

Fractions

We'll cover the following key points:

- → Fractions and its types
- → Addition of Fractions
- → Addition of Whole Numbers and Fractions
- → Subtraction of Unlike Fractions
- → Subtraction of a Fraction from a Whole Number

- → Mixed Problems on Addition and Subtraction
- → Word Problems
- → Multiplication of Fractions
- → Problems on Multiplication
- → Division of Fractions

Do you Remember fundamental concept in previous class. In class 4th we learnt

- → What are Fractional Numbers?
- → Types of Fractions and Their Conversion
- → Addition of Fractional Numbers (Same Denominator)
- → Subtraction of Fractions (Same Denominator)

Still curious?

Talk to me by scanning the QR code.

Learning Outcomes

By the end of this chapter, students will be able to:

- Understand the concept of fractions as parts of a whole or a collection.
- Identify and differentiate between proper, improper, and mixed fractions.
- Represent fractions on a number line.
- Simplify fractions to their lowest terms using the concept of common factors.
- Compare and order fractions with like and unlike denominators.
- Perform basic operations (addition, subtraction, multiplication, and division) on fractions.
- Convert improper fractions to mixed fractions and vice versa.
- Solve real-life problems involving fractions, such as dividing quantities into parts.
- Understand the concept of equivalent fractions and create equivalent fractions for a given fraction.

Tick (\checkmark) the correct answer.

- 1. $\frac{3}{4}$ of a dozen
 - (a) 8
- 2. $\frac{1}{2}$ of a century
 - (a) 50
- 3. $1\frac{1}{2}$ m
 - (a) 124 cm
- 4. $1\frac{1}{4}$ is half of
 - (a) 3
- 5. $\frac{1}{4}$ of a year
 - (a) 4 months
- 6. $\frac{4}{5}$ of a rupee
 - (a) 90 p
- 7. $\frac{1}{4}$ of a minute
 - (a) 15 sec
- 8. $\frac{1}{3}$ of a day
 - (a) 18 hours

- (b) 9
- (b) 25
- (b) 100 cm
- (b) $2\frac{1}{2}$
- (b) 3 months
- (b) 60 p
- (b) 18 sec
- - (b) 10 hours

- (c) 6
- (c) 75
- (c) 150 cm
- (c) $2\frac{3}{4}$
- (c) 6 months
- (c) 80 p
- (c) 20 sec
- (c) 8 hours

Fractions and its types

You have learnt about fractions in your previous classes.

- A **fraction** means represents an equal part of a whole.
- A proper fraction has a numerator less than the denominator.

For example: $\frac{2}{3}$, $\frac{7}{9}$, $\frac{15}{29}$, $\frac{51}{63}$, $\frac{111}{425}$, etc.

An improper fraction has a numerator greater than the denominator.

For example: $\frac{5}{4}$, $\frac{7}{3}$, $\frac{45}{8}$, $\frac{123}{77}$, $\frac{561}{193}$, etc.

A fraction can also represent part of a set.

For example:

Like fractions have the same denominators.

For example: $\frac{5}{8}$, $\frac{1}{8}$ and $\frac{7}{8}$ are like fractions

Unlike fractions have different denominators.

For example: $\frac{4}{5}$, $\frac{2}{7}$ and $\frac{1}{2}$ are unlike fractions.

Unit Fractions have only the digit 1 as the numerator.

For example: $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$ and $\frac{1}{8}$ are unit fractions.

Equivalent Fractions have the same value even though the numerators and denominators are different.

For Example: $\frac{1}{2}$ and $\frac{4}{8}$ are equivalent fractions.

A mixture fraction is a combination of a whole number and a proper fraction.

For example: 2 and $\frac{2}{5}$ is 2 $\frac{2}{5}$; i.e; mixed fraction.

Addition of Fractions

Addition of Like Fractions

Let us know how to add like fractions i.e. $\frac{2}{7}$ and $\frac{3}{7}$. We have, $\frac{2}{7} + \frac{3}{7} = \frac{2+3}{7} = \frac{5}{7}$

Example 1: Add $\frac{1}{23}$, $\frac{3}{23}$ and $\frac{9}{23}$

Solution: $\frac{1}{23} + \frac{3}{23} + \frac{9}{23} = \frac{1+3+9}{23} = \frac{13}{23}$

Addition of Unlike Fractions

- Find the sum of $\frac{1}{8}$ and $\frac{3}{5}$. Example 2:
- Denominators are different. For adding these fractions, make **Solution:** their denominators same. To get the common denominators, find the LCM of 5 and 8.

LCM of 5 and $8 = 2 \times 2 \times 5 \times 2 = 40$.

Now,
$$\frac{1}{8} = \frac{1 \times 5}{8 \times 5} = \frac{5}{40}$$
 (Since $40 \div 8 = 5$)

$$\frac{3}{5} = \frac{3 \times 8}{5 \times 8} = \frac{24}{40}$$
 (Since $40 \div 5 = 8$)

Hence,
$$\frac{1}{8} + \frac{3}{5} = \frac{5}{40} + \frac{24}{40} = \frac{5+24}{40} = \frac{29}{40}$$

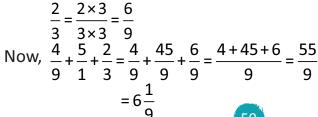
- Example 3:
- Find the sum of $\frac{5}{8}$, $\frac{1}{6}$ and $\frac{2}{3}$. To get common denominator, we have to find out the LCM of **Solution:** 8,6 and 3.

Now,
$$\frac{5}{8} = \frac{5 \times 3}{8 \times 3} = \frac{15}{24}$$
 (Since $24 \div 8 = 3$)

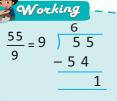
$$\frac{1}{6} = \frac{1 \times 4}{6 \times 4} = \frac{4}{24}$$
 (Since $24 \div 6 = 4$)
(Since $24 \div 3 = 8$)

Honoo		2×8	
Hence,	_	3×8	7

2 4


Working

Addition of Whole Numbers and Fractions


Example 4: Add $\frac{4}{9}$, 5 and $\frac{2}{3}$. We have $\frac{4}{9} + 5 + \frac{2}{3} = \frac{4}{9} + \frac{5}{1} + \frac{2}{3}$ (Since $5 = \frac{5}{1}$) **Solution:**

Now the LCM of 9, 1 and 3 is 9.

So,
$$\frac{4}{9} = \frac{4 \times 1}{9 \times 1} = \frac{4}{9}$$
 (Since $9 \div 9 = 1$)
 $\frac{5}{1} = \frac{5 \times 9}{1 \times 9} = \frac{45}{9}$ (Since $9 \div 3 = 3$)
 $\frac{2}{3} = \frac{2 \times 3}{3 \times 3} = \frac{6}{9}$

(Changing into mixed fraction)

Find the sum of $5\frac{2}{7}$ and $2\frac{3}{4}$. Example 5:

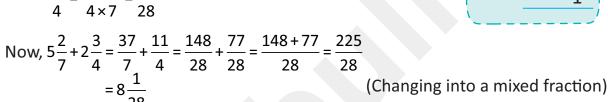
Solution: First, we change the mixed fractions into improper fractions.

$$5\frac{2}{7} = \frac{(5\times7)+2}{7} = \frac{35+2}{7} = \frac{37}{7}$$

$$2\frac{3}{4} = \frac{(2\times4)+3}{4} = \frac{8+3}{4} = \frac{11}{4}$$

So,
$$5\frac{2}{7} + 2\frac{3}{4} = \frac{37}{7} + \frac{11}{4}$$

LCM of 7 and 4 is 28


So,
$$\frac{37}{7} = \frac{37 \times 4}{7 \times 4} = \frac{148}{28}$$

$$11 \times 7 - 77$$
 (As $28 \div 4 = 7$)

$$\frac{11}{4} = \frac{11 \times 7}{4 \times 7} = \frac{77}{28}$$

$$(As 28 \div 4 = 7)$$

 $(As 28 \div 7 = 4)$

Alternate Method

$$5\frac{2}{7} + 2\frac{3}{4} = (5+2) + \left(\frac{2}{7} + \frac{5}{1}\right)$$
$$= 7 + \left(\frac{8}{28} + \frac{21}{28}\right)$$
$$= 7 + \frac{29}{28} = 7 + 1\frac{1}{28} = 8\frac{1}{28}$$

$$=7+\frac{29}{28}=7+1\frac{1}{28}=8\frac{1}{28}$$

(Changing into equivalent fractions

having same denominators)

28 225

(Changing into a mixed fraction)

Find the sum of $3\frac{1}{5}$, $2\frac{3}{4}$ and $\frac{3}{10}$. Example 6:

Solution: First, change the mixed fractions into improper fractions.

So,
$$3\frac{1}{5} + 2\frac{3}{4} + \frac{3}{10} = \frac{16}{5} + \frac{11}{4} + \frac{3}{10}$$

LCM of 5, 4 and 10 is 2

Now,
$$\frac{16}{5} + \frac{11}{4} + \frac{3}{10} = \frac{16 \times 4}{5 \times 4} + \frac{11 \times 5}{4 \times 5} + \frac{3 \times 2}{10 \times 2}$$
$$= \frac{64}{20} + \frac{55}{20} + \frac{6}{20} = \frac{16 + 55 + 6}{20} = \frac{125}{20}$$

$$=6\frac{5}{20}=6\frac{1}{4}$$

(Since the LCM of 5, 4 and 10 is 20.)

$$\left(\operatorname{Since} \frac{\cancel{5}^{1}}{\cancel{20}_{4}} = \frac{1}{4}\right)$$

Example 7: Add $2\frac{3}{4}$ and $1\frac{5}{6}$.

Step 1: Add the whole numbers. **Solution:**

$$2 + 1 = 3$$

Step 2: Find the LCM of the denominators.

LCM of 4 and 8 is 8.

Step 3: Find the equivalent fractions with LCM as denominator.

$$\frac{3}{4} \times \frac{2}{2} = \frac{6}{8}$$
 and $\frac{5}{8} \times \frac{1}{1} = \frac{5}{8}$

- **Step 4:** Add the numerators.
- Step 5: Simplify $\frac{11}{2} = 1\frac{3}{2}$
- **Step 6:** Add the whole number and mixed number.

$$3+1\frac{3}{8}=4\frac{3}{8}$$

Exercise 5.1

Knowledge Application

1. Add the following:

(a) $\frac{3}{11} + \frac{1}{11}$

(b) $\frac{5}{17} + \frac{2}{17}$

(c) $\frac{6}{19} + \frac{2}{19} + \frac{1}{19}$

(d) $\frac{12}{49} + \frac{3}{49}$

- (e) $\frac{3}{19} + \frac{8}{19} + \frac{2}{19}$
- (f) $\frac{3}{4} + \frac{2}{5}$

(g) $\frac{3}{9} + \frac{3}{7}$

(h) $\frac{4}{11} + \frac{3}{22}$

(i) $\frac{1}{4} + \frac{3}{6}$

(j) $\frac{4}{5} + \frac{5}{6} + \frac{2}{15}$

(k) $\frac{2}{3} + \frac{1}{6} + \frac{7}{8}$

(I) $\frac{1}{4} + \frac{1}{5} + \frac{1}{2}$

Find the sum: 2.

- (a) $3 + \frac{2}{3}$
- (b) $6 + \frac{1}{13}$

- (c) $4 + \frac{2}{5}$ (d) $\frac{3}{11} + 5$

- (e) $2\frac{1}{2} + 5\frac{3}{4}$ (f) $7\frac{2}{3} + 2\frac{5}{6}$ (g) $1\frac{3}{4} + 2\frac{5}{8} + 3$ (h) $7\frac{1}{8} + 8 + 2\frac{1}{2}$
- (i) $5\frac{1}{6}+4+2\frac{1}{3}$ (j) $5\frac{1}{9}+2\frac{1}{12}+\frac{3}{4}$ (k) $3+5+1\frac{12}{13}$ (l) $6+5\frac{2}{11}$

Express the following as mixed fractions: 3.

- (a) $\frac{23}{4}$
- (b) $\frac{20}{9}$
- 50 (c) $\frac{}{11}$
- (d) $\frac{83}{13}$ (e) $\frac{34}{5}$

- (f) $\frac{}{11}$
- (g) $\frac{1}{5}$
- (h) $\frac{1}{19}$

4. Express the following as improper fraction:

(a)
$$6\frac{1}{4}$$

(a)
$$6\frac{1}{4}$$
 (b) $11\frac{2}{3}$

(c)
$$6\frac{3}{8}$$

(d)
$$10\frac{5}{9}$$

(c)
$$6\frac{3}{8}$$
 (d) $10\frac{5}{9}$ (e) $21\frac{4}{7}$

(f)
$$30\frac{8}{11}$$

(f)
$$30\frac{8}{11}$$
 (g) $21\frac{13}{19}$ (h) $15\frac{3}{5}$

(h)
$$15\frac{3}{5}$$

Subtraction

Revision

In class IV, we have learnt about the subtraction of like fractions.

Let us revise them.

Example 8: Subtract
$$\frac{2}{11}$$
 from $\frac{7}{11}$.

Solution:
$$\frac{7}{11} - \frac{2}{11} = \frac{7-2}{11} = \frac{5}{11}$$

Subtraction of Unlike Fractions

In subtraction of unlike fractions, first change he given fractions into their equivalent forms with a common denominator and then subtract them.

Example 9:

Subtract
$$\frac{1}{6}$$
 from $\frac{3}{4}$.
We have, $\frac{3}{4} - \frac{1}{6}$

Solution:

We have,
$$\frac{3}{4} - \frac{1}{6}$$

The LCM of 4 and 6 is 12.

So,
$$\frac{\frac{3}{4} = \frac{3 \times 3}{4 \times 3} = \frac{9}{12}}{\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}}$$

$$\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}$$
Now, $\frac{3}{4} - \frac{1}{6} = \frac{9}{12} - \frac{2}{12} = \frac{9 - 2}{12} = \frac{7}{12}$
Subtract $\frac{1}{10}$ from $\frac{7}{15}$.
We have, $\frac{7}{15} - \frac{1}{10}$

Example 10:

Subtract
$$\frac{1}{10}$$
 from $\frac{7}{15}$

Solution:

We have,
$$\frac{7}{15} = \frac{1}{10}$$

The LCM of 15 and 10 is 30.

So,
$$\frac{7}{15} = \frac{7 \times 2}{15 \times 2} = \frac{14}{30}$$

 $\frac{1}{10} = \frac{1 \times 3}{10 \times 3} = \frac{3}{30}$

Now,
$$\frac{7}{15} - \frac{1}{10} = \frac{14}{30} - \frac{3}{30} = \frac{14 - 3}{30} = \frac{11}{30}$$

$$\therefore LCM = 2 \times 3 \times 2 = 12$$

(Since
$$12 \div 4 = 3$$
)

(Since
$$12 \div 6 = 2$$
)

$$\begin{array}{c|cccc}
2 & 15 & 10 \\
\hline
5 & 15 & 5 \\
\hline
& 3 & 1
\end{array}$$

$$\therefore$$
 LCM 2 × 5 × 3 = 30

(Changing into equivalent fractions

with denominator 30)

1. Find the difference:

(a)
$$\frac{7}{13} - \frac{2}{13}$$

(b)
$$\frac{8}{19} - \frac{4}{19}$$

(c)
$$\frac{16}{27} - \frac{1}{27}$$

(d)
$$\frac{9}{31} - \frac{8}{31}$$

(e)
$$\frac{14}{27} - \frac{4}{27}$$

(f)
$$\frac{15}{16} - \frac{1}{16}$$

(g)
$$\frac{3}{23} - \frac{1}{23}$$

(h)
$$\frac{31}{51} - \frac{30}{51}$$

2. Find the difference:

(a)
$$\frac{2}{3} - \frac{1}{4}$$

(b)
$$\frac{3}{8} - \frac{1}{4}$$

(c)
$$\frac{1}{5} - \frac{1}{10}$$

(d)
$$\frac{1}{3} - \frac{1}{8}$$

(e)
$$\frac{7}{9} - \frac{5}{18}$$

(f)
$$\frac{3}{4} - \frac{2}{3}$$

(g)
$$\frac{1}{6} - \frac{1}{7}$$

(h)
$$\frac{3}{10} - \frac{1}{8}$$

(i)
$$\frac{7}{9} - \frac{5}{12}$$

(j)
$$\frac{3}{4} - \frac{2}{7}$$

(k)
$$\frac{7}{10} - \frac{2}{9}$$

(I)
$$\frac{5}{6} - \frac{2}{7}$$

Subtraction of a Fraction from a Whole Number

Example 11: Subtract $\frac{7}{11}$ from 3.

Solution: Put 3 as fraction $\frac{3}{1}$.

The LCM of 11 and 1 is 11.

Now,
$$3 - \frac{7}{11} = \frac{33}{11} - \frac{7}{11}$$

$$=\frac{33-7}{11}=\frac{26}{11}=2\frac{4}{11}$$

(Making like fractions)

(Changing into mixed fraction)

Example 12: Subtract $7\frac{1}{8}$ from $10\frac{1}{4}$.

Solution: First, we change the mixed fractions into improper fractions.

$$7\frac{1}{8} = \frac{(7 \times 8) + 1}{8} = \frac{56 + 1}{8} = \frac{57}{8}$$

$$10\frac{1}{4} = \frac{(10 \times 4) + 1}{4} = \frac{40 + 1}{4} = \frac{41}{4}$$

Now,
$$10\frac{1}{4} - 7\frac{1}{8} = \frac{41}{4} - \frac{57}{8}$$
$$= \frac{82}{8} - \frac{57}{8}$$

(Making like fractions)

$$=\frac{82-57}{8}=\frac{25}{8}=3\frac{1}{8}$$

Alternate Method

Subtract the whole number parts and fractional parts separately.

$$10\frac{1}{4} - 7\frac{1}{8} = (10 - 7) + (\frac{1}{4} - \frac{1}{8})$$
$$= 3 + (\frac{2}{8} - \frac{1}{8}) = 3 + (\frac{2 - 1}{8}) = 3 + \frac{1}{8} = 3\frac{1}{8}$$

Example 13: Solve $7 - \frac{8}{11}$.

 $7 - \frac{8}{11} = \frac{7}{1} - \frac{8}{11} = \frac{77}{11} - \frac{8}{11}$ **Solution:** $=\frac{77-8}{11}=\frac{69}{11}=6\frac{3}{11}$

(Changing $\frac{7}{1}$ to its equivalent fraction with denominator 11) (Changing into mixed fraction)

xercise 5.

Knowledge Application

Multiple Choice Questions (MCQs) 1.

Choose the correct option.

(a)
$$5\frac{2}{3} - 2 = ?$$

(i)
$$3\frac{3}{2}$$

(ii)
$$2\frac{3}{4}$$

(iii)
$$3\frac{2}{3}$$

(b)
$$11-4\frac{2}{3}=?$$

(i)
$$6\frac{3}{1}$$

(ii)
$$1\frac{3}{6}$$

(iii)
$$6\frac{1}{3}$$

(c)
$$3\frac{1}{8} - 2 = ?$$

(i)
$$1\frac{1}{8}$$

(iii)
$$2\frac{1}{8}$$

2. Find the difference:

(a)
$$3 - \frac{7}{8}$$

(b)
$$4-1\frac{3}{4}$$

(c)
$$8-6\frac{2}{5}$$

(d)
$$12-8\frac{4}{5}$$

(e)
$$7-2\frac{3}{4}$$

(f)
$$5-3\frac{2}{3}$$

(g)
$$11\frac{2}{5} - 3\frac{4}{5}$$

(h)
$$12\frac{1}{9} - 3\frac{7}{9}$$

(i)
$$7\frac{1}{2}-5$$

(j)
$$7\frac{8}{9} - 3\frac{7}{18}$$

(k)
$$28-14\frac{5}{6}$$
 (l) $3-2\frac{11}{13}$

(I)
$$3-2\frac{11}{13}$$

3. Fill in the blanks:

(a)
$$\frac{3}{10}$$
 + $\frac{8}{10}$

(c)
$$+\frac{5}{23} = \frac{11}{23}$$

(e)
$$1 - \frac{1}{4} =$$

(b) $\frac{15}{12} - \frac{4}{21} =$

(d)
$$11\frac{1}{2} - 5\frac{1}{4} =$$

(f)
$$3\frac{1}{3} - 1\frac{1}{2} =$$

4. Match the columns:

Column "A"

(a)
$$\frac{3}{5} + \frac{1}{3} =$$

(b)
$$\frac{13}{15} - \frac{3}{4} =$$

(c)
$$2\frac{3}{7} + 1\frac{1}{2} =$$

(d)
$$5\frac{1}{4} - \frac{11}{12} =$$

(e)
$$4\frac{3}{5} - 2\frac{1}{3} =$$

Column "B"

(i)
$$3\frac{13}{14}$$

(ii)
$$2\frac{4}{15}$$

(iii)
$$4\frac{1}{3}$$

(iv)
$$\frac{14}{15}$$

(v)
$$\frac{7}{60}$$

Mixed Problems on Addition and Subtraction

Example 14: Solve $7\frac{1}{2} - 4\frac{1}{4} + 5\frac{3}{12}$.

Solution: First, change mixed fractions into improper fractions, then solve.

$$7\frac{1}{2} - 4\frac{1}{4} + 5\frac{3}{12} = \frac{15}{2} - \frac{17}{4} + \frac{63}{12}$$
$$= \frac{90 - 51 + 63}{12} = \frac{39 + 63}{12}$$
$$= \frac{102}{12} = 8\frac{6}{12} = 8\frac{1}{2}$$

$$\left[\therefore \frac{\cancel{g}^{1}}{\cancel{1}} = \frac{1}{2} \right]$$

Example 15: Solve $\frac{3}{5} + \frac{2}{3} - \frac{1}{5}$

Solution: Change all the fractions to their equivalent forms with a common denominator.

LCM of 5, 3 and 5 is 15.

So,
$$\frac{3}{5} = \frac{3 \times 3}{5 \times 3} = \frac{9}{15}$$
 (Since $15 \div 5 = 3$)

$$\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}$$

$$\frac{1}{5} = \frac{1 \times 3}{5 \times 3} = \frac{3}{15}$$
Now,
$$\frac{3}{5} + \frac{2}{3} - \frac{1}{5} = \frac{9}{15} + \frac{10}{15} - \frac{3}{15} = \frac{9 + 10 - 3}{15}$$

$$= \frac{19 - 3}{15} = \frac{16}{15} = 1\frac{1}{15}$$

(Since
$$15 \div 3 = 5$$
)

(Since
$$15 \div 5 = 3$$
)

Exercise 5.4

Knowledge Application

1. Simplify:

(a)
$$7\frac{1}{2} + 1\frac{3}{4} - 2\frac{1}{8}$$

(b)
$$7\frac{1}{8} - \frac{11}{12} + 3\frac{1}{4}$$

(c)
$$2\frac{1}{8} + 3\frac{1}{4} - 4\frac{3}{5}$$

(d)
$$3\frac{1}{5} + 2\frac{1}{4} - 4\frac{1}{2}$$

(e)
$$1\frac{1}{4} + 4\frac{3}{4} - 4\frac{1}{2}$$

(f)
$$2\frac{1}{3} + 4\frac{1}{2} - 1\frac{1}{4}$$

(g)
$$3\frac{1}{3} + 2\frac{1}{9} - 1\frac{3}{6}$$

(h)
$$5\frac{1}{3} + 4\frac{4}{5} - 3\frac{1}{15}$$

2. Match the columns:

Column "A"

(a)
$$\frac{2}{7} + \frac{3}{8} + \frac{5}{28} =$$

(b)
$$\frac{4}{13} + \frac{1}{2} + \frac{6}{26} =$$

(c)
$$2\frac{1}{9} + 1\frac{5}{6} - 1\frac{2}{3} =$$

(d)
$$2\frac{3}{5} + 4\frac{1}{15} - 2\frac{1}{3} =$$

(e)
$$\frac{5}{12} + \frac{1}{18} + \frac{2}{9} =$$

Column "B"

- (i) $\frac{25}{36}$
- (ii) $2\frac{5}{18}$
- (iii) $4\frac{1}{3}$
- (iv) $1\frac{1}{26}$
- (v) $\frac{47}{56}$

Word Problems

Example 16: In a long jump contest, Mary jumped $3\frac{3}{8}m$ and John jumped $3\frac{3}{4}m$. Who made a longer jump? How much more did one jump than the other?

Solution: Mary jumped = $3\frac{3}{8}m$, John jumped = $3\frac{3}{4}m$ Then, $3\frac{3}{8} = \frac{27}{8}$ and $3\frac{3}{4} = \frac{15}{4}$

(Making the improper fractions)

Now, which one is greater, $\frac{27}{8}$ or $\frac{15}{4}$?

Changing into equivalent fractions with denominator 8, we have

$$\frac{15}{4} = \frac{15 \times 2}{4 \times 2} = \frac{30}{8}, \qquad \frac{27}{8} = \frac{27 \times 1}{8 \times 1} = \frac{27}{8}$$

Now, compare the fractions $\frac{30}{8}$ and $\frac{27}{8}$.

Clearly,
$$\frac{30}{8} > \frac{27}{8}$$
.

Therefore, John jumped more distance than Mary.

Also,
$$\frac{30}{8} - \frac{27}{8} = \frac{30 - 27}{8} = \frac{3}{8}$$

So, John jumped a distance of $\frac{3}{8}$ m more than Mary.

Example 17: Ojas took $\frac{1}{8}$ hour to paint a table and $\frac{2}{3}$ hour to paint a chair. How much time did he take in painting both items?

Solution: Time taken in painting a table = $\frac{7}{8}$ hour Time taken in painting a chair = $\frac{2}{3}$ hour

Total time taken =
$$\frac{7}{8}$$
 hour + $\frac{2}{3}$ hour = $\frac{7}{8} + \frac{2}{3} = \frac{21 + 16}{24} = \frac{37}{24} = 1\frac{13}{24}$ hours

Therefore Ojas took $1\frac{13}{24}$ hours in painting both items.

Knowledge Application

- 1. Geeta bought $1\frac{1}{2}$ kg potatoes, $3\frac{1}{4}$ kg tomatoes, $2\frac{3}{8}$ kg onion. What was the total quantity of vegetables she bought?
- 2. An electricity pole is $11\frac{2}{3}$ metres long. If $2\frac{1}{3}$ metres is under the ground, how much length of the pole is above the ground?
- 3. A shopkeeper had 90 kg of sugar. He sold $50\frac{2}{3}$ kg out of it. How much sugar is left after the sales?
- 4. The sum of the sides of a triangle is $18\frac{2}{9}$ cm. If two sides are $8\frac{2}{3}$ cm and $4\frac{1}{6}$ cm, find the length of third side.
- 5. A frog took three jumps one after the other. The first jump was of $\frac{3}{4}$ metre long distance, the second was of $\frac{3}{5}$ metre and third was $\frac{7}{10}$ metre long. How much total distance was covered by the frog in the three jumps?
- 6. Subtract the sum of $4\frac{4}{9}$ and $5\frac{8}{9}$ from the sum of $8\frac{4}{9}$ and $7\frac{2}{3}$.

Multiplication of Fractions

Multiplying fractional number by whole number

We know that the multiplication is a repeated addition.

For example:
$$2 \times 4 = 2 + 2 + 2 + 2 = 8$$

It is the same case in fractions also.

For example:
$$\frac{2}{7} \times 3 = \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{2+2+2}{7} = \frac{6}{7}$$

Also, $\frac{2}{7} \times 3 = \frac{2 \times 3}{7} = \frac{6}{7}$

In multiplying a fraction by a whole number, we multiply the numerator of the fraction by the whole number and the denominator of the fraction by 1.

Example 1: Multiply
$$3\frac{1}{4}$$
 by 5.

Solution:
$$3\frac{1}{4} \times 5 = \frac{13}{4} \times 5$$

Since
$$3\frac{1}{4} = \frac{13}{4}$$

Alternate method =
$$\frac{13 \times 5}{4} = \frac{65}{4} = 16\frac{1}{4}$$

 $3\frac{1}{4} \times 5 = (3 \times 5) + (\frac{1}{4} \times 5)$
 $= 15 + (\frac{1}{4} \times 5) = \frac{15}{1} + \frac{5}{4} = \frac{60 + 5}{4} = \frac{65}{4} = 16\frac{1}{4}$

Multiplying two fractional numbers

Example 2: Multiply: (i)
$$\frac{7}{9}$$
 by $\frac{2}{3}$ (ii) $1\frac{1}{2}$ by $2\frac{3}{5}$ (iii) $2\frac{1}{2}$ by $1\frac{1}{4}$

(ii)
$$1\frac{1}{2}$$
 by $2\frac{3}{5}$

(iii)
$$2\frac{1}{2}$$
 by $1\frac{1}{4}$

(i)
$$\frac{7}{9} \times \frac{2}{3} = \frac{7 \times 2}{9 \times 3} = \frac{14}{27}$$

(ii)
$$1\frac{1}{2} \times 2\frac{3}{5} = \frac{3}{2} \times \frac{13}{5}$$

= $\frac{3 \times 13}{2 \times 5} = \frac{39}{10}$

(Changing the mixed fractions into improper fractions)

(iii)
$$2\frac{1}{2} \times 1\frac{1}{4} = \frac{5}{2} \times \frac{5}{4} = \frac{25}{8} = 3\frac{1}{8}$$

It is clear from all the above examples that to multiply the two fractions, multiply the respective numerators and denominators of the fractions.

Find the product:

(a)
$$\frac{4}{5} \times 3$$

(b)
$$\frac{1}{3} \times 4$$

(c)
$$\frac{1}{2} \times 6$$

(d)
$$8 \times \frac{1}{9}$$

(a)
$$\frac{4}{5} \times 3$$
 (b) $\frac{1}{3} \times 4$ (c) $\frac{1}{2} \times 6$ (d) $8 \times \frac{1}{9}$ (e) $5 \times \frac{4}{6}$

(f)
$$\frac{5}{13} \times 2$$

(g)
$$7 \times \frac{1}{5}$$

(f)
$$\frac{5}{13} \times 2$$
 (g) $7 \times \frac{1}{5}$ (h) $10 \times \frac{3}{4}$ (i) $2\frac{1}{2} \times 5$ (j) $5\frac{1}{2} \times 4$

(i)
$$2\frac{1}{2} \times 5$$

(j)
$$5\frac{1}{2} \times 4$$

Fill in the blanks: 2.

(a)
$$\frac{3}{11} \times \frac{2}{5} =$$

(b)
$$\frac{7}{13} \times \frac{2}{7} =$$

(a)
$$\frac{3}{11} \times \frac{2}{5} =$$
 (b) $\frac{7}{13} \times \frac{2}{7} =$ (c) $1\frac{2}{5} \times \frac{4}{7} =$

(d)
$$7\frac{1}{3} \times 1\frac{5}{11} =$$

(d)
$$7\frac{1}{3} \times 1\frac{5}{11} =$$
 _____ (e) $\frac{2}{4} \times \frac{5}{8} \times \frac{3}{5} =$ _____

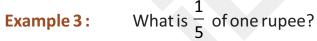
3. Find the product:

(a)
$$\frac{3}{11} \times \frac{1}{2}$$

(b)
$$1\frac{4}{7} \times \frac{2}{11}$$

(c)
$$3\frac{2}{3} \times \frac{10}{11}$$

(a)
$$\frac{3}{11} \times \frac{1}{2}$$
 (b) $1\frac{4}{7} \times \frac{2}{11}$ (c) $3\frac{2}{3} \times \frac{10}{11}$ (d) $\frac{3}{10} \times 8\frac{3}{10}$ (e) $\frac{11}{12} \times \frac{4}{5}$


(e)
$$\frac{11}{12} \times \frac{4}{5}$$

(f)
$$3\frac{4}{5} \times 2\frac{1}{2}$$
 (g) $5\frac{1}{3} \times 6\frac{7}{8}$ (h) $2\frac{1}{3} \times \frac{1}{4}$

(g)
$$5\frac{1}{3} \times 6\frac{7}{8}$$

(h)
$$2\frac{1}{3} \times \frac{1}{4}$$

Problems on Multiplication

We know that ₹1 = 100 P **Solution:**

We know that ₹1 = 100 P
∴
$$\frac{1}{5}$$
 of a rupee = $\frac{1}{5} \times 100$ P = $\frac{100^{20} \text{ P}}{\text{ M}_1} = 20 \text{ P}$
What is $\frac{3}{4}$ of an hour?

Example 4:

Solution: We know that 1 hour = 60 minutes

$$\therefore \frac{3}{4} \text{ of 1 hour} = \frac{3}{4} \times 60 \text{ minutes} = \frac{3 \times 60}{4} \text{ minutes}$$

$$= \frac{\cancel{180}^{45}}{\cancel{4}_{1}} \text{ minutes} = 45 \text{ minutes}$$

Example 5: What is
$$\frac{1}{4}$$
 of one litre?

$$\therefore \frac{1}{4} \text{ of a litre} = \frac{1}{4} \times 1000 \text{ millilitres}$$

$$= \frac{1000}{4} \text{ millilitres} = 250 \text{ millilitres}$$

Example 6: What is
$$\frac{3}{5}$$
 of one year?

$$\therefore \frac{3}{5} \text{ of 1 year} = \frac{3}{5} \times 365 \text{ days}$$

$$= \frac{3}{5} \times 365 \text{ days}$$

Reciprocal of a Number

Two numbers are said to be reciprocal of each other if their product is 1.

Consider the two numbers 5 and $\frac{1}{5}$. For example:

We have,
$$5 \times \frac{1}{5} = \frac{5 \times 1}{5} = \frac{5}{5} = 1$$

Similarly,
$$2 \times \frac{1}{2} = \frac{2 \times 1}{2} = \frac{2}{2} = 1$$

So,
$$\left(3 \text{ and } \frac{1}{3}\right)$$
, $\left(2 \text{ and } \frac{1}{2}\right)$ etc. are the examples of reciprocals of each

other. Now, we can say that the reciprocal of a fractional number is obtained by interchanging its numerator and denominator.

Example 7: Find the reciprocals of the following:

(iii)
$$\frac{1}{5}$$

(iii)
$$\frac{1}{5}$$
 $\left[As 8 = \frac{1}{8} \right]$

(iv)
$$\frac{3}{11}$$

(v)
$$2\frac{1}{2}$$

Solution: (i) Reciprocal of
$$8 = \frac{1}{8}$$

(ii) Reciprocal of
$$13 = \frac{1}{13}$$

(ii) Reciprocal of
$$13 = \frac{1}{13}$$
 (iii) Reciprocal of $\frac{1}{5} = \frac{5}{1} = 5$

(iv) Reciprocal of
$$\frac{3}{11} = \frac{11}{3}$$

(iv) Reciprocal of
$$\frac{3}{11} = \frac{11}{3}$$
 (v) We know that $2\frac{1}{2} = \frac{5}{2}$

Hence, the reciprocal of $\frac{5}{2}$ is $\frac{2}{5}$.

1. Multiple Choice Questions (MCQs). Choose the correct option.

(a)
$$\frac{4}{7}$$
 of 7 is

(i) 3

(iii) 7

(b) $\frac{3}{7}$ of one week is

(i) 1 day

(ii) 2 days

(iii) 3 days

(c) $\frac{4}{5}$ of 120 is

(i) 86

(ii) 92

(iii) 96

2. Find the following:

(a)
$$\frac{1}{2}$$
 of an hour

(b)
$$\frac{4}{5}$$
 of 50

(a)
$$\frac{1}{2}$$
 of an hour (b) $\frac{4}{5}$ of 50 (c) $\frac{3}{2}$ of one rupee (d) $\frac{7}{5}$ of 40

(d)
$$\frac{7}{5}$$
 of 40

(e)
$$\frac{5}{8}$$
 of 32

(f)
$$\frac{1}{4}$$
 of 96

(g)
$$\frac{1}{2}$$
 of one litre (h) $\frac{11}{13}$ of 65

(h)
$$\frac{11}{13}$$
 of 65

3. Find the reciprocals of the following:

(a)
$$\frac{2}{5}$$
 (b) $\frac{7}{8}$

(b)
$$\frac{7}{8}$$

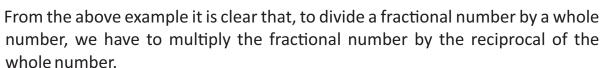
(c)
$$\frac{11}{19}$$

(d)
$$\frac{7}{11}$$

(f)
$$\frac{4}{13}$$

(h)
$$3\frac{1}{2}$$

(j)
$$1\frac{1}{4}$$


Division of Fractions

Division of a fraction by a whole number

Divide $\frac{4}{9}$ by 3. Example 8:

Reciprocal of 3 is $\frac{1}{3}$. **Solution:**

Now,
$$\frac{4}{9} \div 3 = \frac{4}{9} \times \frac{1}{3} = \frac{4 \times 1}{9 \times 3} = \frac{4}{27}$$

Divide $\frac{6}{9}$ by 2. Example 9:

 $\frac{6}{8} \div 2 = \frac{6}{8} \times \frac{1}{2}$ $= \frac{6 \times 1}{8 \times 2} = \frac{\cancel{6}^{3}}{\cancel{16}_{8}} = \frac{3}{8}$ **Solution:**

[Reciprocal of
$$2 = \frac{1}{2}$$
]

[Reducing to its lowest terms]

Division of whole number by fractional number and fractional number by another fractional number

Example 10: Divide 10 by
$$\frac{2}{5}$$
.

Solution:
$$10 \div \frac{2}{5} = 10 \times \frac{5}{2}$$

$$=\frac{10\times5}{2}=\frac{50}{2}=25$$

[Since $\frac{5}{2}$ is the reciprocal of $\frac{2}{5}$.]

From the above example we can say that to divide a whole number by a fractional number, we multiply the whole number by the reciprocal of fractional number.

Example 11: Divide the following:

(i)
$$\frac{10}{21}$$
 by $\frac{2}{3}$

(ii)
$$2\frac{1}{2}$$
 by $1\frac{1}{4}$

Solution:

(i)
$$\frac{10}{21} \div \frac{2}{3} = \frac{10}{21} \times \frac{3}{2} = \frac{10 \times 3}{21 \times 2} = \frac{30^5}{427} = \frac{5}{7}$$

(ii)
$$2\frac{1}{2} \div 1\frac{1}{4} = \frac{5}{2} \div \frac{5}{4} = \frac{5}{2} \times \frac{4}{5} = \frac{5 \times 4}{2 \times 5} = \frac{20^{2}}{10_{1}} = 2$$

So, it is clear from above examples that to divide a fractional number by another fractional number, multiply the first fractional number by the reciprocal of the second one.

Problems on division of fractional numbers

The product of two numbers is $9\frac{3}{4}$. If one of them is $3\frac{1}{4}$, find the other number. Example 12:

Product of the two numbers = $9\frac{3}{4} = \frac{39}{4}$ **Solution:**

One number = $3\frac{1}{4} = \frac{13}{4}$ The other number = $9\frac{3}{4} \div 3\frac{1}{4} = \frac{39}{4} \div \frac{13}{4}$

$$=\frac{39}{4}\times\frac{4}{13}$$

(Since reciprocal of $\frac{13}{4} = \frac{4}{13}$)

 $=\frac{156}{52}=3$

(Reducing to its lowest form)

Hence, the required number is 3.

By what number $4\frac{1}{4}$ be multiplied to get $8\frac{1}{2}$? Example 13:

To obtain the required number, we have to divide $8\frac{1}{2}$ by $4\frac{1}{4}$, **Solution:**

because $8\frac{1}{2}$ is the product of both the numbers.

Product of both the numbers = $8\frac{1}{2} = \frac{17}{2}$

One number = $4\frac{1}{4} = \frac{17}{4}$

The required number = $8\frac{1}{2} \div 4\frac{1}{4} = \frac{17}{2} \div \frac{17}{4}$ $=\frac{17}{2}\times\frac{4}{17}=\frac{68}{34}=2$

(Reciprocal of $\frac{17}{4} = \frac{4}{17}$)

Hence, 2 is the required nur

Gautam read $\frac{3}{4}$ of the book of 120 pages. How many pages did he read in all? Example 14:

Number of pages of the book = 120 **Solution:**

> Gautam read $\frac{3}{4}$ of the book = $\frac{3}{4} \times 120$ pages = $\frac{3}{4} \times \frac{120}{1}$ pages $=\frac{360}{4} = 90 \text{ pages}$

Hence, Gautam read 90 pages of the book.

Knowledge Application

1. Solve the following:

- (a) $2\frac{1}{2} \div 1\frac{4}{5}$ (b) $\frac{3}{8} \div 2$ (c) $4\frac{1}{3} \div \frac{3}{4}$ (d) $\frac{4}{5} \div 3$ (e) $\frac{10}{4} \div 2$

- (f) $\frac{5}{6} \div \frac{2}{3}$ (g) $3\frac{3}{4} \div 1\frac{1}{2}$ (h) $5\frac{1}{2} \div \frac{1}{2}$ (i) $4\frac{2}{3} \div 2$ (j) $3\frac{1}{4} \div \frac{6}{7}$

Answer the following questions:

2. In a class, fee of each student is $\leq 1\frac{1}{4}$. The amount collected was ≤ 125 .

Find the number of students.

- 3. By what number should $\frac{7}{11}$ be multiplied to get $3\frac{2}{11}$?
- 4. The product of two numbers is $2\frac{4}{7}$, If one of them is $\frac{5}{7}$, find the other number.
- 5. Susmita purchased a ribbon of length $8\frac{1}{2}$ m. If she divided it into 5 pieces of equal lengths, find the length of one piece.
- 6. By what number should $7\frac{1}{5}$ be multiplied to get 36?

Take a Test

Tick (\checkmark) the correct answer. 1.

(a)
$$\frac{9}{7} + \frac{2}{8} = ?$$

(i)
$$1\frac{43}{28}$$

(ii)
$$1\frac{15}{28}$$

(i)
$$1\frac{43}{28}$$
 (ii) $1\frac{15}{28}$ (iii) $\frac{15}{28}$ (iv) $\frac{42}{28}$

$$\frac{15}{28}$$

(iv)
$$\frac{42}{28}$$

(b)
$$\frac{9}{16} - \frac{5}{9} = ?$$

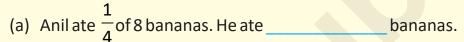
(i)
$$\frac{1}{144}$$

(ii)
$$1\frac{1}{12}$$

(i)
$$\frac{1}{144}$$
 (ii) $1\frac{1}{12}$ (iii) $\frac{81}{144}$ (iv) $\frac{80}{144}$

(iv)
$$\frac{80}{144}$$

(c)
$$\frac{6}{9} \times \frac{12}{6} = ?$$


(i)
$$\frac{1}{3}$$

(ii)
$$\frac{3}{4}$$

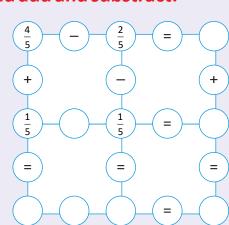
(iii)
$$\frac{4}{3}$$

(ii)
$$\frac{3}{4}$$
 (iv) $\frac{1}{4}$

Fill in the blanks with: 2.

(b) Sevaram sold $\frac{2}{3}$ of the 30 eggs in his shop. He sold eggs.

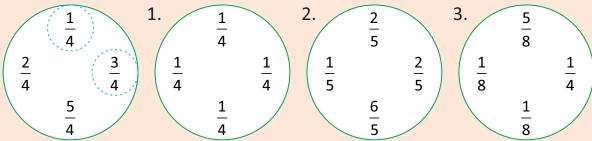
(c)
$$7\frac{1}{3} \times 1\frac{5}{11} =$$


(d)
$$2\frac{1}{9} + 1\frac{5}{9} - 1\frac{2}{3} =$$
 (e) $2 + 2\frac{3}{16} - 4\frac{3}{16} =$

(e)
$$2+2\frac{3}{4}-4\frac{3}{4}=$$

Experiential Learning

Complete the tables of equivalent fractions and add and substract:


		Divide Numerator and Denominator By					
		2	3	5	6		
	30 60	<u>15</u> 30	<u>10</u> 20				
	<u>60</u> 90						
	120 150						
	30 900				5 150		

Circle the fractions that add together to make 1.

Example:

Fun Time Activity

Conceptual Learning

Circle the correct answer:

- A pizza is cut into 4 even pieces. Mukul eats 3 pieces. 3 What fraction of the pizza did he eat?
- I have 5 robots. 2 of them are red and the rest are blue. 2. What fraction of the robots are red?

$$\frac{2}{5}$$
 $\frac{2}{3}$ $\frac{1}{2}$

3

Maths Lab Activity

Collaboration

Divide the class in pairs. Teacher write the fractions on board.

$$\frac{5}{6} \frac{8}{5}$$
 $\frac{6}{7} \frac{9}{3}$ $\frac{4}{7} \frac{62}{71}$

- * Now ask the student one by one, that first fraction is proper fraction or improper fraction similarly ask other student for next fractions.
- * Now call next two student ask them to add first two fractions and write the answer on board.
- * Ask other two students to subtract, other 2 students to multiply next two fractions, and next two student to divide the any two fractions.
- * Repeat the same with other fractions.
- * To make teaching-learning process a success, teacher will make sure that almost all students in the class will participate in this activity.

- 2. A gas tanker contained 78 kg of gas. Out of which, 50 $\frac{3}{4}$ kg of gas is used. How much gas is left in the tanker?