
Computer Architecture MT 2011

A3 Computer Architecture

Engineering Science

3rd year A3 Lectures

Prof David Murray

david.murray@eng.ox.ac.uk
www.robots.ox.ac.uk/∼dwm/Courses/3CO

Michaelmas 2000

1 / 1



Computer Architecture MT 2011

Computer Architecture
3A3 Michaelmas 2000

Prof D W Murray

2 / 1



Computer Architecture MT 2011

Overview
The development of the the digital computer must rank as one of
the two engineering achievement which have has most impact on
the progress of this century.
Open up the box on any PC, and one is likely to be (i) impressed
and (ii) daunted by the sheer complexity — even of what one can
see. One is looking at the cumulative wizardry of, say, 106

engineer-years of development.

Not surprising if you personally could not reproduce it tomorrow.
BUT — you already know all you need to build a computer.

3 / 1



Computer Architecture MT 2011

After the 1st year you know ...

... how to build combinational logic including larger elements
such as ROMs, PLAs

... how to design sequential logic

... how to design machines with a finite number of identifiable
states.

But you have probably/certainly forgotten it all ...

4 / 1



Computer Architecture MT 2011

In these lectures ...

You are going to exploit what you know to discover how the most
sophisticated sequential machine — the general purpose
computer — works.

The emphasis is on computer architecture rather than on
computer buildings.

Computer designs are diverse, often creating confusion.
However, as with conventional architecture, although the detailed
shape and plumbing is different, the underyling principles are
obeyed ...
... and the differences are the result of engineering design
considerations.

We will establish a Bog Standard Architecture to expose the
necessities —
providing a basis for understanding more complex designs.

5 / 1



Computer Architecture MT 2011

Lecture Content

Lecture 1 revises Sequential Logic and introduces RTL.
Lectures 2–5 deal with the basic operation of the core of the
computer.
Lectures 6–8 extend the picture to include the hardware and
software functionality of the typical machine.

1 Revision and RTL
2 Overall structure of CPU and Memory. Instruction Fetching.
3 Control 1: The random logic controller.
4 ALU and Memory hardware. The Status word.
5 Control 2: Microprogrammed controller
6 The macro level. Memory addressing and stacks.
7 I/O, programmed and interrupt-driven.
8 Memory hierarchies ++

6 / 1



Computer Architecture MT 2011

A hierarchy of languages

You will see ermerging a hierarchy of representations of machine
operation.

The operational description at the lowest (micro-) level will be in
terms of RTL

We will introduce Assembler Language as a way of describing
several RTL statements (the macro-level)

We shall look at how certain aspects of languages at the high
level get compiled.

7 / 1



Computer Architecture MT 2011

Books ...
Hill and Peterson, “Digital Logic and Microprocessors”, John
Wiley and Sons, New York, ISBN 0-471-82979-X

Essential reading up to and including Chapter 10 on RTL.
Chapter 11- on small computer organization is showing its age.

Clements, “The Principles of Computer Hardware” 2nd ed,
Oxford University Press, ISBN 0-19-853764-6

Early chapters cover basic combinational and sequential logic
Chapter 5 onwards are essential reading

Tanenbaum, Structured Computer Organization (1998 edition)
focusses on overall operation of computer systems
stresses the hierarchy of levels of detail at which the operation can
be viewed
More emphasis is given to the higher levels than other texts.
Introduces description based on virtual machine and Java.

YOU MUST READ! Don’t merely rely on the notes.

8 / 1



Computer Architecture MT 2011

1: Revision and Register Transfer Language

3A3 Michaelmas 2000

9 / 1



Computer Architecture MT 2011

State machines using flip-flops: revision

Problem: Design using JK flip flops a modulo-4 counter that if x=0
would count repeatedly from 0,1,2,3,... and if x=1 would cound
3,2,1,0,...
Solution. If we designate the output bits as the outputs Q0 and Q1 of
the JKs, then there are 4 states, for which we require 2 flip-flops. The
truth table and transition list of the JK are

J K Qk+1

0 0 Qk

0 1 0
1 0 1
1 1 Qk

J K Qk → Qk+1

0 X 0→ 0
1 X 0→ 1
X 0 1→ 1
X 1 1→ 0

and hence

x=0
O1 O0 J1 K1 J0 K0

0 0 0
0 1 1
1 0 X
1 1 X

x=1
O1 O0 J1 K1 J0 K0

0 0 1
1 1 X
1 0 X
0 1 0

10 / 1



Computer Architecture MT 2011

To repeat ...
x=0
O1 O0 J1 K1 J0 K0

0 0 0
0 1 1
1 0 X
1 1 X

x=1
O1 O0 J1 K1 J0 K0

0 0 1
0 1 X
1 0 X
1 1 0

Thus J1 is a function of O1, O0 and x, and its Karnaugh map is
x 0 1

O1 O0

0 0 0 1
0 1 1 0
1 1 X X
1 0 X X

whence J1 = O1.x + O0.x and similarly for K1, J0, and K0.

11 / 1



Computer Architecture MT 2011

State machines using ROMs

You also saw in Year 1 that an easy method of building a sequence
state machine was to use a ROM, where:

one part of the contents at a particular address tells you what to
do now, and

the other part tells you the address of where to go next

Problem. Design using a ROM a modulo-4 counter that if x=0 would
count repeatedly from 0,1,2,3,... and if x=1 would count 3,2,1,0,...
Whenever the output is 0, a light should light.

12 / 1



Computer Architecture MT 2011

One possible solution

let x become the high bit of the ROM address, as in

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

1

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

C2 C0C1

A0

A1

CK

x=A2

Where next? What now?

Contents

Address

Count

Output

Light

Output

D−type

latches

13 / 1



Computer Architecture MT 2011

Should ROM solutions be “clever”?

Tempting to ask whether there is not a more efficient solution
than

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

1

0

0

0

0

0

0

1

0

1

2

3

4

5

6

7

C2 C0C1

A0

A1

CK

x=A2

Where next? What now?

Contents

Address

Count

Output

Light

Output

D−type

latches

Eg, here the light output could be made by ANDing the inverses
of C2 and C1. For another, by reorganizing the “where next” bits
of addresses 4 to 7, we could make the content bits C2 and C1
the same as A1 and A0, and therefore redundant.
Such questions miss the main points of using a ROM:

to provide a solution with minimal thought and
to provide a solution which is alterable merely by re-programming
the ROM.

14 / 1



Computer Architecture MT 2011

Algorithmic State Machine Charts

These two methods of designing sequential circuits are specific
hardware solutions,
but they do not address a particular area of the design problem:

the translation of the written description
of what a machine should do into a
formal description of the state machine.

One way of doing this is to use an ASM chart, similar to flow
diagrams used in software design.

15 / 1



Computer Architecture MT 2011

Algorithmic State Machine Charts

There are three symbols in such diagrams:

State definition (rectangles): There is one per state. It gives the
name of the state, the binary flip-flop values that define the state,
and a list of outputs.

Decision (diamonds): There are any number of these for each
state. Each senses an input condition or flag, and takes a binary
decision.

Conditional outputs (curvy boxes): These occur at the exit lines
of decision diamonds, and describe outputs that become true only
when a condition is satisfied. Note that these outputs cannot
“change” the outputs given in the state box. If you need to do that,
you need an extra state.

16 / 1



Computer Architecture MT 2011

Vending machine example

Problem. A vending machine holds items which cost 20 cents, and
accepts 5 cent (nickel), 10 cent (dime) and 25 cent (quarter) coins.
Sensors in the coin shute cause two flags to be set as follows

Coin I1 I2
No Coin 0 0
25 0 1
5 1 0
10 1 1

When coins to the value of 20 cents are deposited, the activate signal
A is set to 1 for one clock cycle. If a 25 cent coin is deposited, a
change signal C is set to one. Flag R is set when the user wishes to
have all money returned.

17 / 1



Computer Architecture MT 2011

Vending machine example

Example Solution. A possible solution is shown in Figure ??. Any
press of the Return button and every completed transaction puts the
system in the Q0 state. From there one enters Q25 if a 25 cent coin is
deposited, Q10 if a 10 cent coin and Q5 if a 5 cent. Notice that in this
solution if in Q5, Q10 or Q15 when a 25 coin is deposited, the coin is
ignored. However, also notice that in the solution given when the
machine is in state Q15, any coin will be accepted and no change
given.

There are 6 states, so at least 3 flip-flops are required. There is no
method to determine how to assign the configuration of flip-flop
outputs to the particular states, but the choice will alter the complexity
of the resulting circuit. Thus, the choice of Q0=000 and Q5=100 etc is
not arbitrary, but nonetheless there are no formal rules to obtain the
optimal assignment.

18 / 1



Computer Architecture MT 2011

ASM Chart

Q25 Q10

0
1

A=1

Q0

R=

I2=

I1=

C=1

0
I1=

1

Q5

A=1

I2=

Q20
Q15

R

I1+I2

R

I1=

I2=

R

I1=

1

0

01

1

0

1

0

1

0
01

0

1

0

1

0

1

0
1

19 / 1



Computer Architecture MT 2011

Separating Data and Control

More economical graphical methods can be found to represent
state machines.

BUT, whatever graphical method is used, there is an obvious
difficulty using a method which represents every state.

Given n flip-flops we require 2n states
which gets very large very quickly.

Now, the large numbers of flip-flops are often storing data upon
which the machine operates in largely the same way irrespective
of what the data is exactly.

Our understanding then of how the machine functions depends
on those control operations, not on the particular data. It makes
sense then to separate the representation of control from that of
data.

20 / 1



Computer Architecture MT 2011

Separating Data from Control

The control section will need at times to know something about
the data — for example, to take a different action if a datum is
zero rather than positive — so there will be two way
communication between the control and data sections

BUT, only decision flags about a datum, not the datum itself need
be communicated.

Data

In

Data

Out

Signals

Control

Flags

Data

External

Controls

Data Section

Control Section

21 / 1



Computer Architecture MT 2011

Register Transfer Language

It is of course possible to describe the control section of such a
machine using ASM charts

But the language does not have the syntax to deal with data
elements.

Instead we can use a hardware description language called
Register Transfer Language.

Why Register Transfer?
The transfer of data between two storage registers is the
principal activity that occurs in the data section of the machine,
and as we will see in Lecture 2 is the bread and butter operation
in computers.

22 / 1



Computer Architecture MT 2011

Register Transfers

A register is a D-type latch which transfers input to output on a
receipt of a clock pulse: that is Qt+1 = Dt .

In the example on the leftBy clocking register b, the transfer
b ← a is effected.

Most often the register has several bits. In the right hand
example B ← A means that B[i]← A[i] for i = 0,1,2,3.
Note carefully that the receiving register is clocked, NOT the
transmitting register.

D

CK

Q

CK

Q
a b

A[0]

A[1]

A[2]

A[3] B[3]

B[2]

B[1]

B[0]

CK
A B

23 / 1



Computer Architecture MT 2011

Syntax of RTL by example

Module: Datamover
Memory: A[2];B[2];C[2];S
Inputs: X [2].
Ouputs: Z [2]; P.

1 A←X
2 C←A; S←A[0]
3 B←C
4 C←A∨B
5 Z = C; S←0;→1

ENDSEQUENCE
ControlReset(1); P = S.
END

The first block defines the storage required in the data section. A,B,C are two bit registers, but S is just a single bit. X and Z are two bit input and
output wires, NOT registers.
ControlReset(1) indicates that a reset pulse should set the control section to line 1. P = S indicates that an output wire (NOT register) P is
permanently soldered to the output of register S. (If S had been a multi-bit register, P would have the same number of wires.)
On line 1, inputs X is transferred to A, so we need to clock register A.
Two things happen on line 2: the inverse of A is transferred to register C, and S is set to A[0], and so on for lines 3 and 4.
The output Z is conected to C throughout line 5.
At the end of line five, there is a goto arrow, which sets the next line as 1.

24 / 1



Computer Architecture MT 2011

Control section: generating CSL and CSP signals

To get the data section to work may require on each line
CSL — a level signal, typically to set up data pathways between
registers
CSP — an edge or pulse to fire the register transfers.

These are provided by the control section.

To realize the control section, you
count the number of lines of RTL (here 5) In our example flows
uninterrupted from line 1 to 5, where there is an “unconditional
goto”→(1).
(We shall see a conditional goto later on.)
study the flow from one line to another.

25 / 1



Computer Architecture MT 2011

Hardware realization of Control Section

QD QD QD QD QD

CK

Falling edge
triggers D−type

Level to set up

combinational logic

Falling edge to

trigger register transfer

CSLn

CSPn

CSLn+1

CSPn+1

CSL1 CSP1

1 2 3 4

S R R R

CK

Control

Reset

R

5

Transition from one line to
the next occurs on the
falling edge of a clock
pulse.
The clock is ANDed with
the CSL to provide a pulse
CSP which is used to fire
the register transfers and
the transition to the next
line of RTL.
So CSP1 only occurs at
the end of line 1 of RTL.

26 / 1



Computer Architecture MT 2011

Other observations ...

QD QD QD QD QD

CSL1 CSP1

1 2 3 4

S R R R

CK

Control

Reset

R

5

The latch corresponding to the active line has output 1 — the
remainder have output 0.

The→(1) is achieved by looping the output of latch 5 into the
input of latch 1.

Notice too that the reset line sets flip-flop 1 high, and the rest low.

The level output from a latch supplies the CSL signal, so CSL1 is
high during line 1, CSL2 is high during line 2, and so on.

27 / 1



Computer Architecture MT 2011

Data section: using the CSL and CSP signals

The register hardware required for the data section is defined in
the first blocks of the module.

MEMORY: A[2]; B[2]; C[2]; S
INPUTS: X [2].
OUTPUTS: Z [2]; P.

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

28 / 1



Computer Architecture MT 2011

Data section/ continued

Line 1 of sequence indicates that inputs X
are connected to the input of register A, which is clocked by CSP1.

1 A←X

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

CSP1

29 / 1



Computer Architecture MT 2011

Line 2

2 C←A; S←A[0]

Line 2 indicates that the inverted outputs of A are to be
connected to C and that the output A[0] should be connected to
the input of S. CSP2 should be attached to the CK input of C
and S.

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

CSP1

Q

Q

CSP2

30 / 1



Computer Architecture MT 2011

Line 3

3 B←C

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

CSP1

Q

Q

CSP2

D Q

D Q

CSP3

31 / 1



Computer Architecture MT 2011

Line 4
4 C←A∨B

For Line 4, our design need modifying. Notice that C is clocked
on line 4 as well as line 2, so C’s clock input must be
CSP2∨CPS4. But on line 2, the inputs to C are connected to A
and on line 4 they are connected to A ∨ B. We need to insert
AND gates, ANDing with CSL2 and CSL4 respectively, and then
OR the inputs into C.

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

Q

Q

D Q

D Q

CSL2

CSP1 CSP3 CSL4 CSP4 CSP2

32 / 1



Computer Architecture MT 2011

Line 5
5 Z = C; S←0;→1

At line 5, Z = C means that outputs Z should be connected to
the output of C for the entire line — so we must AND the outputs
of C with CSP5. In addition, we have to make alterations to the
input of S and to its clock input.
(Incomplete! See Question sheet.)

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

A

B

S

C

Z[0]

Z[1]

PX[0]

X[1]

Q

Q

D Q

D Q

CSL2

CSP1 CSP3 CSL4 CSP4 CSP2

33 / 1



Computer Architecture MT 2011

Using data to control flow

MODULE: DATAMOVER
MEMORY: A[2]; B[2]; C[2]; S
INPUTS: X [2].
OUTPUTS: Z [2]; P.

1 A←X
2 C←A; S←A[0]
3 B←C
4 C←A∨B;→(A[1],A[1])/(5,6)
5 Z = C; S←1;→1
6 Z = C; S←0;→1

ENDSEQUENCE
ControlReset(1); P = S.
END

The construction→(l1, l2, ..., ln)/(S1,S2, ...,Sn) evaluates logical expressions l1, l2, ... in turn. The first found to
equal 1 causes a jump to the corresponding statement S. So, if at line 4 A[1] is 1 the program will goto line 5, if
A[1] is 0, it will goto line 6.
We need to take a connection from A[1] into the control unit. The controller must have 6 latches.
How is A[1] used to control the flow ... ?

34 / 1



Computer Architecture MT 2011

... using a de-multiplexer!
A[1] provides the selection line in a multiplexer.
During Line 4 CSL4 is high, and if A[1] is high the input to latch 5
is high, but if A[1] is low the input to latch 6 is high. After the next
clock pulse, CSL5 or CSL6 respectively will go high.
Note that because there are multiple ways of arriving back at
Line 1, the input to latch 1 requires an OR gate.

There are obviously some alterations required to the Data
Section for the new line 6. You are asked to do these in the
Problem Sheets.

35 / 1



Computer Architecture MT 2011

Timing

Let us consider the various register outputs as a function of time for
particular inputs X . Note that X can change asynchronously.

1 A←X
2 C←A; S←A[0]
3 B←C
4 C←A∨B;

→(A[1],A[1])/(5, 6)
5 Z = C; S←1;→1
6 Z = C; S←0;→1

36 / 1


