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Why Architecture?!
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Why is Architecture Important?!
  Representations of software architecture are an enabler 

for communication between all parties (stakeholders) 
interested in the development of a computer-based 
system.!

  The architecture highlights early design decisions that 
will have a profound impact on all software engineering 
work that follows and, as important, on the ultimate 
success of the system as an operational entity.!

  Architecture “constitutes a relatively small, intellectually 
graspable mode of how the system is structured and 
how its components work together” [BAS03].!
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Architectural Descriptions!
  The IEEE Computer Society has proposed IEEE-

Std-1471-2000, Recommended Practice for Architectural 
Description of Software-Intensive System, [IEE00] 
  to establish a conceptual framework and vocabulary for use 

during the design of software architecture,  
  to provide detailed guidelines for representing an architectural 

description, and  
  to encourage sound architectural design practices. 

  The IEEE Standard defines an architectural description (AD) 
as a “a collection of products to document an architecture.”  
  The description itself is represented using multiple views, where 

each view is “a representation of a whole system from the 
perspective of a related set of [stakeholder] concerns.” 
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Architectural Genres!
  Genre implies a specific category within the 

overall software domain. !
  Within each category, you encounter a number 

of subcategories. !
  For example, within the genre of buildings, you 

would encounter the following general styles: 
houses, condos, apartment buildings, office 
buildings, industrial building, warehouses, and so 
on. !

  Within each general style, more specific styles might 
apply. Each style would have a structure that can be 
described using a set of predictable patterns.!
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Architectural Styles!

  Data-centered architectures!
  Data flow architectures!
  Call and return architectures!
  Object-oriented architectures!
  Layered architectures!
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Data-Centered Architecture!
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Data Flow Architecture!
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Call and Return Architecture!
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Layered Architecture!
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Architectural Patterns!
  Concurrency—applications must handle multiple tasks in a 

manner that simulates parallelism !
   operating system process management pattern!
  task scheduler pattern!

  Persistence—Data persists if it survives past the execution of 
the process that created it. Two patterns are common: !
  a database management system pattern that applies the storage 

and retrieval capability of a DBMS to the application architecture!
  an application level persistence pattern that builds persistence 

features into the application architecture!
  Distribution— the manner in which systems or components 

within systems communicate with one another in a distributed 
environment!
  A broker acts as a ʻmiddle-manʼ between the client component and a 

server component.!
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Architectural Design!
  The software must be placed into context!

  the design should define the external entities (other 
systems, devices, people) that the software interacts 
with and the nature of the interaction!

  A set of architectural archetypes should be 
identified!
  An archetype is an abstraction (similar to a class) 

that represents one element of system behavior!
  The designer specifies the structure of the 

system by defining and refining software 
components that implement each archetype!



These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e 
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 13!

Architectural Context!
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Archetypes!

Figure 10.7  UML relationships for SafeHome security function archetypes
(adapted from [BOS00])
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Component Structure!
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Refined Component Structure!
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Analyzing Architectural Design!
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Architectural Complexity!
  the overall complexity of a proposed 

architecture is assessed by considering the 
dependencies between components within the 
architecture [Zha98]!
  Sharing dependencies represent dependence 

relationships among consumers who use the same 
resource or producers who produce for the same 
consumers.!

  Flow dependencies represent dependence relationships 
between producers and consumers of resources.!

  Constrained dependencies represent constraints on the 
relative flow of control among a set of activities.!
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ADL!
  Architectural description language (ADL) provides 

a semantics and syntax for describing a software 
architecture	



  Provide the designer with the ability to: 	


  decompose architectural components	


  compose individual components into larger architectural 

blocks and 	


  represent interfaces (connection mechanisms) between 

components.  	
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An Architectural Design Method!
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Deriving Program Architecture!
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Partitioning the Architecture!
  “horizontal” and “vertical” partitioning are 

required!
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Horizontal Partitioning!
  define separate branches of the module 

hierarchy for each major function!
  use control modules to coordinate 

communication between functions!
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Vertical Partitioning: Factoring!
  design so that decision making and work 

are stratified!
  decision making modules should reside at 

the top of the architecture!

workers 

decision-makers 
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Why Partitioned Architecture?!

  results in software that is easier to test!
  leads to software that is easier to maintain!
  results in propagation of fewer side effects!
  results in software that is easier to extend!
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Structured Design!
  objective: to derive a program 

architecture that is partitioned!
  approach: !

  a DFD is mapped into a program 
architecture!

  the PSPEC and STD are used to 
indicate the content of each module!

  notation:  structure chart!



These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e 
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 27!

Flow Characteristics!
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General Mapping Approach!
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General Mapping Approach!
  Isolate the transform center by specifying incoming 

and outgoing flow boundaries!
  Perform "first-level factoring.”!

  The program architecture derived using this mapping 
results in a top-down distribution of control. !

  Factoring leads to a program structure in which top-level 
components perform decision-making and low-level 
components perform most input, computation, and output 
work. !

  Middle-level components perform some control and do 
moderate amounts of work.!

  Perform "second-level factoring."!
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Transform Mapping!
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Factoring!
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First Level Factoring!
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Second Level Mapping!
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