
These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 1!

Chapter 9!
  Architectural Design!

Slide Set to accompany 
Software Engineering: A Practitionerʼs Approach, 7/e #
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction
with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is
prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student
use.

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 2!

Why Architecture?!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 3!

Why is Architecture Important?!
  Representations of software architecture are an enabler

for communication between all parties (stakeholders)
interested in the development of a computer-based
system.!

  The architecture highlights early design decisions that
will have a profound impact on all software engineering
work that follows and, as important, on the ultimate
success of the system as an operational entity.!

  Architecture “constitutes a relatively small, intellectually
graspable mode of how the system is structured and
how its components work together” [BAS03].!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 4!

Architectural Descriptions!
  The IEEE Computer Society has proposed IEEE-

Std-1471-2000, Recommended Practice for Architectural
Description of Software-Intensive System, [IEE00]
  to establish a conceptual framework and vocabulary for use

during the design of software architecture,
  to provide detailed guidelines for representing an architectural

description, and
  to encourage sound architectural design practices.

  The IEEE Standard defines an architectural description (AD)
as a “a collection of products to document an architecture.”
  The description itself is represented using multiple views, where

each view is “a representation of a whole system from the
perspective of a related set of [stakeholder] concerns.”

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 5!

Architectural Genres!
  Genre implies a specific category within the

overall software domain. !
  Within each category, you encounter a number

of subcategories. !
  For example, within the genre of buildings, you

would encounter the following general styles:
houses, condos, apartment buildings, office
buildings, industrial building, warehouses, and so
on. !

  Within each general style, more specific styles might
apply. Each style would have a structure that can be
described using a set of predictable patterns.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 6!

Architectural Styles!

  Data-centered architectures!
  Data flow architectures!
  Call and return architectures!
  Object-oriented architectures!
  Layered architectures!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 7!

Data-Centered Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 8!

Data Flow Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 9!

Call and Return Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 10!

Layered Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 11!

Architectural Patterns!
  Concurrency—applications must handle multiple tasks in a

manner that simulates parallelism !
  operating system process management pattern!
  task scheduler pattern!

  Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common: !
  a database management system pattern that applies the storage

and retrieval capability of a DBMS to the application architecture!
  an application level persistence pattern that builds persistence

features into the application architecture!
  Distribution— the manner in which systems or components

within systems communicate with one another in a distributed
environment!
  A broker acts as a ʻmiddle-manʼ between the client component and a

server component.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 12!

Architectural Design!
  The software must be placed into context!

  the design should define the external entities (other
systems, devices, people) that the software interacts
with and the nature of the interaction!

  A set of architectural archetypes should be
identified!
  An archetype is an abstraction (similar to a class)

that represents one element of system behavior!
  The designer specifies the structure of the

system by defining and refining software
components that implement each archetype!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 13!

Architectural Context!

target system:
Security Function

uses
uses peershomeowner

Safehome
Product

Internet-based
system

surveillance
function

sensors

control
panel

sensors

uses

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 14!

Archetypes!

Figure 10.7 UML relationships for SafeHome security function archetypes
(adapted from [BOS00])

Controller

Node

communicates with

Detector Indicator

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 15!

Component Structure!

SafeHome
Executive

External
Communication
Management

GUI Internet
Interface

Function
selection

Security Surveillance Home
management

Control
panel

processing

detector
management

alarm
processing

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 16!

Refined Component Structure!

sensorsensorsensorsensor
sensorsensorsensorsensor

External
Communication
Management

GUI Internet
Interface

Security

Control
panel

processing

detector
management

alarm
processing

Keypad
processing

CP display
functions

scheduler

sensorsensorsensorsensor

phone
communication

alarm

SafeHome
Executive

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 17!

Analyzing Architectural Design!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 18!

Architectural Complexity!
  the overall complexity of a proposed

architecture is assessed by considering the
dependencies between components within the
architecture [Zha98]!
  Sharing dependencies represent dependence

relationships among consumers who use the same
resource or producers who produce for the same
consumers.!

  Flow dependencies represent dependence relationships
between producers and consumers of resources.!

  Constrained dependencies represent constraints on the
relative flow of control among a set of activities.!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 19!

ADL!
  Architectural description language (ADL) provides

a semantics and syntax for describing a software
architecture	

  Provide the designer with the ability to: 	

  decompose architectural components	

  compose individual components into larger architectural

blocks and 	

  represent interfaces (connection mechanisms) between

components. 	

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 20!

An Architectural Design Method!

"four bedrooms, three baths,!
lots of glass ..."!

customer requirements!

architectural design!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 21!

Deriving Program Architecture!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 22!

Partitioning the Architecture!
  “horizontal” and “vertical” partitioning are

required!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 23!

Horizontal Partitioning!
  define separate branches of the module

hierarchy for each major function!
  use control modules to coordinate

communication between functions!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 24!

Vertical Partitioning: Factoring!
  design so that decision making and work

are stratified!
  decision making modules should reside at

the top of the architecture!

workers

decision-makers

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 25!

Why Partitioned Architecture?!

  results in software that is easier to test!
  leads to software that is easier to maintain!
  results in propagation of fewer side effects!
  results in software that is easier to extend!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 26!

Structured Design!
  objective: to derive a program

architecture that is partitioned!
  approach: !

  a DFD is mapped into a program
architecture!

  the PSPEC and STD are used to
indicate the content of each module!

  notation: structure chart!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 27!

Flow Characteristics!

The
imag
e
cann
ot be
displ
ayed.
Your

Transform flow!

Transaction!
flow!

This edition of
SEPA does not
cover transaction
mapping. For a
detailed
discussion see the
SEPA website

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 28!

General Mapping Approach!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 29!

General Mapping Approach!
  Isolate the transform center by specifying incoming

and outgoing flow boundaries!
  Perform "first-level factoring.”!

  The program architecture derived using this mapping
results in a top-down distribution of control. !

  Factoring leads to a program structure in which top-level
components perform decision-making and low-level
components perform most input, computation, and output
work. !

  Middle-level components perform some control and do
moderate amounts of work.!

  Perform "second-level factoring."!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 30!

Transform Mapping!

data flow model

"Transform" mapping

a
b

c
d e f g h

i
j

x1

x2 x3 x4

b c

a

d e f g i

h j

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 31!

Factoring!

typical "worker" modules

typical "decision
making" modules

direction of increasing
decision making

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 32!

First Level Factoring!
main !

program!
controller!

input!
controller!

processing!
controller!

output!
controller!

These slides are designed to accompany Software Engineering: A Practitionerʼs Approach, 7/e
(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman.! 33!

Second Level Mapping!

D
C

B A

A

C
B

Dmapping from the
flow boundary outward

main

control

