)	 Program counter (b) interrupt register (c) PSW’s carry flage (d) a and c
	 8.	 In absolute jump ranges ____.

True or false:

	 9.	 All 8051 jumps are short jumps.
	 10.	 All conditional jumps are short jumps.
	 11.	 In the 8051 concept can be transferred anywhere within the 64k bytes of code space if

using the LCALL instruction.
	 12.	 The target of a short jump is within –128 to +127 bytes of the current program counter.

Chapter 8
The 8255 Programmable

I/O Interface

8.1	 INTRODUCTION

In this chapter, we are going to study programmable peripheral Interface (PPI) 8255 designed
by Intel. It is a general purpose programmable I/O device used for parallel data transfer. It has
24 I/O pins which can be grouped in three 8 bit parallel ports. Port A, port B, and port C. The
eight bits of port C can be used as individual bits or be grouped in two 4bit ports: Cupper (CU)
and Clower (CL).
	 It can be programmed in two basic modes: Bit Set / Reset (BSR) mode and I/O mode. The
BSR mode is used to set or reset the bits in Port C
	 The I/O made is further divided into three modes.
	 Mode 0 : single I/O
	 Mode 1 : I/O with hand shake
	 Mode 2 : bi-directional point I/O data transfer

8.2	FEA TURES OF 8255 A

The 8255A is a widely used, programmable parallel I/O device.
	 l	 It can be programmed to transfer data under various conditions.
	 From single I/O to interrupt I/O.
	 l	 It is compatible TTL compatible.
	 l	 It has three 8-bit ports: port A, port B and port C, which are arranged in two groups of

12 pins.
	 l	 Its bits set / reset mode allows, setting and resetting of individual bits of port C.
	 l	 The 8255 can operate in three I/O modes: Mode 0, Mode 1 and Mode 2.

136

	 The 8255 Programmable I/O Interface	 137

	 All I/O pins of 8255 have 2.5 mA DC driving capacity (i.e., souring current of 2.5mA).

8.3	P IN DIAGRAM OF 8255 A

Fig. 8.1 Shows the pin diagram of 8255.

8.3.1	 Explanation of Pinout Diagram

DATA BUS (PIN27-PIN34):
	 There bi-directional, tri state data bus lines are connected to the system data bus. They are
used to transfer data and control word from microprocessor (8085) or Microcontroller (8051) to
8255 or to receive data or status word from 8255 to the 8051 and 8085.
PORT A (PA0 – PA) [Pin 1-4 & Pin 37-40]:
	 There 8 bit bi-directional Input/Output pins are used to send data to output device and to
receive data from input device. It functions as an 8bit data output latch / buffer, when used in
output mode and an 8bit data input buffer, when used in input mode.
PORT B (PB0-PB7) (PIN18-PIN25):
	 There 8bit bi-directional input pins are used to send data to output device and to receive data
from input device. It functions as 8bit data output latch/buffer when used in output mode and
on 8bit data in input buffer – when used in input mode.
PORT C (PC0-PC7) (PIN10-PIN17):
	 There 8bit bi-directional input pins are divided into two groups PCL(PC3-PC0)and PC4(PC7-PC4)
these groups individually can transfer data in or out when transformed for simple inputs and
used as handshake signals when transformed for handshake for bi-directional modes.

138	 Microcontroller Architecture, Programming and Application

RD (read) (pin5):
	 When this pin is low, the CPU can read the data in the ports or the states word through the
data buffer.
WR (write) (pin 36):
	 When this pin is low the CPU can write the data on the ports or in the control register
through the data bus buffer.
CS (chip select) (pin 6):
	 This is an active low input which can be enabled for data transfer operator between the CPU
and the 8255.
RESET (pin 35):
	 This is an active high input used to reset 8255, when reset input is high the control register
is cleaned and all the ports are set to the input mode. Usually reset output signal from 8085 or
8051 is used to reset 8255.
A0 and A1 (Pin8, 9):
	 These input signal and along with read and write inputs control the selection of the control/
states word register or one of the three parts A0 and A1 are generally connected to the A0 ,A1 pins
of the address bus; the 8255 therefore occupies from consecutive location in the input space

Ports and Registor Select Signals

 A1 A0 RD WR CS Operation

0 0 0 1 0 I/P (Read) Operation

PORT A to data bus

0 1 0 1 0 I/P (Read) Operation

PORT B to data bus

1 0 0 1 0 I/P (Read) Operation

PORT C to data bus

0 0 1 0 0 O/P (Write) Operation

Data bus to PORT A

0 1 1 0 0 O/P (Write) Operation

Data bus to PORT B

1 0 1 0 0 O/P (Write) Operation

Data bus to PORT C

1 1 1 0 0 O/P (Write) Operation

Data bus to control register

X x x x 1 Disable Function

Data bus Tri-stated

	 The 8255 Programmable I/O Interface	 139

1 1 0 1 0 Disable Function

Illegal condition

X x 1 1 0 Disable Function

Data bus Tri-stated

Data Bus Buffer
	 This three state bi-directional 8bit buffer is used to interface the 8255 to the system data bus.
Data is transmitted or received by the buffer upon execution of input or output instructions
by the CPU. Control words and status informations are also transferred through the data bus
buffer.

8.4	 READ/WRITE AND CONTROL LOGIC

The function of this block is to manage all of the internal and external transfers of both data and
Control or status words. It accepts input from the CPU Address and Control busses and in turn,
issues commands to both of the Control Groups.
	 (CS) Chip select: A “low” on this input pin enables the communication between the 8255 and
the CPU.
	 (RD) Read: A “low” on this input pin enables 8255 to send the data or status information to
the CPU on the data bus. In essence, it allows the CPU to “read from” the 8255.
	 (WR) Write: A ”low” on this input pin enables the CPU to write data or control words into
the 8255.

Fig. 8.2 Read/Write and Control Logic

140	 Microcontroller Architecture, Programming and Application

	 (A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the RD
and WR inputs, control the selection of one of the three ports or the control word register. They
are normally connected to the least significant bits of the address bus. (A0 and A1).
	 (RESET) Reset: A “high” on this input initializes the control register to 9Bh and all ports (A,
B, C) are set to the input mode.

A1 A0 Selection

0 0 Port a

0 1 Port b

1 0 Port c

1 1 control

Group A And Group B Controls
	 The functional configuration of each port is programmed by the system software. In essence,
the CPU “outputs” a control word to the 8255. The control word contains information such as
”mode”, ”bit set”, etc. That initializes the functional configuration of the 8255.Each of the Control
blocks(GROUP A and GROUP B)accepts “commands” from the Read/Write control logic, receives
“control words” from the internal data bus and issues the proper commands to its associated
ports.
PORTS A, B and C
	 The 8255 contains three 8-bit ports (A, B and C)all can be configured to a wide variety
of functional characteristics by the system software but each has its own special features or
“personality” to further enhance the power and flexibility of the 8255.
PORT A
	 One 8-bit data output latch/buffer and one 8-bit data input latch. Both “Pull-up” and “Pull-
down” bus-hold devices are present on the Port A.
PORT B
	 One 8-bit data input/output latch/buffer and one 8-bit data input buffer.
PORT C
	 One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input). This
port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit
latch and it can be used for the control signal output and status signal inputs in conjunction with
ports A and B.

8.5	 OPERATION MODES

8.5.1	 Bit set-reset (BSR) Mode

The individual bits of Port C can be set or reset by sending out a single OUT instruction to the
control register. When Port C is used for control/status operations features can be used to set or
reset individual bits.

8.5.2	 I/O Modes

Mode 0 : Simple Input/Output

	 The 8255 Programmable I/O Interface	 141

	 In this mode, ports A and B are used as two simple 8-bit I/O ports and Port C as two 4-bit
ports. Each port (or half port, in case of C) can be programmed to function as simply an input
port or an output port. The input/output features in Mode 0 are as follows
	 1.	 Outputs are latched.
	 2.	 Input are buffered, not latched.
	 3.	 Ports do not have handshake or interrupt capability.
Mode 1: Input/Output with handshake
	 In this mode, input or output data transfer is controlled by hand shaking signals. Handshaking
signals are used to transfer data between devices whose data transfer speeds are not same. For
example, computer can send data to the printer with large speed but printer can’t accept data
and print data with this rate.

Fig. 8.3 Input/Output with Handshake

	 So, computer has to send data with the speed with which printer can accept. This type of
data transfer is achieved by using hand shaking signals along with data signals. Fig 8.3 shows
data transfer between computer and printer using handshaking signals.
	 These handshaking signals are used to tell computer whether printer is ready to accept the
data or not. If printer is ready to accept the data, then after sending data on data bus, computer
uses another handshaking signal (STB) to tell printer that valid data is available on the data
bus.
	 The 8255 mode 1 which supports handshaking has following features.
	 l	 Two ports (A and B) functions as 8-bit I/O ports. They can be configured either as input

or as output ports.
	 l	 Each port uses three lines from port C as handshake signals. The remaining two lines of

port C can be used for simple I/O function.
	 l	 Input and output data are latched.
	 l	 Interrupt logic is supported.
Mode 2: Bi-directional I/O data transfer
	 This mode allows bi-directional data transfer (transmission and reception) over a single 8-bit
data bus using handshaking signals. This feature is available only in Group A with Port A as
the 8-bit bidirectional data bus and PC3 – PC7 are used for handshaking purpose. In this mode,
both inputs and outputs are latched. Due to use of a simple 8-bit data bus for bidirectional data
transfer, the data sent out by the CPU through Port A appears on the bus connecting it to the
peripheral, only when the peripherals requests it.

142	 Microcontroller Architecture, Programming and Application

	 The remaining lines of Port C i.e., PC0 – PC2 can be used simple I/O function. This Port B
can be programmed in mode 0 or in mode 1. When Port A is programmed in mode 1, PC0 - PC2
lines of Ports C are used as hand shaking signals.

8.6	 CONTROL WORD FORMATS

A high on the RESET pin causes all 24 lines of the three 8-bit ports to be in the input mode. All
flip flops are cleared and the interrupts are reset. This condition is maintained even after the
RESET goes low. The ports of the 8255 can then be programmed for any other mode by writing
a single control word into the control register, when required.

8.6.1	 For Bit Set/Reset Mode

	

Fig. 8.4 shows bit set/reset control word format

	 The eight possible combinations of the status of bits D3-D1 (B2,B1,B0) in the Bit Set-Reset
format (BSR) determine particular bit in PC0 – PC7 being set or reset as per the status of bit D0.
A BSR word is to be written for each bit that is to be set or reset. For example if bit PC3 is to
be set and bit PC4 is to be reset, the appropriate BSR words that will have to be loaded into the
control register will be 0xxx0111 and 0xxx1000 respectively, where x is don’t care.

	 The BSR word can also be used for enabling or disabling interrupt signal generated by Port
C when the 8255 is programmed for Mode 1 or 2 operations. This is done by setting or resetting
the associated bits of the interrupts.

8.6.2	 For I/O Modes

The mode definition format for input mode is shown in figure 8.5. The control words for both,
mode definition and bit set-reset are loaded into the same control register, with bit D7 used for
specifying whether the word loaded into the control register is a mode definition word or Bit
Set-Reset word.

	 The 8255 Programmable I/O Interface	 143

 Fig. 8.5 I/O Modes

	 If D7 is high the word is taken as a mode definition word and if it is low. If it is taken as
a Bit Set-Reset word. The appropriate bits are set or reset depending on the type of operation
desired and loaded into the control register.

8.7	S UMMARY

	 l	 It has 24 I/O pins which can be grouped in three 8-bit parallel ports: Port A, Port B and
Port C. The eight bits of port C can be used a individual bits or be grouped in two 4-bit
ports: Cupper (Cu) and Clower (CL).

	 l	 It can be programmed in two basic modes: Bit Set/Reset (BSR) mode and I/O mode.
	 l	 The BSR mode is used to set or reset the bits in port C.
	 l	 The I/O mode is further divided into three modes :
	 l	 Mode 0 : Simple Input/Output.
	 l	 Mode 1 : Input/Output with handshake.
	 l	 Mode 2 : Bi-directional I/O data transfer.
	 l	 The function of I/O pins (input or output) and modes of operation of I/O ports can be

programmed by writing proper control word in the control word register.

144	 Microcontroller Architecture, Programming and Application

	 l	 Each bit in the control word has a specific meaning and the status of these bits decides
the function and operating mode of the I/O ports.

	 l	 The 8255A is a widely used, programmable, parallel I/O device.
	 l	 It can be programmed to transfer data under various conditions, from simple I/O to

interrupt I/O.
	 l	 It is compatible with all Intel and most other microprocessor.

8.8	 QUESTIONS

	 1.	 How many modes of operation are there in 8255 APPI?
	 (a)	 1	 (b)	 2	 (c)	 3	 (d)	 4
	 2.	 Which part of 8255 A PPI can be split into two halves?
	 (a)	 Port-A	 (b)	 Port-B	 (c)	 Port-C
	 3.	 Which group of ports of 8255 A PPI can be operated in two modes?
	 (a)	 Group A	 (b)	 Group B
	 4.	 An I/O Ports has
	 (a)	 8 lines	 (b)	 3 lines	 (c)	 10 lines	 (d)	 6 lines
	 5.	 The control used for the following configuration of the ports of Intel 8255 A for mode ø

operation: Port A input, C(upper) – O/P, Port(lower) – O/P, Port B – O/P
	 (a)	 Ø1	 (b)	 8 Ø	 (c)	 ff	 (d)	 9 Ø
	 6.	 In 8255 working which mode is used when simple I/O & O/P devices
	 (a)	 Mode 1	 (b)	 Mode 2	 (c)	 Mode 0	 (d)	 None of these
	 7.	 In 8255 the pins A0 and A1 are used to
	 (a)	 Select the ports and control register	 (b)	 Activate 8255
	 (c)	 Deactivate 8255			 (d)	 None of these
	 8.	 Peripherals I/O instructions are
	 (a)	 Single byte	 (b)	 Two bytes	 (c)	 Three bytes	 (d)	 None of these
	 9.	 Which part of port C 8255 A can be grouped with port A
	 (a)	 Upper port C			 (b)	 Lower port C
	 (c)	 All lines of port C			 (d)	 None of these
	 10.	 Which port has no dual operation?

Chapter 9
8051 Application

9.1	 INTRODUCTION

This chapter begins with interfacing application commonly used in Industrial environments.
These application include such examples as the scanned LED displays, the matrix key board and
memory later these examples are used as components for a system design that deals primarily
with designing a single board micro computer.

	 We will study in detail the following typical hardware configurations and their accompanying
programs.

	 l	 Key board

	 l	 Displays

	 1.	 LCD display

	 2.	 Seven segment display

	 l	 Traffic light controller

	 l	 A/D converter

	 l	 D/A converter

9.2	 KEY BOARD

The keyboard and display devices are the two main components of microcontroller-based systems.
For interfacing keyboard to the microcontroller-based system, usually push button keys are used.
These push button keys when pressed, bounces a few times, closing and opening the contacts
before providing a steady reading, as shown in the Fig. 9.1.

145

146	 Microcontroller Architecture, Programming and Application

Fig. 9.1 Keyboard

9.2.1	 Bouncing of Key Switch

Reading taken during bouncing period may be faulty. There fore ‘Microcontroller’ must wait
until the key reach to a steady state; this is known as key bounce. The problem of key bounce
can be eliminated using key de-bounce technique, either hardware or software.

9.2.2	 Key De-bounce using hardware

Figure 9.2 Shows the circuit diagram of key bounce. It consists of ‘flip-flop’.

Fig. 9.2 Circuit Diagram of Keybounce

	 Logic is 1 when key is at position A (Unpressed)

It is logic 0 when key is at position B.

It is important note that,

	 When key is in between A and B, output does not change preventing of key output.

As shown in table on next page.

	 8051 Application	 147

	 Key position	 a	 b	 y
	 A	 0	 0	 1
	 B	 1	 1	 0
	 b/w A & B	 1	 Y	 Nochange

	 Key position	 c	 d	 y
	 A	 1	 1	 0
	 B	 0	 0	 1
	 b/w A & B	 Y	 1	 Nochange

9.2.3	 Key bouncing using Software

In the software technique, when a key press is found, the microprocessor waits for at least 10 ms
before it accepts the key as an input. This 10ms period is sufficient to settle key at steady state.
Figure 9.3 shows the flowchart with key debounce technique.

Fig. 9.3 Flow Chart with Key debounce Techniques

148	 Microcontroller Architecture, Programming and Application

9.2.4	 Matrix keyboard Interface

To reduce numbers of connections keys are arranged in the matrix form as shown in Fig. 9.4.

Fig. 9.4 Matrix Keyboard

	 Figure 9.4 shows sixteen keys arranged in four rows and four columns. When keys are open,
rows and columns do not have any connection. When a key is pressed, it shorts corresponding
rows and one column. This matrix keyboard requires eight lines to make all the connections
instead of the sixteen lines required if the keys are connected individually.

Fig. 9.5 Matrix Keyboard Interface

	 Figure 9.5 shows the interfacing of matrix keyboard. It requires two ports an input port

	 8051 Application	 149

and an output port. Rows are connected to the input port referred to as returned lines and
columns are connected to the output port referred to as scan lines. We know that, when all keys
are open, rows and columns do not have any connections. When any key is pressed it shorts
corresponding row and column. If the output line of the column is low, it makes corresponding
row line low; otherwise the status of row line is high. The key is identified by data sent on the
output port and input code required from the input port.
	 1.	 Whether any key is pressed or not.
	 (a)	 Make all column lines zero by sending low on all output lines. This activates all keys

in the keyboard matrix
		 Note: When scan lines are logic high, the status on the return lines does not change,

it will remain logic high.
	 (b)	 Read the status of the return lines. If the status of all lines is logic high, key is not

pressed, otherwise key is pressed.
	 2.	 (a)	 Activate keys from any column by making any one column line zero.
	 (b)	 Read the status of return lines. The zero on any return line indicates key in pressed

from the corresponding row and selected columns
		 If the status of all lines is logic high, key is not pressed from that column.
	 (c)	 Active the keys from the next column and repeat 2 and 3 for all columns.

9.3	 DISPLAY INTERFACING

Most of the microcontroller controlled instruments and machines need to display letter of the
alphabet and numbers to give directions or data values to users. This information can be displayed
using simple LED & LCD displays are used

9.3.1	 Seven Segment Display

For the seven-segment display you can use the LT-541 or LCD-5061-11 chip. Each of the segments
of the display is connected to a pin on the 8051. In order to light up a segment on the pin must
be set to 0v. To turn a segment off the corresponding pin must be set to 5v. This is simply done
by setting the pin on the 8051 to ‘1’ or ‘0’.

Fig. 9.6 Seven Segment Display

150	 Microcontroller Architecture, Programming and Application

	 LED displays are
	 l	 Power-hungry (10ma per LED)
	 l	 Pin-hungry (8 pins per 7-seg display)
	 But they are cheaper than LCD displays
	 Seven segment displays are available in two types
	 1.	 Common anode
	 2.	 Common cathode

Fig. 9.7 Common Anode and Cathode

	 But, common anode displays are most suitable for interfacing with 8051, since 8051 port pins
are sink currents better than sourcing it
Creating Digit Pattern
	 For display digit say 7 we need to light display to do so we have to provide logic 0(0v). At
anode of these segments
CONNECTIONS
	 SEGMENT NUMBERS	 8051 PIN NUMBER
	 a	 P1.0
	 b	 P1.1
	 c	 P1.2
	 d	 P1.3
	 e	 P1.4
	 f	 P1.5
	 g	 P1.6
	 h(dp)	 P1.7

Digit Seg. h Seg. g Seg. f Seg. e Seg. d Seg. c Seg. b Seg. a HEX

0 1 1 0 0 0 0 0 0 C0

1 0 0 0 0 0 1 1 0 06

2 1 0 1 0 0 1 0 0 A4

3 1 0 1 1 0 0 0 0 B0

4 1 0 0 1 1 0 0 1 99

Interfacing

Note that I am using common anode pin is tied to 5v.the cathode pins are connected to port 1
through 330-ohm resistance (Current limiting). The simplest way to be drive a display is via a

	 8051 Application	 151

display driver. These are available for up to 4 displays. Alternatively displays can be driven by a
microcontroller and if more than the displays are required the method of driving them is called
multiplexing.
	 If a single display is to be driven from a microcontroller, 7 lines will be needed plus one for
the decimal point. For each additional display only is extra line is needed. To produce a 4, 5, or
6 Digit display, all the seven segment displays are connected in parallel.
	 Each display is turned on at a rate above 100 times per second and it will appear that all the
displays are turned on at the same time. As each display is turned on the appropriate information
must be delivered to it so that it will give the correct reading.
For extracting the ones digit and the tens digit, macro dig byte is used. It stores the hundreds
digit, the tens digit, and the ones digit into variables Dig1, Dig2, and Dig3. In our case, upon
macro execution, Dig1 will equal 0, Dig2 will equal 2, and Dig3 will equal 1.

9.3.2	 Interfacing To LCD Display

The most common way to accomplish this is with the LCD (liquid crystal display).LCD’S have
become a cheap and easy way to get text display for an embedded systems common display are
setup as 16 to 20 characters by 1 to 4 lines.

Fig. 9.8 Pin Circuit Diagram of LCD

Pinout
	 l	 8 data pins D7:D0
		 Bi-directional data/command pins.
		 Alphanumeric characters are sent in ASCII format.
	 l	 RS: Register Select
		 RS = 0 -> Command Register is selected
		 RS = 1 -> Data Register is selected
	 l	 R/W: Read or Write
		 0 -> Write, 1 -> Read
	 l	 E: Enable (Latch data)
		 Used to latch the data present on the data pins. A high-to-low edge is needed to latch

the data.
	 l	 VEE: contrast control

152	 Microcontroller Architecture, Programming and Application

Display Data RAM (DDRAM)

Display data RAM (DDRAM) is where you send the characters (ASCII code) you want to see
on the LCD screen. It stores display data represented in 8-bit character codes. Its capacity is 80
characters (bytes). Below you see DD RAM address layout of a 2*16 LCD.

	 In the above memory map, the area shaded in black is the visible display (For 16x2
displays).

	 For first line addresses for first 15 characters is from 00h to 0Fh. But, for second line address
of first character is 40h and so on up to 4Fh for the 16th character. So, if you want to display the
text at specific positions of LCD, we require to manipulate address and then to set cursor position
accordingly.

Character Generator RAM (CGRAM)-User defined character RAM

	 In the character generator RAM, we can define our own character patterns by program. CG
RAM is 64 bytes, allowing for eight 5*8 pixel, character patterns to be defined. However, how to
define this and use it is out of scope of this tutorial. So, I will not talk any more about CGRAM

Registers

	 The HD44780 has two 8-bit registers, an instruction register (IR) and a data register (DR).
The IR stores instruction codes. The DR temporarily stores data to be written into DDRAM or
CGRAM and temporarily stores data to be read from DDRAM or CGRAM. Data written into
the DR is automatically written into DDRAM or CGRAM by an internal operation. . These two
registers can be selected by the register selector (RS) signal. See the table below:

Register Selection

RS R/W Operation

0 0 IR write as an internal operation (display clear, etc.)

0 1 Read busy flag (DB7) and address counter (DB0 to DB6)

1 0 DR write as an internal operation (DR to DDRAM or CGRAM)

1 1 DR read as an internal operation (DDRAM or CGRAM to DR)

	 If a shot data bus is used, the LCD will require a total of 11 data lines.
	 The three control lines are EN RS & RW.
	 Note that the EN line must be raised/lowered before/after each instruction sent to the LCD
regardless of whether that instruction is read or write text or instruction. In short, you must
always manipulate EN when communicating with the LCD. EN is the LCD’s way of knowing
that you are talking to it. If you don’t raise/lower EN, the LCD doesn’t know you’re talking to it
on the other lines.

	 8051 Application	 153

Checking the Busy Flag
	 You can use subroutine for checking busy flag or just a big (and safe) delay.
	 1.	 Set R/W Pin of the LCD HIGH (read from the LCD).
	 2.	 Select the instruction register by setting RS pin LOW.
	 3.	 Enable the LCD by Setting the enable pin HIGH.
	 4.	 The most significant bit of the LCD data bus is the state of the busy flag (1=Busy, 0=ready to

accept instructions/data). The other bits hold the current value of the address counter.
	 If the LCD never come out from ”busy” status because of some problems, the program will
“hang”, waiting for DB7 to go low. So, in real applications it would be wise to put some kind of
time limit on the delay for example, a maximum of 100 attempts to wait for the busy signal to
go low. This would guarantee that even if the LCD hardware fails, the program would not lock
up.
Code Example
	 It is easy (and clean tech.) to make different subroutines and then call them as we need.

Busy flag checking Data write Routine Command write Routine

ready:

SETB P1.7 ;D7 as input

CLR P3.6 ;RS=0 CMD

SETB P3.5 ;RW=1 for read

again:

SETB P3.7 ;H->L pulse on
E

CLR P3.7

JB P1.7, again

ret

data:

MOV P1, A ;move acc. data to port

SETB P3.6 ;RS=1 data

CLR P3.5 ;RW=0 for write

SETB P3.7 ;H->L pulse on E

CLR P3.7

LCALL ready

ret

command:

MOV P1, A ;move acc. data
to port
CLR P3.6 ;RS=0 for CMD

CLR P3.5 ;RW=0 for write

SETB P3.7 ;H->L pulse on E

CLR P3.7

LCALL ready

ret

Initialization Display clear Displaying “HI”

initialization:

MOV A, # 38H; Initialize,
2-lines, 5X7 matrix.
LCALL Command
MOV A, #0EH ; LCD on,
cursor on
LCALL Command
MOV A, #01H ; Clear LCD
Screen
LCALL Command
MOV A, #06H ; Shift
cursor right
LCALL Command

clear:
SETB p3.7 ;enable EN
CLR 3.6 ; RS=0 for CMD.
MOV DATA, #01h
CLR p3.7 ; disable EN
LCALL ready
RET

Note- As we need to clear the
LCD frequently and not the whole
initialization , it is better to use this
routine separately.

LCALL initialization
LCALL clear
MOV A, #’H
ACALL data
MOV A, #’I
LCALL data

154	 Microcontroller Architecture, Programming and Application

	 Let’s now try code for displaying text at specific positions.
	 I want to display “MAHESH” in message “Hi MAHESH” at the right corner of first line then
I should start from 10th character.

	 So, referring to table 80h+0Ah= 8Ah.
	 So, below is code and I don’s think that you will need explanation comments.
Assembly Language
	 lcall Initialization	 mov a, #’A
	 lcall clear	 lcall data
	 mov a, #’H	 mov a, #’H
	 lcall data	 lcall data
	 mov a, #’I	 mov a, #’E
	 lcall data	 lcall data
	 mov a, #8ah	 mov a, #’S
	 lcall command	 lcall data
	 mov a, #’M	 mov a, #’H
	 lcall data	 lcall data

9.4	 TRAFFIC LIGHT CONTROLLER

A traffic light controller is connected to an 8051 as shown in figure 9.9.

Fig. 9.9 Traffic Light Controller

	 The controller turns off the red light & turns on the green light for pedestrians, whenever the
ASCII representation for letter “G” is transmitted serially to the controller. Similarly, it turns off
the green light & turns on the red light whenever the ASCII representation for “R” is transmitted
serially to the controller (4800 band rate)
	 Write an assembly language program to perform the following
	 l	 Whenever a pedestrian pushes the button ,wait for 5 seconds & then turn on the green

light

	 8051 Application	 155

	 l	 Keep the green light on for 20 seconds
	 l	 Then turn on the red light
	 If a pedestrian pushes the button during the above process no action should be taken (i.e.,
adjust the external interrupt triggering mechanism accordingly)
Note:
	 l	 The frequency of the crystal oscillator, xtal, is 11.0592 MHz.
	 l	 Use the timers of the 8051 for generating time delays. You can ignore the overload due to

instruction in calculating the time delay. In other words, the amount of time for executing
the instruction doesn’t calculation.

	 l	 Use the polling techniques for serial transmission and time delay generation.
	 [HINT: Write down a subroutine called FIVESEC, to generate number of times in the interrupt
service routine to generate 5 seconds & 20 seconds delays]

9.5	 ADC INTERFACING

Analog signals are very common inputs to microcontroller system most transducers & sensors
such as temperature, pressure, velocity humidity are analog. Therefore, we need to convert it.
Analog to digital converter:
	 Commonly used ADC device → ADC 0804

Fig. 9.10 Pinout Diagram of ADC0804

	 As shown in the typical circuit ADC0804 can be interfaced with microcontroller. You need a
minimum of 11 pins to interface ADC0804, eight for data pins and 3 for control pins.
About Ic
	 PinOut
	 l	 CS – Chip Select, active low.
	 l	 RD – Read Digital data from ADC, H-L edge triggered.
	 l	 WR -- Start conversion, L-H pulse edge triggered.

156	 Microcontroller Architecture, Programming and Application

	 l		 INTR -- end of conversion, Goes low to indicate conversion done.

	 l	 Data bits -- D0-D7.

	 l	 CLK IN & CLK R.

	 CLK IN is an input pin connected to an external clock source when an external clock is used
for timing. However, ADC804 has an internal clock generator.

	 To use the internal clock generator of the ADC804, the CLK IN and CLK R pins are connected
to a capacitor and a resistor. In that case, the clock frequency is determined by the equation.

		 f	 =	 1/1.1RC

		 R	 =	 10K and C = 150pF  f = 606Hz

	 the conversion time is 110 µs.

Input Voltage range

	 l	 Default 0-5V. Can be changed by setting different value for Vref/2 pin.
			 Vin	 =	 Vin(+) – Vin (–).
	 l	 Range = 0 to 2x Vref/2.
		 For Vin = 2x Vref/2. We get 256 as a digital output on D0-D7. (Refer Table)

Vref/2

(Volts)

Vin

(Volts)
Step size (mV)

Open (2.5) 0 to 5 5/256 = 19.53

2.56 0 to 5.12 5.12/256 =20

1.28 0 to 2.56 2.56/256 = 10

0.5 0 to 1 1/256=3.90

	 l	 Step Size a Smallest change – (2 x Vref/2)/ 256 for ADC804

Fig. 9.11 Interfacing of ADC0804

	 8051 Application	 157

	 For e.g. for step size 10mv, digital output on D0-D7 changes by one count for every 10mv
change of the input analog voltage.
Data Out
	 Dout = Vin / Step Size
	 For input vtg. of 2.56 volts (Vref=1.28 volts) and stepsize of 10mv Dout =2560/10 =256 or FF
that is full scale output.
Conversion Time
	 Greater than 110µs for ADC804.
Resolution
	 8 bits for ADC804.
INTERFACING ADC804 TO 8051
	 Signals to be interfaced (on the ADC804)
	 – D0-D7, RD, WR, INTR, CS
	 Can do both Memory mapping and IO mapping.
Memory Mapping (timing is critical)
	 – Connect D0-D7 of ADC804 to the data bus of the 8051 system
	 – Connect RD, WR of the ADC804 to the 8051 system (ensure polarity)
	 – Connect CS of ADC804 to an appropriate address decoder output
	 – Connect INTR of ADC804 to an external interrupt pin on the 8051 (INT0 or INT1)
IO Mapping (easiest - I prefer)
	 – Connect D0-D7, RD, WR, CS, INTR to some port bits on the 8051 (12 in all).
Algorithm
	 •	 Make CS=0 and send a low-to-high to pin WR to start the conversion.
	 •	 Keep monitoring INTR
	 –	 If INTR =0, the conversion is finished and we can go to the next step.
	 –	 If INTR=1, keep polling until it goes low.
	 l	 After INTR=0, we make CS=0 and send a high-to-low pulse to RD to get the data out of

the ADC804 chip.
Assembly Language (A51)	
ADC_IO:
	 mov P1, #0xff ; To configure as input
AGAIN
	 clr p3.7 ;Chip select
	 setb P3.6 ;RD = 1
	 clr P3.5 ;WR = 0
	 setb P3.5 ;WR = 1 – low to high transition
WAIT:
	 jb P3.4, WAIT ;wait for INTR
	 clr p3.7 ;generate cs to ADC

158	 Microcontroller Architecture, Programming and Application

	 clr P3.6 ;RD = 0 -High to low transition

	 mov A, P1 ;read digital o/p

	 sjmp AGAIN

Interfacing Adc804 To 8051

	 ADC808/809 chip with 8 analog channels. This means this kind of chip allows to monitor 8
different transducers.

	 l	 ADC804 has only ONE analog input: Vin(+).

	 l	 ALE: Latch in the address.

	 l	 Start: Start of conversion (same as WR in 804).

	 l	 OE: Output enables (same as RD in 804).

	 l	 EOC: End of conversion (same as INTR in 804).

Channel C B A

IN0 000

IN1 001

IN2 010

IN3 011

IN4 100

IN5 101

IN6 110

IN7 111

	
Algorithm

	 Notice that the ADC808/809 that there is no self-clocking and the clock must be provided
from an external source to the CLK pin. (You can use programmable clock oscillator to enable or
disable clock by programmable bit.)

	 l	 Select an analog channel by provide bits to A, B, C.

	 l	 Enable clock.

	 l	 Activate ALE with a low-to-high pulse.

	 l	 Activate SC with a high-to-low pulse (start conversion) the conversion is begun on the
falling edge of the start conversion pulse. You can use circuit like.

	 l	 Monitor EOC pin .After conversion this pin goes high.

	 l	 Activate OE with a high-to-low pulse to read data out of the ADC chip.

	 8051 Application	 159

Fig. 9.12 ADC0804

	 Signals to be interfaced (on the ADC 0804) d0-d7, RD, WR, NTR, CS can do both memory
mapping & IO mapping

Memory mapping

	 l	 Connect d0-d7 of ADC 0804 to the data bus of the 8051 system.

	 l	 Connect RD,WR of the ADC 0804is the 8051 system(ensure polarity).

	 l	 Connect CS of ADC 0804 to an appropriate address decoder output.

	 l	 Connect INTR of ADC 0804 to an external interrupt pin on the 8051(INTO or INTI).

Input Mapping

	 l	 Connect d0-d7,RD,WR,CR,INTR to some port bits on the 8051(12 in all).

Algorithm

	 l	 Make CS = 0 and send a low is high to pin WR to start the conversion.

	 l	 Keep the monitoring INTR.

	 l	 If INTR = 0, the conversion is finished and we can go to the next step.

	 l	 If INTR = 1,keep polling until it goes low.

160	 Microcontroller Architecture, Programming and Application

	 l	 After INTR = 0 we make CS = 0& send data out pulse to RD to get the data out of the
ADC 0804 chip.

Assembly Language

		 ADC _ IO:

		 MOV P1, #0Xff; TO CONFIGURE AS INPUT

	 AGAIN	 CLR P3.7; CHIP SELECT

		 SETB P3.6; RD=1

		 CLR P3.5; WR = 0

		 SET B P3.5; WR=1; LOW TO HIGH TRANSMISSION

	 WAIT

		 JB P3.4; WAIT; WAIT FOR INTR

		 CLR P3.7; GENERATES CS TO ADC

		 CLR P3.6; RD =0; HIGH TO LOW TRANSMISSION

		 MOV A, P1; READ DIGITALS OUTPUT

Successive Approximation ADC

	 Illustration of 4-bit SAC with 1 volt step size

Fig. 9.13 4 bit Successive Approximation ADC

	 The successive approximation ADC is much faster than the digital ramp ADC, because it uses
digital logic to converge on the value closest to the input voltage. A comparator and a DAC are
used in the process. A flowchart emplaning the working is shown in the Fig. 9.14.

	 8051 Application	 161

Fig. 9.14 SAC Flowchart

Flash ADC

Fig. 9.15 3-bit Flash ADC

162	 Microcontroller Architecture, Programming and Application

	 Illustrated is a 3-bit flash ADC with resolution 1 volt (after Tocci). The resistor net and
comparators provide an input to the combinational logic circuit, so the conversion time is just the
propagation delay through the network - it is not limited by the clock rate or some convergence
sequence.
	 It is the fastest type of ADC available, but requires a comparator for each value of output (63
for 6-bit, 255 for 8-bit, etc.) Such ADCs are available in IC form up to 8-bit and 10-bit flash ADCs
(1023 comparators) are planned. The encoder logic executes a truth table to convert the ladder of
inputs to the binary number output.
	 Now, we lets take a look at the various Analog to Digital converters that are most commonly
used with our controllers.

Name Description

ADC0800 8-bit ADC

ADC0801 8-bit ADC 100us 0.25 LSB

ADC0802 8-bit ADC 100us 0.5 LSB

ADC0804 8-bit ADC 100us 1.0 LSB

ADC0808 8-bit 8 channel 100us ADC

ADC0809 8-Bit 8 channel ADC (=~ADC0808)

AD571 10-Bit, A/D Converter, Complete with Reference and Clock

MAX1204 5V, 8-Channel, Serial, 10-Bit ADC with 3V Digital Interface

MAX1202 5V, 8-Channel, Serial, 12-Bit ADCs with 3V Digital Interface

MAX195 16-Bit, Self-Calibrating, 10us Sampling ADC

	 More informations on how to interface the above listed ADC can be obtained from the
datasheets of respective ICs. In the next part of tutorial we will look into the interfacing and
programming of a simple 8-bit ADC (ADC0804).
ADC interfacing with Microcontrollers: Programming for ADC0804
	 l		 Programming 8051 Microcontroller
	 l	 8051 Assembly Programming for ADC0804
CODE:
	 rd equ P1.0	 ;Read signal P1.0
	 wr equ P1.1	 ;Write signal P1.1
	 cs equ P1.2	 ;Chip Select P1.2
	 intr equ P1.3	 ;INTR signal P1.3

	 adc_port equ P2	 ;ADC data pins P2
	 adc_val equ 30H	 ;ADC read value stored here
	
	 org 0H
	 start:	 ;Start of Program

	 8051 Application	 163

	 acall conv	 ;Start ADC conversion
	 acall read	 ;Read converted value
	 mov P3,adc_val	 ;Move the value to Port 3
	 sjmp start	 ;Do it again

	 conv:	 ;Start of Conversion
	 clr cs	 ;Make CS low
	 clr wr	 ;Make WR Low
	 nop
	 setb wr	 ;Make WR High
	 setb cs	 ;Make CS high
	 wait:
	 jb intr,wait	 ;Wait for INTR signal
	 ret	 ;Conversion done

	 read:	 ;Read ADC value
	 clr cs	 ;Make CS Low
	 clr rd	 ;Make RD Low
	 mov a,adc_port	 ;Read the converted value
	 mov adc_val,a	 ;Store it in local variable
	 setb rd	 ;Make RD High
	 setb cs	 ;Make CS High
	 ret	 ;Reading done
	 l	 Programming 8051 in C for ADC0804
CODE:
	 #include <REGX51.H>#define adc_port P2 //ADC Port
	 #define rd P1_0 //Read signal P1.0
	 #define wr P1_1 //Write signal P1.1
	 #define cs P1_2 //Chip Select P1.2
	 #define intr P1_3 //INTR signal P1.3

	 void conv(); //Start of conversion function
	 void read(); //Read ADC function

	 unsigned char adc_val;

	 void main(){
	    while(1){ //Forever loop
	       conv(); //Start conversion

164	 Microcontroller Architecture, Programming and Application

 read(); //Read ADC

 P3 = adc_val; //Send the read value to P3

 }

	 }
	 void conv(){

		 cs = 0; //Make CS low

		 wr = 0; //Make WR low

		 wr = 1; //Make WR high

		 cs = 1; //Make CS high

		 while(intr); //Wait for INTR to go low

	 }

	 void read(){

		 cs = 0; //Make CS low

		 rd = 0; //Make RD low

		 adc_val = adc_port; //Read ADC port

		 rd = 1; //Make RD high

		 cs = 1; //Make CS high

	 }
	 Note: Keep this in mind that whenever you are working with an IC and you want to know how to
communicate with that IC, and then simply look into the timing diagram of that IC from its datasheet. It
gives you complete information that you need regarding the communication of IC.

Fig. 9.16 Start Conversion

	 The above timing diagrams are from ADC0804 datasheet. The first diagram (Figure 9.16)
shows how to start a conversion. Also, you can see which signals are to be asserted and at what
time to start a conversion. So, looking into the timing diagram Figure 9.16. We note down the
steps or say the order in which signals are to be asserted to start a conversion of ADC. As we
have decided to make Chip select pin as low so we need not to bother about the CS signal in the
timing diagram. Below steps are for starting an ADC conversion. I am also including CS signal
to give you a clear picture. While programming we will not use this signal.

	 8051 Application	 165

Fig. 9.17 Output Enable and Reset INTR

	 1.	 Make chip select (CS) signal low.
	 2.	 Make write (WR) signal low.
	 3.	 Make chip select (CS) high.
	 4.	 Wait for INTR pin to go low (means conversion ends).
	 Once the conversion in ADC is done, the data is available in the output latch of the ADC.
Looking at the Figure 9.17 which shows the timing diagram of how to read the converted value
from the output latch of the ADC. Data of the new conversion is only available for reading after
ADC0804 made INTR pin low or say when the conversion is over. Below are the stets to read
output from the ADC0804.
	 1.	 Make chip select (CS) pin low.
	 2.	 Make read (RD) signal low.
	 3.	 Read the data from port where ADC is connected.
	 4.	 Make read (RD) signal high.
	 5.	 Make chip select (CS) high.
	 In the next section of this tutorial we will follow the above mentioned steps to program the
ADC.

9.6	 DIGITAL TO ANALOG CONVERTER - DAC

	 Commonly used DAC808 (MC1408)
	 – R/2R ladder
	 – Iout = Iref (D7/2 + D6/4 + D5/8 + …… + D0/256)
	 – Iout converted to voltage by a resistive load or op-amp based isolator (Rf from Vout to V-
and V+ to GND)
	 PinOut
	 – D0-D7 Connected to the Processor’s IO port
	 – Vref+, Vref-, Vee

166	 Microcontroller Architecture, Programming and Application

Usage:
	 – Just write a byte to the IO port and the DAC converts it to an analog value.
	 Some 8051 clones have ADCs and DACs in built.
Introduction
	 In our daily life, anything we deal like sound, pressure, voltage or any measurable quantity,
are usually in analog form so what if we want to interface any analog sensor with our digital
controllers? There must be something that translates the analog inputs to digital output, and so
analog to digital converters come to play.
	 Usually, we call them ADC (Analog to digital converter). Before going to learn how to interface
an ADC with a controller we first take a look at basic methods of analog to digital conversion.
	 This is a sample of the large numbers of analog-to-digital conversion methods. The basic
principle of operation is to use the comparator principle to determine whether or not to turn on
a particular bit of the binary number output. It is typical for an ADC to use a digital-to-analog
converter (DAC) to determine one of the inputs to the comparator.
	 Following are the most used conversion methods:
	 Digital-Ramp ADC
	 Successive Approximation ADC
	 Flash ADC
Digital-Ramp ADC

Fig. 9.18 Digital RAM ADC

	 Conversion from analog to digital form inherently involves comparator action, where the
value of the analog voltage at some points in time is compared with some standards. A common
way to do that is to apply the analog voltage to one terminal of a comparator and trigger a
binary counter which drives a DAC. The output of the DAC is applied to the other terminal
of the comparator. Since, the output of the DAC is increasing with the counter, it will trigger

	 8051 Application	 167

the comparator at some points when its voltage exceeds the analog input. The transition of the
comparator stops the binary counter, which at that point holds the digital value corresponding
to the analog voltage.

9.7	S UMMARY

	 l	 The keyboard and display devices are the two main components of microcontroller based
system.

	 l	 Using them user can give and receive information from the microcontroller based
system.

	 l	 Instead of BCD to seven-segment decoder (IC 7447) transistors are used to drive the LED
segments.

	 l	 Due to this we can also display HEX characters on the display.
	 l	 However, in this case we have to send the proper 7-segment code of a particular digit

that is to be displayed on the port1.
	 l	 ADC implies sampling and encoding a continuous time signal whereas DAC is to produce

a quantized analogue output corresponding to a particular binary-digital input code.
	 l	 The interfacing of ADC 0803/0804/0805 with 8051 using port 1 and port 2.
	 l	 Here, port 1 is used to read digital data from ADC and port 2 is used to provide control

signals to ADC 0803/0804/0805.
	 l	 The conversion time is around 110µs.

9.8	 QUESTIONS

	 1.	 Traffic light can be implemented with the peripheral
	 (a)	 8255	 (b)	 8253	 (c)	 8259	 (d)	 8357
	 2.	 Multiplexing of display is used
	 (a)	 to save power			 (b)	 to increase the speed
	 (c)	 to decrease the speed	 (d)	 none of these
	 3.	 In traffic control the number of LED used controlling the vehicle flow is
	 (a)	 Two	 (b)	 Three	 (c)	 Four	 (d)	 None
	 4.	 The digital to analog converter with
	 (a)	 O/P digital data			 (b)	 I/P analog data
	 (c)	 O/P data			 (d)	 O/P analog data
	 5.	 Seven segment display can be interfaced with
	 (a)	 8257	 (b)	 8253	 (c)	 8279	 (d)	 8259
	 6.	 The segments of a seven-segment display are lettered to a
	 (a)	 Clockwise direction	 (b)	 Counter clockwise direction
	 (c)	 either of (a) or (b) above
	 7.	 Current drawn when the number 8 is on an LED display is
	 (a)	 140 nA	 (b)	 140 µA	 (c)	 140 mA	 (d)	 None of these

168	 Microcontroller Architecture, Programming and Application

	 8.	 Current supplied to a four digit liquid crystal display that reads the number 8888 is of
the order of

	 (a)	 560 nA	 (b)	 560 µA	 (c)	 560 mA	 (d)	 5.6 A
	 9.	 How many outputs are there in the output of a 10-bit D/A converter?
	 (a)	 1000	 (b)	 1023	 (c)	 1024	 (d)	 1224
	 10.	 What is the normal range of analog input voltage?
	 (a)	 0 to 1V	 (b)	 0 to 5V	 (c)	 5 to 15V	 (d)	 14V to 30V.
	 11.	 If VIN is 0.99 V, what is the digital output of the ADC 0801 after INTR goes low?
	 (a)	 0011 0011	 (b)	 0101 1111	 (c)	 0111 1100	 (d)	 1111 1111.

Chapter 10
Program

10.1	 INTRODUCTION

An assembly language program is a set of instruction written in the mnemonics of a given
microcontroller. These instructions are the comments to the microcontroller to be executed in the
given sequence to accomplish a task to write such programs for the microcontroller. We should
be familiar with the programming model and the instruction set of the microcontroller.

10.2	 8-BIT ADDITION

	 Example : 1
	 MOV A, #05		 ; Load 05 data into accumulator
	 MOV R2, #02		 ; Load 02 data into R2
	 ADD A, R2		 ; Add accumulator and R2
	 MOV DPTR, #4000		 ; Load the address to DPTR(data pointer)
	 MOV X @DPTR, A		 ; Get the number in the accumulator
		 A	 =	 05H
		 R0	 =	 02H

				 07H

	 Example : 2
	 MOV A, #03		 ; Load 03 data into accumulator.
	 ADD A, #07		 ; (A) ← (A) + 07H.
	 MOV DPTR, #4002		 ; Load the address to data pointer.
	 MOV X @DPTR, A		 ; Get the number in the accumulator.
		 A	 =	 03H

169

170	 Microcontroller Architecture, Programming and Application

		 Data	 =	 07H

				 0AH

	 Example : 3
	 MOV DPTR, #4200		 ; Load the address to the data pointer.
	 MOV X A,@DPTR		 ; Get the memory location to accumulator.
	 MOV R0, #08		 ; Load 08 data into register R0.
	 ADD A, R0		 ; (A) ← (A) + (R0).
	 MOV DPTR, #4008		 ; Load the address to data pointer.
	 MOV X @DPTR, A		 ; Get the number in the accumulator.

10.3	 8-BIT SUBTRACTION

	 MOV A, #2A		 ; Get the first number in A
	 MOV R0, #22		 ; Get the second number in R0
	 CLR C		 ; Clear carry
	 SUBB A, R0		 ; A ← A – (R0)
	 SWAP A 		 ; Exchange digits
		 A	 =	 2AH
		 R0	 =	 22H

		 A	 =	 08H
		 SWAP A	 =	 80H

10.4	 16-BIT ADDITION

	 MOV DPTR, #2242H		 ; (DPTR) ← 2242H (16-bit number)
	 MOV A, #2BH 		 ; (A) ← 2BH (lower bytes of second 16-bit number)
	 MOV B, #20H		 ; (B) ← 20H (higher bytes of second 16-bit number)
	 ADD A, DPL 		 ; Add lower bytes
	 MOV DPL, A 		 ; Save result of lower bytes addition
	 MOV A,B 		 ; Get higher bytes of second number in A
	 ADDC A, DPH 		 ; Add higher bytes with any carry from lower bytes addition
	 MOV DPH, A 		 ; Save result of higher bytes addition

10.5	 16 BIT SUBTRACTION

	 MOV A, DATA L1		 ; move the lower order data in to a
	 MOV R, # DATA L2		 ; move the higher order 07 in to r1
	 SUBB A,R1		 ; subtract with borrow the content of a, and data rL
	 MOV DPTR, #4500		 ; move the address 4500 in dptr

	 Program	 171

	 MOVX @DPTR, A		 ; move the result in a register to external memory whose address
is at data pointer.

	 INC DPTR		 ; Inc dptr add 1 to data pointer
	 MOV A, #M1 		 ; move high byte data 1 in to a register
	 SUBB A, # M2		 ; subtract with borrow the content of a and high order byte of data

2
	 MOVX @ DPTR, A		 ; move the result in a in to memory whose address is at data

pointer
	 SJUMP		 ; Sjump hlt

10.6	S UBTRACT TWO 8-BIT NUMBERS AND EXCHANGE DIGITS

	 MOV A, #9F 		 ; Get the first number in A
	 MOV R0, #40 		 ; Get the second number in R0
	 CLR C 		 ; Clear carry
	 SUBB A, R0 		 ; A ← A – (R0)
	 SWAP A		 ; Exchange digits

10.7	 MULTIPLY TWO 8-BIT NUMBERS

	 MOV A, #07			 ; Get the first number in A
	 MOV B, #02			 ; Get the second number in B
	 MUL AB			 ; A × B, Higher bytes of result in B
				 ; and lower bytes of result in A
	 MOV DPTR, #4008			 ; Load the address to data pointer
	 MOV X @DPTR, A			 ; Get the number in the accumulator
	 Before Execution
		 A	 =	 07H
		 B	 =	 02H
	 After Execution
		 A	 =	 00H
		 B	 =	 0EH

10.8	 DIVISION TWO 8-BIT NUMBERS

	 MOV A, #0A			 ; Get the first number in A
	 MOV B, #04			 ; Get the second number in B
	 DIV AB			 ; A ÷ B, Remainder in B and Quotient
				 ; in A
	 MOV DPTR, #4008			 ; Load the address to data pointer
	 MOV X @DPTR, A			 ; Get the number in the accumulator

172	 Microcontroller Architecture, Programming and Application

	 Before Execution
		 A	 =	 0AH
		 B	 =	 04H
	 After Execution
		 A	 =	 02H
		 B	 =	 02H

10.9	A RITHMETIC AND LOGIC OPERATIONS

	 START : 	MOV DPTR, #8050 		 ; DPTR = 8050
	 MOV R1, #01H				 ; 01 → R1
	 MOV R2, #0AH 				 ; 0A → R2
	 LOOP : MOV A,R1				 ; R1 → A

	 Program	 173

	 RL A 			 ; ROTATE LEFT
	 RL A 			 ; ROTATE LEFT
	 ADD A, R1 			 ; A = A + R1
	 MOVX @ DPTR, A			 ; A → 8050H
	 INC DPTR			 ; DPTR = DPTR + 1
	 INC R1 			 ; R1 = R1 + 1
	 DINZ R2, 8007 			 ; R2 = R2 – 1, (Z=0) JUMP
Output :
	 8050 – 05H
	 8051 – 0AH
	 8052 – 0FH
	 8053 – 14H
	 8054 – 19H
	 8055 – 1EH
	 8056 – 23H
	 8057 – 28H
	 8058 – 2DH
	 8059 – 32H

10.10	 UP/DOWN COUNTER AND OBJECT COUNTER

174	 Microcontroller Architecture, Programming and Application

	 START :	 MOV DPTR, #2023	 ; 2023 = DPTR
		 MOV A, #80 	 ; A = 80
		 MOVX @ DPTR, A	 ; A → C.R
		 MOV DPTR, #2020 	 ; DPTR = 2020
		 MOV A, #00	 ; A= 00
	 LOOP :	 MOVX @ DPTR, A	 ; A → P.A
		 ACALL DELAY	 ; CALL DELAY

	 Program	 175

		 INC A	 ; A = A + 1

		 CJNE A, #OF, 800B	 ; A (CMP) OF & JUMP ≠

		 MOVX @ DPTR, A	 ; A → P.A

		 ACALL DELAY	 ; CALL DELAY

		 DEC A	 ; A = A – 1

		 CJNE A, #00, 8012	 ; A (CMP) 00 & JMP ≠

		 MOVX @ DPTR, A	 ; A → P.A

	 DELAY	 MOV R3, #04	 ; 04 → R3

	 LOOP 2 :	 MOV R1, #FF	 ; FF → R1

	 LOOP 1 :	 MOV R2, #FF	 ; FF → R2

	 LOOP :	 DJNZ R2, LOOP	 ; R2 = R2 – 1 & JMP IF Z = 0

		 DINZ R1, LOOP1	 ; R1 = R1 – 1 & JMP IF Z = 0

		 DINZ R3, LOOP2	 ; R3 = R3 – 1 & JMP IF Z = 0

		 RET	 ; RETURN
OBJECT COUNTER

176	 Microcontroller Architecture, Programming and Application

	 START : 	 MOV DPTR, #2023	 ; DPTR = C.R

		 MOVA, #90	 ; A = 90

		 MOVX @ DPTR, A	 ; A → C.R

		 MOV R1, #00	 ; R1 = 00

	 LOOP :	 MOV DPTR, #2020	 ; DPTR = P.A

		 MOVX A, @ DPTR	 ; P.A → A

		 JNZ LOOP 	 ; JUMP IF Z ≠ 0

		 MOV A, R1 	 ; R1 → A

		 ADD A, #01	 ; A = A + 01

		 DA A 	 ; Decimal Adjust Accumulator

		 MOV R1, A 	 ; A → R1

		 MOV R6, A	 ; A → R6

		 LCALL 677D	 ; CALL DISPLAY ROUTINE

	 Program	 177

		 LCALL	 ; CALL DELAY
		 LJMP LOOP 	 ; JUMP TO LOOP
	 DELAY	 MOV R3, #04	 ; 04 → R3
	 LOOP 2 :	 MOV R1, #FF	 ; FF → R1
	 LOOP 1 :	 MOV R2, #FF	 ; FF → R2
	 LOOP :	 DJNZ R2, LOOP	 ; R2 = R2 – 1 & JMP IF Z = 0
		 DINZ R1, LOOP1	 ; R1 = R1 – 1 & JMP IF Z = 0
		 DINZ R3, LOOP2	 ; R3 = R3 – 1 & JMP IF Z = 0
		 RET	 ; RETURN

10.11	 ANALOG TO DIGITAL CONVERTER

178	 Microcontroller Architecture, Programming and Application

	 START :	 MOV DPTR, #2023	 ; 2023 → DPTR
		 MOVA A, #99	 ; A = #99
		 MOVX @ DPTR, A	 ; A → C.R
		 LOOP MOV A, #80	 ; A = #80
		 MOV DPTR, #2021	 ; DPTR = P.B
		 MOVX @ DPTR, A	 ; A = P.B
		 MOV A, #E0	 ; A = #E0
		 MOVX @ DPTR, A	 ; A = P.B

	 Program	 179

	 LOOP 1 :	 MOV DPTR, #2022	 ; DPTR = P.C
		 MOVX A, @ DPTR	 ; P.C → A
		 ANL A, #01	 ; A^ #01 = A
		 JNZ 900F	 ; JUMP IF Z = 0
		 MOV A, #60	 ; A = #60
		 MOV DPTR, # 2021	 ; DPTR = P.B
		 MOVX @ DPTR, A	 ; A → P.B
		 MOV DPTR, #2020	 ; DPTR = P.A
		 MOVX A, @DPTR	 ; P.A → A
		 MOV R6, A	 ; A → R6
		 LCALL 677D	 ; CALL Monitor Routine
		 LIMP LOOP	 ; Imp to Loop

ANALOG INPUT DIGITAL OUTPUT

0.5 1D

1.0 37

2.0 69

2.5 81

3.0 90

4.0 D0

5.0 FF

180	 Microcontroller Architecture, Programming and Application

10.12	 DATA TRANSFER WITH PARALLEL PORTS

	 Program	 181

	 START :	 MOV DPTR, #2023	 ; DPTR = 2023
		 MOV A, #82	 ; A = 82
		 MOVX @ DPTR, A	 ; A → DPTR
		 MOV DPTR, #2021	 ; DPTR = P.B
		 MOVX A, @ DPTR	 ; P.A → A
		 MOV R1, A	 ; A → R1
		 MOV DPTR, #2020	 ; DPTR → P.A
		 MOVX @ DPTR, A	 ; A → P.A
		 MOV A, R1	 ; R1 → A
		 MOV R6, A	 ; A → R6
		 LCALL 677D	 ; CALL DISPLAY
		 LJMP B006	 ; JMP TO LOOP

10.13	 DIGITAL TO ANALOG CONVERTER

182	 Microcontroller Architecture, Programming and Application

	 START :	 MOV DPTR, #2023	 ; DPTR = C.R
		 MOV A, #80	 ; AC = 80
		 MOVX @ DPTR, A	 ; A → C.R
		 MOV R1, #00	 ; R1 = 00
	 LOOP	 MOV DPTR, #2020	 ; DPTR = P.A
		 MOV A, R1	 ; R1 → AC
		 MOVX @ DPTR, A	 ; AC → P.A
		 MOV R6, A	 ; A → R6
		 LCALL 677D	 ; CALL DISPLAY ROUTINE
		 LCALL DELAY	 ; CALL DELAY
		 INC R1	 ; R1 = R1 + 1
		 CJNE R1, #FF, C008	 ; COMPARE R1 & #FF, JMP ≠
	 DELAY 	 MOV R3, #04	 ; 04 → R3
	 LOOP 2 :	 MOV R1, #FF	 ; FF → R1
	 LOOP 1 :	 MOV R2, #FF	 ; FF → R2
	 LOOP : 	 DJNZ R2, LOOP	 ; R2 = R2 – 1 & JMP IF Z = 0
		 DINZ R1, LOOP1	 ; R1 = R1 – 1 & JMP IF Z = 0
		 DINZ R3, LOOP2	 ; R3 = R3 – 1 & JMP IF Z = 0
		 RET	 ; RETURN

	 Program	 183

DIGITAL INPUT ANALOG OUTPUT

3A 1.13

7B 2.38

AD 3.34

B9 3.57

D6 4.13

FF 4.92

10.14	 STEPPER MOTOR INTERFACE

184	 Microcontroller Architecture, Programming and Application

	 START :	 MOV DPTR, #2023	 ; DPTR = C.R
		 MOV A, #80	 ; A = 80
		 MOVX @ DPTR, A	 ; A  C.R
		 MOV R1, #19	 ; R1 = 19H
	 LOOP :	 MOV A, #77	 ; A = 77H
	 LOOP 1 :	 RL A	 ; ROTATE ACCUMULATOR LEFT
		 MOV DPTR, #2022	 ; DPTR = P.C

	 Program	 185

		 MOVX @ DPTR, A	 ; A  P.C
		 LCALL DELAY	 ; CALL DELAY
	 	 CJNE A, #77, LOOP1	 ; A CMP #77, IF ≠ JMP
	 	 DJNZ R1, LOOP	 ; R1 = R1 – 1 & ≠ 0 JMP
		 MOV R1, #19	 ; R1 = 19H
	 LOOP 3 :	 MOV A, #EE	 ; A = EEH
	 LOOP 4 :	 RR A	 ; ROTATE AC RIGHT
		 MOV DPTR, #2022	 ; DPTR = P.C
		 MOVX @ DPTR, A	 ; A  P.C
		 LCALL DELAY	 ; CALL DELAY
	 	 CINE A, #EE, LOOP2	 ; A CMP #EE, IF ≠ JMP
	 	 DINZ R1, LOOP3	 ; R1 = R1 – 1 & ≠ 0 JMP
	 DELAY 	 MOV R3, #04	 ; 04  R3
	 LOOP 2 :	 MOV R1, #FF	 ; FF  R1
	 LOOP 1 :	 MOV R2, #FF	 ; FF  R2
	 LOOP :	 DJNZ R2, LOOP	 ; R2 = R2 – 1 & JMP IF Z = 0
		 DINZ R1, LOOP1	 ; R1 = R1 – 1 & JMP IF Z = 0
		 DINZ R3, LOOP2	 ; R3 = R3 – 1 & JMP IF Z = 0
		 RET	 ; RETURN

10.15	 MATRIX KEYPAD AND SSD INTERFACE

186	 Microcontroller Architecture, Programming and Application

	 START :	 MOV DPTR, #2023	 ; DPTR = C.R

		 MOV A, #90	 ; A =90

		 MOVX @ DPTR, A	 ; A  C.R

	 LOOP 1 :	 MOV DPTR, #2022	 ; DPTR = P.C

		 MOV A, #D3	 ; A = D3

		 MOVX @ DPTR, A	 ; A  P.C

		 MOV DPTR, #2020	 ; DPTR = P.A

		 MOVX A, @ DPTR	 ; P.A  A

		 JZ LOOP 1	 ; JUMP ON ZERO

		 MOV R1, #00	 ; R1 = 00

	 Program	 187

		 MOV A, #01	 ; A = 01

	 LOOP 2 :	 MOV R2, #08	 ; R2 = 08

		 MOV DPTR, #2022	 ; DPTR = P.C

		 MOVX @ DPTR,A	 ; A P.C

		 MOV DPTR, #2020	 ; DPTR = P.A

		 MOVX A, @ DPTR	 ; P.A  A

	 LOOP 3 :	 RRC A	 ; ROTATE AC RIGHT WITH C

		 JC LOOP 4	 ; JUMP IF C = 1

		 INC R1	 ; R1 = R1 + 1

	 	 DJNZ R2, LOOP3	 ; R2 = R2 – 1, ≠ 0 JMP

		 MOV A, # 02	 ; A = # 02 H

		 LJMP LOOP2	 JUMP TO LOOP

	 LOOP 4 :	 MOV A, R1	 ; R1  A

		 MOV R6,A	 ; A  R6

		 LCALL 677D	 ; CALL MONITOR ROUTINE
		 LJMP LOOP1	 ; JUMP TO LOOP1

188	 Microcontroller Architecture, Programming and Application

10.16	 DIGITAL CLOCK

	 START :	 LCALL 68EA	 ; CLEAR DISPLAY
		 MOV R1, #30	 ; R1 = #30
	 LOOP 6 :	 MOV A, R1	 ; R1  A
		 MOV DPTR, #8164	 ; DPTR = 8164
		 MOVX @ DPTR, A	 ; A  8164
		 MOV R2, #30	 ; R2 = #30
	 LOOP 5 :	 MOV A, R2	 ; R2  A
		 MOV DPTR, #8165	 ; DPTR = 8165
		 MOVX @ DPTR, A	 ; A  8165
		 MOV R3, #30	 ; R3 = #30
	 LOOP 4 :	 MOV A, R3	 ; R3  A
		 MOV DPTR, #8167	 ; DPTR = 8167
		 MOV X @ DPTR, A 	 ; A = 8167
		 MOV R4, #30	 ; R4 = #30

	 Program	 189

	 LOOP 3 :	 MOV A, R4	 ; R4  A
		 MOV DPTR, #8168	 ; DPTR = 8168
		 MOV X @ DPTR, A	 ; A = 8168
		 MOV R5, #30	 ; R5 = #30
	 LOOP 2 :	 MOV A, R5	 ; R5  A
		 MOV DPTR, #816A	 ; DPTR = 816A
		 MOV X @ DPTR, A	 ; A = 816A
		 MOV R6, #30	 ; R6 = #30
	 LOOP 1 :	 MOV A,R6	 ; R6  A
		 MOV DPTR, #816B	 ; DPTR = 816B
		 MOV X @ DPTR, A	 ; A = 816B
		 MOV 0F0, #30	 ; 0F0 = #30
		 LCALL 6946	 ; POSITION CURSOR
		 MOV DPTR, #8150	 ; DPTR = 8150
		 LCALL 6919	 ; CALL DISPLAY
		 LCALL 9400	 ; CALL DELAY
		 INC R6	 ; R6 = R6 + 1
	 	 CJNE R6, #3A LOOP1	 ; R6 CMP #3A & JMP IF ≠
		 INC R5	 ; R5 = R5 + 1
	 	 CJNE R5, #36 LOOP2	 ; R5 CMP #36 & JMP IF ≠
		 INC R4	 ; R4 = R4 + 1
	 	 CJNE R4, #3A LOOP3	 ; R4 CMP #3A & JMP IF ≠
		 INC R3	 ; R3 = R3 + 1
	 	 CJNE R3, #36 LOOP4	 ; R3 CMP #36 & JMP IF ≠
		 MOV DPTR, # 8164	 ; DPTR = 8164
		 MOVX A, @ DPTR	 ; 8164  A
		 MOV R1, A	 ; A  R1
	 	 CJNE R1, #32 LOOP7	 ; R1 CMP #32 & JMP IF ≠
		 INC R2	 ; R2 = R2 + 1
	 	 CJNE R2, #34 LOOP5	 ; R2 CMP #34 & JMP IF ≠
		 LJMP START	 ; JUMP TO START
	 LOOP 7 :	 INC R2	 ; R2 = R2 + 1
		 CINE R2, #3A, LOOP5	 ; R2 CMP #3A & JMP IF
	 	 CJNE R4, #3A LOOP3	 ; R4 CMP #3A & JMP IF ≠
		 INC R3	 ; R3 = R3 + 1
	 	 CJNE R3, #36 LOOP4	 ; R3 CMP #36 & JMP IF ≠
		 INC R1	 ; R1 = R1 + 1
		 LJMP LOOP6	 ; JUMP TO LOOP 6

190	 Microcontroller Architecture, Programming and Application

	 DELAY :	 MOV R0, #05	 ; R0 = 05
	 LOOP 2 :	 MOV R7, #FF	 ; R7 = FF
	 LOOP1 ;	 MOV DPTR, #9600	 ; DPTR = 9600
		 MOVX A, @ DPTR	 ; 9600  A
		 DEC A	 ; A = A – 1
	 	 INZ LOOP	 ; JUMP ON ≠ 0
	 	 DJNZ R7, LOOP1	 ; R7 = R7 – 1, ≠ 0 JMP
	 	 DJNZ R0, LOOP2	 ; R0 = R0 – 1, ≠ 0 JMP
		 RET	 ; RETURN

Appendix A

SERIAL COMMUNICATION

RS-232 WAVEFORM

TTL/CMOS SERIAL LOGIC WAVEFORM
	 The diagram above shows the expected waveform from the UART when using the common
8N1 format. 8N1 signifies 8 Data bits, No Parity and 1 Stop Bit. The RS-232 line, when idle is in
the Mark State (Logic 1). A transmission starts with a start bit which is (Logic 0). Then each bit
is sent down the line, one at a time.
	 The LSB (Least Significant Bit) is sent first. A Stop Bit (Logic 1) is then appended to the signal
to make up the transmission. The data sent using this method, is said to be framed. That is the
data is framed between a Start and Stop Bit.

RS-232 Voltage levels

	 1.	 +3 to +25 volts to signify a “Space” (Logic 0).
	 2.	 –3 to -25 volts for a “Mark” (logic 1).
	 3.	 Any voltage in between these regions (i.e. between +3 and –3 Volts) is undefined.
	 The data byte is always transmitted least-significant-bit first.
	 The bits are transmitted at specific time intervals determined by the baud rate of the serial
signal.
	 This is the signal present on the RS-232 Port of your computer, shown below.

	 RS-232 Logic Waveform
RS-232 LEVEL CONVERTER
	 Standard serial interfacing of microcontroller (TTL) with PC or any RS232C Standard device,
requires TTL to RS232 Level converter . A MAX232 is used for this purpose. It provides 2-channel
RS232C port and requires external 10uF capacitors.
	 The driver requires a single supply of +5V.

191

192	 Microcontroller Architecture, Programming and Application

	 MAX-232 includes a Charge Pump, which generates +10V and –10V from a single 5V
supply.
MICROCONTROLLER INTERFACING WITH RS-232 STANDARD DEVICES
	 l	 MAX232 (+5V –> + –12V converter)
	 l		 Serial port male 9 pin connector (SER)

	 Appendix A	 193

SETTING SERIAL PORT
	 SCON
	 8 bit UART, RN enabled, TI & RI operated by program. - 50hex
	 Timer 1 Count
		 TH1	 =	 256 – ((Crystal / 384) / Baud) -PCON.7 is clear.
		 TH1	 =	 256 – ((Crystal / 192) / Baud)-PCON.7 is set.
	 so with PCON.7 is clear we get timer value = FDhex
CODE EXAMPLE
	 1. TRANSMITTING ‘A’ CONTINUOUSLY ON SERIAL PORT
	 ASSEMBLY LANGUAGE
	 START
	 MOV TMOD, #20H	 ;T1 is mode2
	 MOV TH1, #0fd	 ;9600 baud
	 MOV SCON, #50H	 ;8b, 1stop, 1start, REN enabled
	 ANL PCON, #07fh	 ;To make SMOD = 0
	 SETB TR1	 ; start T1
	 AGAIN
	 MOV SBUF, #’A’	 ; letter A is transmitted
	 HERE
	 JNB TI, HERE	 ;poll TI until all the bits are transmitted

194	 Microcontroller Architecture, Programming and Application

	 CLR TI	 ;clear TI for the next character
	 SJMP AGAIN	 ;while(1)
2. TO RECEIVE DATA FROM SERIAL PORT AND SENT IT TO PORT 1
	 ASSEMBLY LANGUAGE
	 START:
	 MOV TMOD, #20H	 ;T1 in mode 2
	 MOV TH1, #-3	 ;9600 baud
	 MOV SCON, #50H	 ;8b, 1start, 1stop
	 ANL PCON, #07fh	 ;To make SMOD =0
	 SETB TR1	 ;start T1
	 AGAIN:
	 CLR RI	 ;ready to receive a byte
	 HERE:
	 JNB RI, HERE	 ;wait until one byte is Rx-ed
	 MOV A, SBUF	 ;read the received byte from SBUF
	 MOV P1, A	 ;display on P1
	 SJMP AGAIN	 ;while (1)
3. SENDING DATA IN STRING TO SERIAL PORT
	 In Assembly Lan. prog. : Data is stored in string at pointer DATA. 0 is appended at end of
string. In transmit subroutine data in string is transmitted till 0 is detected.
	 ASSEMBLY LANGUAGE (A51)
	 .org 0000h
	 LJMP START
	 DATA: .db “HI, I AM MAHESH”, 0dh, 0ah, 0; 0 at end to detect end of string (0d carrage
return, 0a -line feed)
	 TRANSMIT:
	 CLR A	 ; clear A to get data
	 MOVC A,@A+DPTR	 ; get data from string at data pointer
	 JZ EXITSTR	 ; if data zero, eos
	 LCALL OUTCHAR 	 ; else send character
	 inc DPTR	 ; increment data pointer
	 SJMP TRANSMIT	 ; continue, zero condition will terminate
	 EXITSTR:
	 ret
	 OUTCHAR:
	 MOV SBUF, A	 ; place A into Serial Port 1 Buffer
	 WAITCHAR:
	 JNB TI,WAITCHAR	 ; wait buffer empty flag is set

	 Appendix A	 195

	 CLR TI	 ; clear buffer empty flag
	 ret
	 START:
	 INITIALISATION
	 MOV TMOD, #20H	 ;T1 in mode 2
	 MOV TH1, #-3 	 ;9600 baud
	 MOV SCON, #50H 	 ;8b, 1start, 1stop
	 ANL PCON, #07fh	 ;To make SMOD =0
	 SETB TR1	 ;start T1
	 TO SEND DATA
	 MOV DPTR, #DATA
	 LCALL TRANSMIT	
	 SJMP START
	 EXAMPLE - MOBILE PHONE AND GPS RECEIVER
	 You can use same circuit for communicating with Mobile phones/GSM Module or GPS.
Communicating with both of these require a Multiplexer, which can be implemented using
NAND gates.

GPS SERIAL OUTPUT

Most GPS are capable of sending information through a simple serial link. Only the TXD and GROUND
pins need to be connected. The GPS must be set at 9600 bps (or 4800), 8 bits, No Parity, and 1 stop bit.
	 AND gate as 2:1 Mux. Which connects Rx of GSM modem or GPS receiver according to select
bit logic level (pin P1.0 of uC).

Appendix B

INSTRUCTION SET SUMMARY

ARITHMETIC OPERATIONS

	 Mnemonic	 Description	 Bytes	 Cycles
	 ADD	 A,Rn	 Add register to A	 1	 1
	 ADD	 A,direct	 Add direct byte to A	 2	 1
	 ADD	 A,@Ri	 Add indirect RAM to A	 1	 1
	 ADD	 A,#data	 Add immediate data to A	 2	 1
	 ADDC	 A,Rn	 Add register to A with Carry	 1	 1
	 ADDC	 A,direct	 Add direct byte to A with Carry	 2	 1
	 ADDC	 A,@Ri	 Add indirect RAM to A with Carry	 1	 1
	 ADDC	 A,#data	 Add immediate data to A with Carry	 2	 1
	 SUBB	 A,Rn	 Subtract register from A with Borrow	 1	 1
	 SUBB	 A,direct	 Subtract direct byte from A with Borrow	 2	 1
	 SUBB	 A,@Ri	 Subtract indirect RAM from A with Borrow	 1	 1
	 SUBB	 A,#data	 Subtract immediate data from A with Borrow	 2	 1
	 INC	 A	 Increment A	 1	 1
	 INC	 Rn	 Increment register	 1	 1
	 INC	 direct	 Increment direct byte	 2	 1
	 INC	 @Ri	 Increment indirect RAM	 1	 1
	 DEC	 A	 Decrement A	 1	 1
	 DEC	 Rn	 Decrement register	 1	 1
	 DEC	 direct	 Decrement direct byte	 2	 1
	 DEC	 @Ri	 Decrement indirect RAM	 1	 1
	 INC	 DPTR	 Increment Data Pointer	 1	 2
	 MUL	 AB	 Multiply A & B (A × B => BA)	 1	 4
	 DIV	 AB	 Divide A by B (A/B => A + B)	 1	 4
	 DA	 A	 Decimal Adjust A 	 1	 1

196

	 Appendix B	 197

LOGICAL OPERATIONS

	 Mnemonic	 Description	 Bytes	 Cycles
	 ANL	 A,Rn	 AND register to A	 1	 1
	 ANL	 A,direct	 AND direct byte to A	 2	 1
	 ANL	 A,@Ri	 AND indirect RAM to A	 1	 1
	 ANL	 A,#data	 AND immediate data to A	 2	 1
	 ANL	 direct,A	 AND A to direct byte	 2	 1
	 ANL	 direct,#data	 AND immediate data to direct byte	 3	 2
	 ORL	 A,Rn	 OR register to A	 1	 1
	 ORL	 A,direct	 OR direct byte to A	 2	 1
	 ORL	 A,@Ri	 OR indirect RAM to A	 1	 1
	 ORL	 A,#data	 OR immediate data to A	 2	 1
	 ORL	 direct,A	 OR A to direct byte	 2	 1
	 ORL	 direct,#data	 OR immediate data to direct byte	 3	 2
	 XRL	 A,Rn	 Exclusive-OR register to A	 1	 1
	 XRL	 A,direct	 Exclusive-OR direct byte to A	 2	 1
	 XRL	 A,@Ri	 Exclusive-OR indirect RAM to A	 1	 1
	 XRL	 A,#data	 Exclusive-OR immediate data to A	 2	 1	
	 XRL	 direct,A	 Exclusive-OR A to direct byte	 2	 1
	 XRL	 direct,#data	 Exclusive-OR immediate data to direct byte	 3	 2
	 CLR	 A	 Clear A	 1	 1
	 CPL	 A	 Complement A	 1	 1
	 RL	 A	 Rotate A Left	 1	 1
	 RLC	 A	 Rotate A Left through Carry	 1	 1
	 RR	 A	 Rotate A Right	 1	 1
	 RRC	 A	 Rotate A Right through Carry	 1	 1
	 SWAP	 A	 Swap nibbles within A	 1	 1

DATA TRANSFER

	 Mnemonic	 Description	 Bytes	 Cycles
	 MOV	 A,Rn	 Move register to A	 1	 1
	 MOV	 A,direct	 Move direct byte to A	 2	 1
	 MOV	 A,@Ri	 Move indirect RAM to A	 1	 1
	 MOV	 A,#data	 Move immediate data to A	 2	 1
	 MOV	 Rn,A	 Move A to register	 1	 1
	 MOV	 Rn,direct	 Move direct byte to register	 2	 2
	 MOV	 Rn,#data	 Move immediate data to register	 2	 1
	 MOV	 direct,A	 Move A to direct byte	 2	 1

198	 Microcontroller Architecture, Programming and Application

	 MOV	 direct,Rn	 Move register to direct byte	 2	 2
	 MOV	 direct,direct	 Move direct byte to direct byte	 3	 2
	 MOV	 direct,@Ri	 Move indirect RAM to direct byte	 2	 2
	 MOV	 direct,#data	 Move immediate data to direct byte	 3	 2
	 MOV	 @Ri,A	 Move A to indirect RAM	 1	 1
	 MOV	 @Ri,direct	 Move direct byte to indirect RAM	 2	 2
	 MOV	 @Ri,#data	 Move immediate data to indirect RAM	 2	 1
	 MOV	 DPTR,#data16	 Load Data Pointer with 16-bit constant	 2	 1
	 MOVC	 A,@A+DPTR	 Move Code byte relative to DPTR to A	 1	 2
	 MOVC	 A,@A+PC	 Move Code byte relative to PC to A	 1	 2
	 MOVX	 A,@Ri	 Move External RAM (8-bit addr) to A	 1	 2
	 MOVX	 A,@DPTR	 Move External RAM (16-bit addr) to A	 1	 2
	 MOVX	 @Ri,A	 Move A to External RAM (8-bit addr)	 1	 2
	 MOVX	 @DPTR,A	 Move A to External RAM (16-bit addr)	 1	 2
	 PUSH	 direct	 Push direct byte onto stack	 2	 2
	 POP	 direct	 Pop direct byte from stack	 2	 2
	 XCH	 A,Rn	 Exchange register with A	 1	 1
	 XCH	 A,direct	 Exchange direct byte with A	 2	 1
	 XCH	 A,@Ri	 Exchange indirect RAM with A	 1	 1
	 XCHD	 A,@Ri	 Exchange low-order Digit indirect RAM with A	 1	 1

BOOLEAN VARIABLE MANIPULATION

	 Mnemonic	 Description	 Bytes	 Cycles
	 CLR	 C	 Clear Carry flag	 1	 1
	 CLR	 bit	 Clear direct bit	 2	 1
	 SETB	 C	 Set Carry flag	 1	 1
	 SETB	 bit	 Set direct bit	 2	 1
	 CPL	 C	 Complement Carry flag	 1	 1
	 CPL	 bit	 Complement direct bit	 2	 1
	 ANL	 C,bit	 AND direct bit to Carry flag	 2	 2
	 ANL	 C,/bit	 AND complement of direct bit to Carry flag	 2	 2
	 ORL	 C,bit	 OR direct bit to Carry flag	 2	 2
	 ORL	 C,/bit	 OR complement of direct bit to Carry flag	 2	 2
	 MOV	 C,bit	 Move direct bit to Carry flag	 2	 1
	 MOV	 bit,C	 Move Carry flag to direct bit	 2	 2

PROGRAM AND MACHINE CONTROL

	 Mnemonic	 Description	 Bytes	 Cycles
	 ACALL	addr11	 Absolute subroutine call	 2	 2

	 Appendix B	 199

	 LCALL	addr16	 Long subroutine call	 3	 2
	 RET		 Return from subroutine	 1	 2
	 RETI		 Return from interrupt	 1	 2
	 AJMP	 addr11	 Absolute Jump	 2	 2
	 LJMP	 addr16	 Long Jump	 3	 2
	 SJMP	 rel	 Short Jump (relative addr)	 2	 2
	 JMP	 @A+DPTR	 Jump indirect relative to DPTR	 1	 2
	 JZ	 rel	 Jump if A is Zero	 2	 2
	 JNZ	 rel	 Jump if A is Not Zero	 2	 2
	 JC	 rel	 Jump if Carry flag is set	 2	 2
	 JNC	 rel	 Jump if No Carry flag	 2	 2
	 JB	 bit,rel	 Jump if direct Bit is set	 3	 2
	 JNB	 bit,rel	 Jump if direct Bit is Not set	 3	 2
	 JBC	 bit,rel	 Jump if direct Bit is set & Clear bit	 3	 2
	 CJNE	 A,direct,rel	 Compare direct to A & Jump if Not Equal	 3	 2
	 CJNE	 A,#data,rel	 Compare immediate to A & Jump if Not Equal	 3	 2
	 CJNE	 Rn,#data,rel	 Compare immed. to reg. & Jump if Not Equal	 3	 2
	 CJNE	 @Ri,#data,rel	Compare immed. to ind. & Jump if Not Equal	 3	 2
	 DJNZ	 Rn,rel	 Decrement register & Jump if Not Zero	 2	 2
	 DJNZ	 direct,rel	 Decrement direct byte & Jump if Not Zero	 3	 2
	 NOP		 No operation	 1	 1
Notes on data addressing modes
	 Rn	 Working register R0-R7
	 direct	 128 internal RAM locations, any I/O port, control or status register
	 @Ri	 Indirect internal RAM location addressed by register R0 or R1
	 #data	 8-bit constant included in instruction
	 #data	 16 16-bit constant included in instruction
	 bit	 128 software flags, any I/O pin, control or status bit
Notes on program addressing modes
	 addr16	 Destination address may be anywhere in 64-kByte program address space
	 addr11	 Destination address will be within same 2-kByte page of program address space as

first byte of the following instruction
	 rel	 8-bit offset relative to first byte of following instruction (+127, -128)

Appendix C

INTERRUPTS

In order to use any of the interrupts in the MCS-51, the following three steps must be taken.
	 1.	 Set the EA (enable all) bit in the IE register to 1.
	 2.	 Set the corresponding individual interrupt enable bit in the IE register to 1.
	 3.	 Begin the interrupt service routine at the corresponding Vector Address of that interrupt.

See Table below.

Interrupt Source Vector Address

IE0

TF0

IE1

TF1

R1 & T1

TF2 & EXF2

0003H

000BH

0013H

001BH

0023H

002BH

	 In addition, for external interrupts, pins 0INT and 1INT (P3.2 and P3.3) must be set to 1,
and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in
the TCON register may need to be set to 1.
	 ITx – 0 level activated
	 ITx – 1 transition activated

IE: INTERRUPT ENABLE REGISTER. BIT ADDRESSABLE.

If the bit is 0, the corresponding interrupt is disabled. If the bit is 1, the corresponding interrupt
is enabled.

	 EA IE.7 Disables all interrupts. If EA e 0, no interrupt will be acknowledged. If EA e 1, each
interrupt source is individually enabled or disabled by setting or clearing its enable bit.
	 Ð IE.6 Not implemented, reserved for future use.
	 ET2 IE.5 Enable or disable the Timer 2 overflow or capture interrupts (8052 only).
	 ES IE.4 Enable or disable the serial port interrupt.
	 ET1 IE.3 Enable or disable the Timer 1 overflow interrupt.

200

	 Appendix C	 201

	 EX1 IE.2 Enable or disable External Interrupt 1.
	 ET0 IE.1 Enable or disable the Timer 0 overflow interrupt.
	 EX0 IE.0 Enable or disable External Interrupt 0.
	 User software should not write 1s to reserved bits. These bits may be used in future.
	 This invokes new features. In that case, the reset or inactive value of the new bit will be 0,
and its active value will be 1.

ASSIGNING HIGHER PRIORITY TO ONE OR MORE INTERRUPTS

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be
set to 1. Remember that while an interrupt service is in progress, it cannot be interrupted by a
lower or same level interrupt.

PRIORITY WITHIN LEVEL

Priority within level is only to resolve simultaneous requests of the same priority level.
	 From high to low, interrupt sources are listed below:
	 IE0
	 TF0
	 IE1
	 TF1
	 R1 or T1
	 TF2 or EXF2

IP: INTERRUPT PRIORITY REGISTER. BIT ADDRESSABLE

If the bit is 0, the corresponding interrupt has a lower priority and if the bit is 1 the corresponding
interrupt has a higher priority.

	 —	 IP.7 Not implemented, reserved for future use.*
	 —	 IP.6 Not implemented, reserved for future use.*
	 PT2	 IP.5 Defines the Timer 2 interrupt priority level (8052 only).
	 PS	 IP.4 Defines the Serial Port interrupt priority level.
	 PT1	 IP.3 Defines the Timer 1 interrupt priority level.
	 PX1	 IP.2 Defines External interrupt 1 priority levle.
	 PT0	 IP.1 Defines the Timer 0 interrupt priority level.
	 PX0	 IP.0 Defines the External Interrupt 0 priority level.	
	 User software should not write 1s to reserved bits. These bits may be used in future. This
invokes new features. In that case, the reset or inactive value of the new bit will be 0, and its
active value will be 1.

TCON: TIMER/COUNTER CONTROL REGISTER. BIT ADDRESSABLE

202	 Microcontroller Architecture, Programming and Application

	 TF1 TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows.
Cleared by hardware as processor vectors to the interrupt service routine.
	 TR1 TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/
OFF.
	 TF0 TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows.
Cleared by hardware as processor vectors to the service routine.
	 TR0 TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/
OFF.
	 IE1 TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge
is detected.
	 Cleared by hardware when interrupt is processed.
	 IT1 TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low
level triggered External Interrupt.
	 IE0 TCON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge
detected. Cleared by hardware when interrupt is processed.
	 IT0 TCON. 0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low
level triggered External Interrupt.

TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT ADDRESSABLE

	 Gate	 When TRx (in TCON) is set and GATE = 1, Timer/Counterx will run only while
INTx pin is high (hardware control). When GATE = 0, Timer/Counterx will run
only while TRx = 1 (software control).

	 C/T	 Timer or Counter selector. Cleared for Timer operation (input from internal system
clock). Set for Counter operation (input from Tx input pin).

	 M1	 Mode selector bit. (NOTE 1)
	 M0	 Mode selector bit. (NOTE 1)
	 Note 1:

M1 M0 Operating Mode

0 0 0 13-bit Timer (MCS-48 compatable)
0 1 1 16-bit Timer/Counter
1 0 2 8-bit Auto-Reload Timer/Counter
1 1 3 (Timer 0) TL0 is an 8-bit Timer/Counter controlled by the standard

Timer 0 control bits. TH0 is an 8-bit Timer and is controlled by
Timer 1 control bits.

1 1 3 (Timer 1) Timer/Counter 1 stopped.

TIMER SET-UP
Tables through 6 give some values for TMOD which can be used to set up Timer 0 in different
modes. It is assumed that only one timer is being used at a time. If it is desired to run Timers

	 Appendix C	 203

0 and 1 simultaneously, in any mode, the value in TMOD for Timer 0 must be ORed with the
value shown for Timer 1.
	 For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1
in mode 2 COUNTER, then the value that must be loaded into TMOD is 69H (09H from Table
ORed with 60H from Table). Moreover, it is assumed that the user, at this point, is not ready
to turn the timers on and will do that at a different point in the program by setting bit TRx
(in TCON) to 1.

TIMER/COUNTER 0

	 As a Timer :
Table 3

Mode Timer 0 Function
TMOD

Internal Control
(Note 1)

External Control
(Note 2)

0

1

2

3

13-bit Timer

16-bit Timer

8-bit Auto-Reload

two 8-bit Timers

00H

01H

02H

03H

08H

09H

0AH

0BH

	 As a Counter :
Table 4

Mode
Counter 0
Function

TMOD

Internal Control
(Note 1)

External Control
(Note 2)

0

1

2

3

13-bit Timer

16-bit Timer

8-bit Auto-Reload

one 8-bit Counter

04H

05H

06H

07H

0CH

0DH

0EH

0FH

	 Notes :
	 1.	 The Timer is turned ON/OFF by setting/dearing bit TR0 in the software.
	 2.	 The Timer is turned ON/OFF by the 1 to 0 transition on 0INT (P32) when TR0 – 1

(hardware control).

204	 Microcontroller Architecture, Programming and Application

Timer/Counter 1

	 As a Timer :
Table 5

Mode Timer 1 Function
TMOD

Internal Control
(Note 1)

External Control
(Note 2)

0

1

2

3

13-bit Timer

16-bit Timer

8-bit Auto-Reload

does not run

00H

10H

20H

30H

80H

90H

A0H

B0H

	 As a Counter :
Table 6

Mode
Counter 1
Function

TMOD

Internal Control
(Note 1)

External Control
(Note 2)

0

1

2

3

13-bit Timer

16-bit Timer

8-bit Auto-Reload

not available

40H

50H

60H

—

C0H

D0H

E0H

—

	 Notes :
	 1.	 The Timer is turned ON/OFF by setting/dearing bit TR1 in the software.
	 2.	 The Timer is turned ON/OFF by the 1 to 0 transition on 1INT (P3.3) when TR1 – 1

(hardware control).

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE

8052 Only

	 RF2	 T2CON. 7	 Timer 2 overflow flag set by hardware and cleared by softwares. TF2
cannot be set when either R CLK = 1 or CLK = 1.

	 EXF2	 T2CON. 6	 Timer 2 external flag set when either a capture or reload is caused
by a negative transition on T2EX, and EXEN2 = 1. When Timer 2
interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the
Timer 2 interrupt routine. EXF2 must be cleared by software.

	 RCLK	 T2CON. 5	 Receive clock flag. When set, causes the Serial Port to use Timer 2
overflow pulses for its receive clock in modes 1 & 3. RCLK = 0 causes
Timer 1 overflow to be used for the receive clock.

	 TLCK	 T2CON. 4	 Transmit clock flag. When set, causes the Serial Port to use Timer
2 overflow pulses for its transmit clock in modes 1 & 3. TCLK = 0
causes Timer 1 overflows to be used for the transmit clock.

	 Appendix C	 205

	 EXEN2	 T2CON. 3	 Timer 2 external enable flag. When set, allows a capture or reload
to occur as a result of negative transition on T2EX if Timer 2 is not
being used to clock the Serial Port. EXEN2 = 0 causes Timer 2 to
ingnore events at T2EX.

	 TR2	 T2CON. 2	 Sofware START/STOP control for Timer 2. A logic 1 starts the
Timer.

	 C/T2	 T2CON. 1	 Timer or Counter select.
			 0 – Internal Timer. 1 = External Event Conunter (falling edges

triggered).
	 CP/RL2	 T2CON. 0	 Capture/Reload flag. When set, captures will occur on negative

transitions at T2EX if EXEN2 = 1. When cleared, Auto-Reloads
will occur either with Timer 2 overflows or negative transitions at
T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this
bit is ignored and the Timer is forced to Auto-Reload on Timer 2
overflow.

TIMER/COUNTER 2 SET-UP

Except for the baud rate generator mode, the values given for T2CON do not include the setting
of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the Timer on.
	 As a Timer :

Table 7

Mode
T2CON

Internal Control
(Note 1)

External Control
(Note 2)

16-bit Auto-Reload

16-bit Capture

BAUD rate generator receive and
transmit same baud rate

receive only

transmit only

00H

01H

34H

24H

14H

08H

09H

36H

26H

16H

	 As a Counter :
Table 8

Mode
TMOD

Internal Control
(Note 1)

External Control
(Note 2)

16-bit Auto-Reload

16-bit Capture

02H

03H

0AH

0BH

	 Notes :
	 1.	 Capture/Reload occurs only on Timer/Counter overflow.
	 2.	 Capture/Reload occurs on Timer/Counter overflow and a 1 to 0 transition on T2EX (P1.1)

pin except when Timer 2 is used in the baud rate generating mode.

206	 Microcontroller Architecture, Programming and Application

SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE

	 SM0 SCON. 7 Serial Port mode specifier. (NOTE 1).
	 SM1 SCON. 6 Serial Port mode specifier. (NOTE 1).
	 SM2 SCON. 5 Enables the multiprocessor communication feature in modes 2 & 3. In mode
2 or 3, if SM2 is set to 1 then RI will not be activated if the received 9th data bit (RB8) is 0. In
mode 1, if SM2 e 1 then RI will not be activated if a valid stop bit was not received. In mode 0,
SM2 should be 0.
	 REN SCON. 4 Set/Cleared by software to Enable/Disable reception.
	 TB8 SCON. 3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software.
	 RB8 SCON. 2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, if SM2 e 0,
RB8 is the stop bit that was received. In mode 0, RB8 is not used.
	 TI SCON. 1 Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode
0, or at the beginning of the stop bit in the other modes. Must be cleared by software.
	 RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode
0, or halfway through the stop bit time in the other modes (except see SM2). Must be cleared by
software.
	 Notes:

SM0 SM1 Mode Description Baud Rate

0 0 0 Shift Register Fosc./12
0 1 1 8-Bit Uart Variable
1 0 2 9-Bit UART Fosc./64 OR

Fosc./32
1 1 3 9-Bit UART Variable

	Serial Port Set-Up:
Table 9

Mode SCON SM2 Variation

0

1

2

3

10H

50H

90H

D0H

Single Processor

Environment

(SM2 = 0)

0

1

2

3

NA

70H

B0H

F0H

Multiprocessor

Environment

(SM2 = 1)

Appendix D

INSTRUCTION OPCODES IN HEXADECIMAL ORDER

Hex Number

Mnemonic Operands
Code of Bytes
00 1 NOP
01 2 AJMP code addr
02 3 LJMP code addr
03 1 RR A
04 1 INC A
05 2 INC data addr
06 1 INC @R0
07 1 INC @R1
08 1 INC R0
09 1 INC R1
0A 1 INC R2
0B 1 INC R3
0C 1 INC R4
0D 1 INC R5
0E 1 INC R6
0F 1 INC R7
10 3 JBC bit addr, code addr
11 2 ACALL code addr
12 3 LCALL code addr
13 1 RRC A
14 1 DEC A
15 2 DEC data addr
16 1 DEC @R0
17 1 DEC @R1
18 1 DEC R0

207

208	 Microcontroller Architecture, Programming and Application

19 1 DEC R1
1A 1 DEC R2
1B 1 DEC R3
1C 1 DEC R4
1D 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
20 3 JB bit addr, code addr
21 2 AJMP code addr
22 1 RET
23 1 RL A
24 2 ADD A,Ýdata
25 2 ADD A,data addr
26 1 ADD A, @R0
27 1 ADD A, @R1
28 1 ADD A, R0
29 1 ADD A, R1
2A 1 ADD A, R2
2B 1 ADD A, R3
2C 1 ADD A, R4
2D 1 ADD A, R5
2E 1 ADD A, R6
2F 1 ADD A, R7
30 3 JNB bit addr, code addr
31 2 ACALL code addr
32 1 RETI

Hex Number

Mnemonic Operands
Code of Bytes
33 1 RLC A
34 2 ADDC A,Ýdata
35 2 ADDC A,data addr
36 1 ADDC A, @R0
37 1 ADDC A, @R1
38 1 ADDC A, R0
39 1 ADDC A, R1
3A 1 ADDC A, R2
3B 1 ADDC A, R3

	 Appendix D	 209

3C 1 ADDC A, R4
3D 1 ADDC A, R5
3E 1 ADDC A, R6
3F 1 ADDC A, R7
40 2 JC code addr
41 2 AJMP code addr
42 2 ORL data addr, A
43 3 ORL data addr, Ýdata
44 2 ORL A, Ýdata
45 2 ORL A, data addr
46 1 ORL A, @R0
47 1 ORL A, @R1
48 1 ORL A, R0
49 1 ORL A, R1
4A 1 ORL A, R2
4B 1 ORL A, R3
4C 1 ORL A, R4
4D 1 ORL A, R5
4E 1 ORL A, R6
4F 1 ORL A, R7
50 2 JNC code addr
51 2 ACALL code addr
52 2 ANL data addr, A
53 3 ANL data addr, Ýdata
54 2 ANL A, Ýdata
55 2 ANL A, data addr
56 1 ANL A, @R0
57 1 ANL A, @R1
58 1 ANL A, R0
59 1 ANL A, R1
5A 1 ANL A, R2
5B 1 ANL A, R3
5C 1 ANL A, R4
5D 1 ANL A, R5
5E 1 ANL A, R6
5F 1 ANL A, R7
60 2 JZ code addr
61 2 AJMP code addr

210	 Microcontroller Architecture, Programming and Application

62 2 XRL data addr, A
63 3 XRL data addr, Ýdata
64 2 XRL A, Ýdata
65 2 XRL A, data addr

Hex Number

Mnemonic Operands
Code of Bytes
66 1 XRL A, @R0
67 1 XRL A, @R1
68 1 XRL A, R0
69 1 XRL A, R1
6A 1 XRL A, R2
6B 1 XRL A, R3
6C 1 XRL A, R4
6D 1 XRL A, R5
6E 1 XRL A, R6
6F 1 XRL A, R7
70 2 JNZ code addr
71 2 ACALL code addr
72 2 ORL C, bit addr
73 1 JMP @ AaDPTR
74 2 MOV A, Ýdata
75 3 MOV data addr, Ýdata
76 2 MOV @R0, Ýdata
77 2 MOV @R1, Ýdata
78 2 MOV R0, Ýdata
79 2 MOV R1, Ýdata
7A 2 MOV R2, Ýdata
7B 2 MOV R3, Ýdata
7C 2 MOV R4, Ýdata
7D 2 MOV R5, Ýdata
7E 2 MOV R6, Ýdata
7F 2 MOV R7, Ýdata
80 2 SJMP code addr
81 2 AJMP code addr
82 2 ANL C, bit addr
83 1 MOVC A, @AaPC
84 1 DIV AB

	 Appendix D	 211

85 3 MOV data addr, data addr
86 2 MOV data addr, @R0
87 2 MOV data addr, @R1
88 2 MOV data addr, R0
89 2 MOV data addr, R1
8A 2 MOV data addr, R2
8B 2 MOV data addr, R3
8C 2 MOV data addr, R4
8D 2 MOV data addr, R5
8E 2 MOV data addr, R6
8F 2 MOV data addr, R7
90 3 MOV DPTR, Ýdata
91 2 ACALL code addr
92 2 MOV bit addr, C
93 1 MOVC A, @AaDPTR
94 2 SUBB A, Ýdata
95 2 SUBB A, data addr
96 1 SUBB A, @R0
97 1 SUBB A, @R1
98 1 SUBB A, R0

Hex Number

Mnemonic Operands
Code of Bytes
99 1 SUBB A, R1
9A 1 SUBB A, R2
9B 1 SUBB A, R3
9C 1 SUBB A, R4
9D 1 SUBB A, R5
9E 1 SUBB A, R6
9F 1 SUBB A, R7
A0 2 ORL C, /bit addr
A1 2 AJMP code addr
A2 2 MOV C, bit addr
A3 1 INC DPTR
A4 1 MUL AB
A5 reserved
A6 2 MOV @R0, data addr
A7 2 MOV @R1, data addr

212	 Microcontroller Architecture, Programming and Application

A8 2 MOV R0, data addr
A9 2 MOV R1, data addr
AA 2 MOV R2, data addr
AB 2 MOV R3, data addr
AC 2 MOV R4, data addr
AD 2 MOV R5, data addr
AE 2 MOV R6, data addr
AF 2 MOV R7, data addr
B0 2 ANL C, /bit addr
B1 2 ACALL code addr
B2 2 CPL bit addr
B3 1 CPL C
B4 3 CJNE A, Ýdata, code addr
B5 3 CJNE A, data addr, code addr
B6 3 CJNE @R0, Ýdata, code addr
B7 3 CJNE @R1, Ýdata, code addr
B8 3 CJNE R0, Ýdata, code addr
B9 3 CJNE R1, Ýdata, code addr
BA 3 CJNE R2, Ýdata, code addr
BB 3 CJNE R3, Ýdata, code addr
BC 3 CJNE R4, Ýdata, code addr
BD 3 CJNE R5, Ýdata, code addr
BE 3 CJNE R6, Ýdata, code addr
BF 3 CJNE R7, Ýdata, code addr
C0 2 PUSH data addr
C1 2 AJMP code addr
C2 2 CLR bit addr
C3 1 CLR C
C4 1 SWAP A
C5 2 XCH A, data addr
C6 1 XCH A, @R0
C7 1 XCH A, @R1
C8 1 XCH A, R0
C9 1 XCH A, R1
CA 1 XCH A, R2
CB 1 XCH A, R3

	 Appendix D	 213

Hex Number

Mnemonic Operands
Code of Bytes
CC 1 XCH A, R4
CD 1 XCH A, R5
CE 1 XCH A, R6
CF 1 XCH A, R7
D0 2 POP data addr
D1 2 ACALL code addr
D2 2 SETB bit addr
D3 1 SETB C
D4 1 DA A
D5 3 DJNZ data addr, code addr
D6 1 XCHD A, @R0
D7 1 XCHD A, @R1
D8 2 DJNZ R0, code addr
D9 2 DJNZ R1, code addr
DA 2 DJNZ R2, code addr
DB 2 DJNZ R3, code addr
DC 2 DJNZ R4, code addr
DD 2 DJNZ R5, code addr
DE 2 DJNZ R6, code addr
DF 2 DJNZ R7, code addr
E0 1 MOVX A, @DPTR
E1 2 AJMP code addr
E2 1 MOVX A, @R0
E3 1 MOVX A, @R1
E4 1 CLR A
E5 2 MOV A, data addr

Hex Number

Mnemonic Operands
Code of Bytes
E6 1 MOV A, @R0
E7 1 MOV A, @R1
E8 1 MOV A, R0
E9 1 MOV A, R1
EA 1 MOV A, R2

214	 Microcontroller Architecture, Programming and Application

EB 1 MOV A, R3
EC 1 MOV A, R4
ED 1 MOV A, R5
EE 1 MOV A, R6
EF 1 MOV A, R7
F0 1 MOVX @DPTR, A
F1 2 ACALL code addr
F2 1 MOVX @R0, A
F3 1 MOVX @R1, A
F4 1 CPL A
F5 2 MOV data addr, A
F6 1 MOV @R0, A
F7 1 MOV @R1, A
F8 1 MOV R0, A
F9 1 MOV R1, A
FA 1 MOV R2, A
FB 1 MOV R3, A
FC 1 MOV R4, A
FD 1 MOV R5, A
FE 1 MOV R6, A
FF 1 MOV R7, A

215

BIBLIOGRAPHY

	 Reference the following books
	 l	 The 8051 Microcontroller Architecture, Programming and Applications (Second Edition)

– Kenneth J. Ayala.
	 l	 Microprocessor and Microcontroller (Second Edition) – R.Theagarajan.
	 l	 Microprocessors and Microcontrollers (Third Revised Edition) – A.P.Godse, D.A.Godse.

Index

Symbols

9’s Complement: 21
10’s Complement 21
8051 FLAVORS 10

A

Accumulator 36
ADC Interfacing 155
Additional Memory Block of Data Memory 43
Addressing Modes 69
AJMP 119
ALU 1
Analog to Digital Converter 177
Arithmetic Instruction 104

B

Base Register 71
Basic Components of a Microcomputer 5
Baud Rate 58
Bi-directional Data Transfer 141
Binary Addition 13
Binary Addition and Subtraction 13
Binary Division 16
Binary Multiplication 15
Binary Subtraction 14
Binary System 12
Bit Addressable Control Register 95
Bit Jumps 120
Bit Level Boolean Operations 95
Bit Level Logical Operations 93
Bit Level Logical Operation Examples 95
Boolean Variable Manipulation Instruction 98
BSR 136

Byte Level Logical Operations 83

C

CALL addr 128
Case jump 71
Character Generator RAM (CGRAM) 152
Code Memory Read-Only Data Moves 75
Control Groups 139
Control Word Formats 142
Convert Binary to HexaDecimal 24
Convert Binary to Octal 23
Convert Decimal to Octal 23
Convert HexaDecimal to Decimal 24
Converting Binary Number to Decimal 18
Converting Decimal Number to Binary 18
Counters and Timers 49
CPU 6

D

Data bus 2
Data Bus Buffer 139
Data Exchange 77
Data Memory 6
Data Pointer 70
Data Transfer Instructions 72
Decimal Arithmetic 115
Decimal Components 21
Decimal System 12
Digital-Ramp ADC 166
Digital to Analog Converter 181
Digital to Analog Converter - DAC 165
Direct Addressing Modes 70
Display Data RAM (DDRAM) 152
DPTR Register (Data Pointer) 35

	 Index	 217

E

EEPROM 1
Embedded 3
Evolution of Microprocessor 7
EXCESS – 3 CODE 25
External Data 48
External Data Memory 48
External Data Moves 73
External Memory 46, 74

F

Flags and PSW 38
Flash ADC 161

G

Gray Code 25

H

Handling Interrupt 63
Handshake 137
Hand Shaking Signals 141
Hardware Register 87
HexaDecimal 24

I

Idle Mode 60
IE Register (Interrupt Enable) 61
Immediate Addressing Modes 69
INC DPTR 113
Increment and Decrement Instructions 112
Index register 71
Indirect Addressing Mode 70
Input pin 33
Internal data bus 30
Internal memory 43
Internal RAM 43
Internal RAM Bit Addresses 93
Interrupt 60
Interrupt Enable 131
Interrupt Enables 64
Interrupt Priorities 62
Interrupt Structure 63, 131

I/O modes 136
IP Register (Interrupt Priority) 62

J

Jumps 120

K

Key Board 145
Key Bounce 146

L

latch/buffer 140
LJMP 119
Long Absolute Page 119

M

Matrix Keypad and Ssd Interface 185
Microcomputer Organization 5
Microprocessor 1
Multiplication and Division 114

N

Negative Number Representation 19

O

Object Counter 175
Octal Number System 22
One’s Complement Method 20
Output pin 33
Output Ports 6

P

Pages 119
POP direct 77
Power Down Mode 60
Power Mode Control (PCON) 59
Program Counter 36
Programmable Peripheral Interface (PPI) 136
Program Memory 6
PSW Register (Program Status Word) 38
Pulled Down 33
Push and Pop Opcodes 76

218	 Microcontroller Architecture, Programming and Application

PUSH direct 77

R

Read/Write and Control Logic 139
Register Addressing Modes 70
Relative Offset 119
Rotate and Swap Operation 96

S

SBUF register 57
Seven Segment Display 149
SFR Bit Addresses 94
Short Absolute Range 119
Signed Addition 105
SJMP 119
SJMP RELADR 127
Special Function Registers 39

Stack and Stack Pointer 39
Stack Pointer 39
Stepper Motor Interface 183
Subroutines 128
Subtraction 109
Successive Approximation ADC 160

T

The Signed Magnitude Method 19
Traffic Light Controller 154
Two’s Complement 21

U

UART 53
Unsigned Addition 104
Unsinged and Signed Addition 104
Up/Down Counter and Object Counter 173

