

Decimals

We'll cover the following key points:

- → Introduction to Decimals
- → Expanded form of Decimals

Learning Outcomes

By the end of this chapter, students will be able to:

- Introduction to Decimals: Students will understand what decimals are and where they are used in daily life.
- Reading Decimals: Students will learn how to read and write decimal numbers correctly.
- Place Value in Decimals: Students will understand the place value of digits in decimal numbers (tenths, hundredths, etc.).
- Expanded Form of Decimals: Students will write decimal numbers in their expanded form (e.g., 3.45 = 3 + 0.4 + 0.05).
- Comparing Decimals: Students will compare decimal numbers and identify which is greater or smaller.
- Adding and Subtracting Decimals: Students will learn to add and subtract decimal numbers up to two decimal places.
- Decimals in Measurements: Students will use decimals to understand measurements like length, weight, and money.
- Rounding Off Decimals: Students will round decimal numbers to the nearest whole number or to one decimal place.

Write the decimal fraction for the following in the oval given below each figure:

 $Shade \,to\,represent\,the\,numbers\,given.$

Introduction to Decimals

Study the place value table shown below and note the place value of 6 in each case.

Numerals	Thousands	Hundreds	Tens	Ones
9546 →	9	5	4	6
9564 →	9	5	6	4
9654 →	9	6	5	4
6954 →	6	9	5	4

We find that:

Place value of 6 in $9546 = 6 \times 1$ = 6

Place value of 6 in $9564 = 6 \times 10$ = 60

Place value of 6 in 9654 = 6×100 = 600

Place value of 6 in $6954 = 6 \times 1000 = 6000$

We observe that the place value of a digit becomes 10 times as it moves from right to left by one place, i.e. 6 becomes 60 in above table. The value becomes 100 times as it moves from right to left by 2 places, i.e. 6 becomes 600 in above table. Similarly, 1000 times as it moves from right to left by 3 places, i.e. 6 becomes 6000

What happens when a digit moves one place from left to right?

Numerals	Thousands	Hundreds	Tens	Ones
7896	7	8	9	6
2753	2	7	5	3
3978	3	9	7	8
6537	6	5	3	7

Place value 7 in 7896 = 7000

Place value 7 in 2753 = 700 (i.e., $7000 \div 10$)

Place value 7 in 3978 = 70 (i.e., $700 \div 10$)

Place value of 7 in 6537 = 7 (i.e., $70 \div 10$)

Now, we observe that the place value of the digit becomes one-tenth as it moves from left to right by one place.

Similarly, a digit can move from left to right further places.

We can extend the place value chart further as follows.

Hundreds (100)	Tens (10)	Ones (1)	Tenths $\left(\frac{1}{10}\right)$	Hundredths $\left(\frac{1}{100}\right)$	Thousandths $\left(\frac{1}{1000}\right)$	
3						3 hundreds
	3					3 tens
		3				3 ones
			3			3 tenths
				3		3 hundredths
					3	3 thousandths

Place value of 3 tenths $= \frac{3}{10}$ Place value of 3 hundredths $= \frac{3}{100}$

Place value of 3 thousandths = $\frac{3}{1000}$

We know that fractions are used to represent numbers smaller than 1.

To represent a number smaller than 1, we also use decimals. It comes from the Latin word 'decimus' which means 'tenths'.

A decimal number (or simply decimal) is represented by a decimal point '.'

How to read and write decimals?

Examples of some numbers	Fraction	Decimal	Read as
Seven tenths	7 10	.7	decimal seven
Nine tenths	$\frac{9}{10}$.9	decimal nine
One and three tenths	$1\frac{3}{10}$	1.3	one decimal three
Sixty hundredths	60 100	.60	decimal six, zero

Eight hundred thousandths	800 1000	.800	decimal eight, zero, zero
Six hundredths	6 100	.06	decimals zero six
Four hundred fifty thousand ths	450 1000	.450	decimal four five zero
Sixty-eight thousand ths	68 1000	.068	decimal zero six eight
Two and forty-two hundredths	2 <mark>42</mark> 100	2.42	two decimal four, two
Seven and sixty-one hundredths	7 <mark>61</mark> 100	7.61	seven decimal six, one
Seven and nine hundred sixty-two thousandths	7 962 1000	7.962	seven decimal nine six, two

REMEMBER 🖁

- 1. The digits after the decimal read one by one.
- 2. We also use word 'point' instead of decimal.
- 3. We also write. 8 = 0.8, . 6 = 0.6, . 12 = 0.12.

A decimal number consists of two parts, a whole number part and a decimal number part. Decimal point (.) separates both the parts.

Example 1: Write as a decimal:

(i)
$$\frac{8}{10}$$

(ii)
$$\frac{3}{10}$$

(iii)
$$\frac{25}{100}$$

(iv)
$$\frac{69}{100}$$

$$\frac{8}{10}$$
 (ii) $\frac{3}{10}$ (iii) $\frac{25}{100}$ (iv) $\frac{69}{100}$ (v) $\frac{253}{100}$

(vi)
$$\frac{842}{1000}$$
 (vii) $2\frac{5}{10}$ (viii) $4\frac{11}{100}$

$$4\frac{11}{100}$$

Solution:

(i)
$$\frac{8}{10} = 0.8$$

(ii)
$$\frac{3}{10} = 0.3$$

(i)
$$\frac{8}{10} = 0.8$$
 (ii) $\frac{3}{10} = 0.3$ (iii) $\frac{25}{100} = 0.25$ (iv) $\frac{69}{100} = 0.69$

(iv)
$$\frac{69}{100} = 0.69$$

(v)
$$\frac{253}{1000} = 0.253$$
 (vi) $\frac{842}{1000} = 0.842$ (vii) $2\frac{5}{10} = 2.5$ (viii) $4\frac{11}{100} = 4.11$

Example 2: Write as a decimal of the following:

(i)
$$6\frac{123}{1000}$$

(ii)
$$9\frac{6}{10}$$

(iii)
$$25\frac{99}{100}$$

(iii)
$$25\frac{99}{100}$$
 (iv) $108\frac{3}{10}$

Solution:

(i)
$$6\frac{123}{1000} = 6.123$$

(ii)
$$9\frac{6}{10} = 9.6$$

(iii)
$$25\frac{99}{100} = 25.99$$

(iv)
$$108 \frac{3}{10} = 108.3$$

1. Write as a decimal of the following:

(a)
$$\frac{8}{10}$$

(b)
$$2\frac{4}{100}$$
 (c) $\frac{75}{100}$

(c)
$$\frac{75}{100}$$

(d)
$$\frac{39}{100}$$

(d)
$$\frac{39}{100}$$
 (e) $5\frac{11}{100}$

(f)
$$\frac{875}{1000}$$

$$\frac{875}{1000}$$
 (g) $8\frac{279}{1000}$ (h) $6\frac{21}{100}$

(h)
$$6\frac{21}{100}$$

(I)
$$3\frac{2}{100}$$
 (j) $8\frac{6}{10}$

(j)
$$8\frac{6}{10}$$

(k)
$$3\frac{71}{100}$$

(I)
$$\frac{61}{100}$$

(m)
$$\frac{335}{1000}$$

(n)
$$3\frac{125}{1000}$$

(o)
$$3\frac{19}{100}$$

(p)
$$8\frac{50}{100}$$

(q)
$$515\frac{50}{100}$$

(r)
$$345 \frac{11}{100}$$

(s)
$$\frac{239}{100}$$

(t)
$$5\frac{11}{1000}$$

Write as a decimal of the following: 2.

> (a) Three hundredths

(b) Eight hundredths

(c) Twenty-two thousandths (d) Two tenths

Observe the pattern and find the missing numbers: 3.

- (a) 2.02, 3.03, 4.04,
- 10.41, 10.42, 10.43, (b)
- (c) 0.234, 0.235, 0.236,
-, ,, ,, , (d) 2.782, 2.786, 2.790,

4. First write the following as fractions and, then as decimals:

- (a) Twenty-two hundredths
- (b) Six and nine thousandths
- (c) Eight and fourteen hundredths
- (d) Five and five tenths

Expanded form of Decimals

We know that 4983 = 4000 + 900 + 80 + 3.

Study the following examples of expanded form of decimal numbers :

(ii)
$$.256 = .2 + .05 + .006$$

(iii)
$$.3567 = .3 + .05 + .006 + .0007$$

(iv)
$$.9756 = .9 + .07 + .005 + .0006$$

(v)
$$.632 = .6 + .03 + .002$$

Example 3: Write 54.897 in the expanded form.

Solution:
$$54.897 = 50 + 4 + \frac{8}{10} + \frac{9}{100} + \frac{7}{1000} = 50 + 4 + .8 + .09 + .007$$

Example 4: Write .387 in the expanded form.

Solution:
$$.387 = .3 + .08 + .007$$

Example 5: Write in figures:

- (i) Thirty-nine decimal zero, two, eight
- (ii) Sixty-seven decimal two, three, four
- (iii) One hundred twenty-two decimal one, zero, five

Solution:

- (i) Thirty-nine decimal zero, two, eight = 39.028
- (ii) Sixty-seven decimal two, three, four = 67.234
- (iii) One hundred twenty-two decimal one, zero, five = 122.105

Example 6: Write the expanded form of following numbers and also write the digits in place value chart:

Solution:
$$5.783 = 5 + \frac{7}{10} + \frac{8}{100} + \frac{3}{1000} = 5 + .7 + .08 + .003$$

$$11.24 = 10 + 1 + \frac{2}{10} + \frac{4}{100} = 10 + 1 + .2 + .04$$

$$96.687 = 90 + 6 + \frac{6}{10} + \frac{8}{100} + \frac{7}{1000} = 90 + 6 + .6 + .08 + .007$$

Place Value Chart

Numerals	Tens	Ones	(.)	Tenths	Hundredths	Thousandths
	10	1				
5.789		5		7	8	9
25.24	2	5	•	2	4	
56.683	5	6		6	8	3

Example 7: Find the place value of each digit in 57. 453

Solution: 57.453 = 50 +7+.4+.05+.003 = $5 \times 10 + 7 \times 1 + 4 \times \frac{1}{10} + 5 \times \frac{1}{100} + 3 \times \frac{1}{1000}$

$$= 50 + 7 + \frac{4}{10} + \frac{5}{100} + \frac{3}{1000}$$

Hence, the place value of 5 = 50

the place value of 7 = 7

the place value of $4 = \frac{4}{10} = .4$

the place value of $5 = \frac{5}{100} = .05$

the place value of 3 = $\frac{3}{1000}$ = .003

Place Value chart of 57. 453

Exercise 8.2

Knowledge Application

1. Write the following in the expanded form:

- (a) 23.675
- (b) 7.803
- (c) 3.281
- (d) 8.275

- (e) 24.24
- (f) 7.682
- (g) 453.28
- (h) 675.28

- 2. Read and write in words:
 - (a) 25.23
- (b) 1.238
- (c) 5.272
- (d) 72.01

- (e) 8.209
- (f) 22.005
- (g) 9.25
- (h) 69.05

3.	For the number 275.389	write the digit in the
э.	roi tile liullibel 2/5.563	, write the algit in the :

(a) Tens place

- (b) Tenths place
- (c) Hundreds place

- (d) Hundredths place
- (e) Thousandths place
- (f) Ones place

4. Give the next three numbers:

- (a) 2.2, 2.3, 2.4, ____, ____, ____.
- (b) 4.92, 4.93, 4.94, ____, ___.
- (c) 9.8, 9.9, 10.0, ____, ____, ___.
- (d) 6.005, 6.006, 6.007, ____, ____.
- (e) 13.02, 13.03, 13.04, ____, ___.

1.Tick (✓) the correct answer:

- (a) The place value of 3 in 9.358 is
 - (i) 30
- (ii) 0.3
- (iii) 0.03

- (b) Which of the following is the greatest?
 - (i) 0.875
- (ii) 0.81
- (iii) 0.801

- (c) On subtracting 0.609 from 1, we get
 - (i) 0.4
- (ii) 1.609
- (iii) 0.391

2. Fill in the blanks with <, > or =:

- (a) 131.423 145.408
- (b) 0.1365 0.3156
- (c) 0.234 0.324
- (d) 2.762 2.762
- (e) 0.21 0.124
- (f) 0.579 0.597

3. Match the following:

Column A

- 4 tenths (a)
- (b) 4 hundredths
- 4 thousandths (c)
- Sixtenths (d)
- Forty hundredths (e)

Column B

- 0.40 (i)
- (ii)
- (iii) 0.6
- (iv) $\frac{4}{100}$
- (v) $\frac{4}{10}$

Represent the following decimals in the place value chart, then write the place value of 8 3. in each:

(a) 23.826

(b) 8.271

(c) 81.756

Scan to Create

Your Own Learning Path

(d) 28.469

(e) 45.287

(f) 2.258

Experiential Learning

Custom Learning Path

Complete the Puzzle:

5	6	6	7	5
9	1	0	8	8
5	6	7	0	9
4	3	0	2	3
1	2	3	0	7

- Six point zero seven zero 1.
- One point two three
- 3. Twelve point three zero seven
- 4. Five point six seven zero
- 5. Fifty eight point nine three seven

Mental Math

Critical Thinking

Write the fractions as decimals. One has been done for you.

(a)
$$\frac{8}{10}$$
 = 0.8

(b)
$$\frac{291}{100} =$$

(c)
$$\frac{614}{1000} =$$

(d)
$$\frac{44}{10} =$$

(d)
$$\frac{44}{10} =$$
 (e) $\frac{432}{10} =$ (f) $\frac{207}{1000} =$

(f)
$$\frac{207}{1000} =$$

We will learn to perform the four operations using decimals.

We already know

- A fraction is a part of a whole number. We can express it as a decimal.
- A decimal number can be written with a whole number to show a complete whole and a fractional part. For example, to express 7 complete wholes and $\frac{6}{10}$ fractional part, we write 7.6 which is read as seven point six.

Material required: Colours

Procedure:

- 1. Some figures are given below. A fraction has been mentioned with each figure.
- 2. Colour the parts of the figures according to the fractions.
- 3. Then, note your observations in the table.

(a)

Colour $\frac{7}{10}$

(b)

Colour $\frac{2}{100}$

(c) If each part of the rectangle represents 100, the whole rectangle represents 1000. Now colour $\frac{400}{1000}$.

(d) If each part of the triangle represents 10, the whole triangle represents 100. Now, shade $\frac{60}{100}$.

