
Solutions

Reasoning Ability

1. Ans. A.

Answer is option A

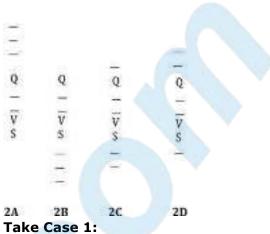
2. Ans. A.

			A					
A	C	E	I	0	P	R	T	V

3. Ans. B.

One box is between P and Q. Three boxes are between Q and S. Box V is immediately above box S.

S	Q
93-35 93-39	
53 -	V
Q	S


Case 1

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_	
v	v	V
S	S	S
	1	
-	. 📼 🔺	
\overline{Q}	Q	$\overline{\mathbf{Q}}$
<u></u>		-
1A	1B	10
Case 2	diagram:	

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

R	R
v	V
S	S
U	U
Р	P
Q	$\overline{\mathbf{Q}}$
	-
1B	10
	R V S U P Q

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
0	-	1.5
-	Q	Q
P	-	
ĸ	R	P
V	v	v
S	S	S
U	U	U
Р	P	
2B	2C	2D

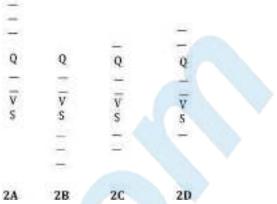
There are as many boxes between R and W as W and S. Only case 2D satisfy this condition. Here is the final arrangement:

R T Q W P V S U

4. Ans. A.

Box R is at the top position. Three boxes are between Q and S. Box V is immediately above box S.

V S	Q
9 <u>-9</u>	V
0	S
Q	


Case 1

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

		112	
V S	V S	V S	
	100		
- - Q	$\overline{\mathbf{Q}}$	Q	
<u></u>			
1A	1B	10	
Case 2	diagram:		

Take Case 1:

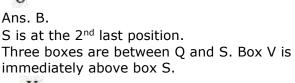
One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V.	R V S U P	R V
S	S	S
V S U	U	UP
R	Р	P
$\frac{R}{Q}$	Q	$\overline{\mathbf{Q}}$
P		-
LA	18	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.


		R
Q	—	540
~	Q	Q
R		-
v	R	P
s	v	V
U	S U	S U
P	P	U
-		
2B	2C	2D

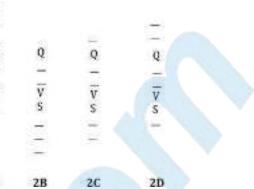
There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R Т 0 W P V S U

5. Ans. B.

Q
V
S


Case 1

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

v	v	V
V S	S	S
-		
Q Q	\overline{Q}	Q
<u></u>		
1A	1B	10
	diagram:	

ZA. Take Case 1:

Ÿ

s

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	v	V
S	S	S
U	U	S U P
R	P	Р
V S U R Q P	\overline{Q}	$\overline{\mathbf{Q}}$
p		-
1A	1B	10

1A There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
0	-	898
×	Q	Q
-	6-46 6	_
R	R	P
v	v	v
S	S	S
U	U	U
Р	Р	
-		
2B	2C	2D
There a	re as many l	boxes between R and W as

W and S. Only case 2D satisfy this condition. Here is the final arrangement:

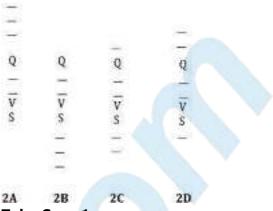
- R
- Т
- -
- Q
- W
- P
- 17
- V
- S
- U

Last but one position - 2nd from the bottom. So, that box is S.

6. Ans. D.

Box T is above box W. Three boxes are between Q and S. Box V is immediately above box S.

V	0
S	~
8 <u>—8</u>	V
Q	S


Case 1

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

v	v	V	
v s —	S	S	
-	1000		
Q Q	Q	Q	
		-	
1A	1B	10	
Case 2	diagram:		

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	v	v
S	V S U	S
V S U	U	R V S U P
R	Р	Р
Q	Q	\overline{Q}
\overline{Q} \overline{P}		_
1A	1B	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
0	_	-
*	0	Q
	~	12
R	R	P
V	Ŷ	v
S	S	S
U	U	U
P	P	-50c
2B	2C	2D

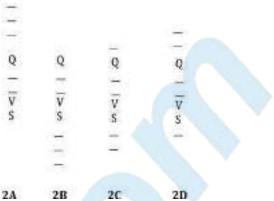
There are as many boxes between R and W as W and S. Only case 2D satisfy this condition. Here is the final arrangement:

R
Т
Q
W
Ρ
V
S
U

7. Ans. A.

No box is below U. Three boxes are between Q and S. Box V is immediately above box S.

V S	Q
9 <u>1 - 9</u> 7	V
Q	S


Case 1

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_		
v	v	v	
S	S	S	
	_	-	
	-		
v s - Q	\overline{Q}	Q	
1A	1B	10	
Case 2	diagram:		

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	v	
S	S	S
U	UP	V S U P
S U R	P	Р
	Q	$\overline{\mathbf{Q}}$
Q P		
14	18	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		ĸ
0	-	-
~	0	Q
_	×.	1
R	R	P
V	Ŷ	v
S	S	S
U	U	U
P	P	
-		
2B	20	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement: Conclusions: I. H > G: It is FALSE R II. W \leq L: It is FALSE Т 12. Ans. B. Statements: $T > U \ge V \ge W$; X < Y = W > Z0 After combining both statements: W $T > U \ge V \ge W = Y > X; W = Y > Z$ **Conclusions:** I. Z > U (not true) {W>Z & W P $\Rightarrow U > Z$ V **II.** W < T (true) {U> W & T>U \Rightarrow T>W} S Therefore only conclusion II is true. 13. Ans. B. U Given number - 8367284 8. Ans. C. As per the question - 2' is subtracted from Either conclusion I or conclusion II is true each even digit and '1' is added to each odd Explanation: digit $A \ge J = N; H > Y > I < S = N$ From the statements we have, 8 - 2 = 6 $A \ge J = N. So, A \ge N$ 3 + 1 = 4Conclusions: 6 - 2 = 4I. A = N7 + 1 = 8II. A > N2 - 2 = 0So, I and II are complementary 8 - 2 = 69. Ans. B. 4 - 2 = 2Only conclusion II is true **Explanation:** New number formed - is 6448062 $\overline{U > J \le H = S}; T \le J > F$ From the statements we have, Only two digits appear twice in the new U > J > F. So, U > F. number thus formed which is 6 & 4. Also, $U > J \ge T$. So, U > T14. Ans. D. Conclusions: Before rearranging as descending I. $F \leq U$: it is FALSE order:935126 II. U > T: it is TRUE After rearranging as descending 10. Ans. A. order: 965321 Only conclusion I is true. 9, 5 and 2 are on the same place as before. **Explanation:** So, there are 3 digits $Y > U \leq H = Q; R \leq U > M$ 15. Ans. E. From the statements we have, 1 2 3 4 5 6 7 8 9 10 11 $R \leq U \leq H = Q$. So, $R \leq Q$ SPONIANEOUS Also, $M < U \leq H = Q$. So, Q > MConclusions: Meaningful words = NEST, SENT, NETS, TENS I. $R \leq Q$: It is TRUE Ans. B. 16. II. $Q \ge M$: It is FALSE The code for 'mind' is - dh 11. Ans. D. Neither conclusion I nor conclusion II is true The codes are given below -Explanation: $H < S = L \ge F > G \le Q$ Intellectual - ga From the statements we have, H < L > G. So, relation between H and G bright - pa/la cannot be established. Also, $L > G \leq W$. So, relation between L and and - la/pa W cannot be established.

mind - dh thoughts -pz/ma students - mt in - ma/pz 19. Ans. D. Fresh - ni The code for 'thoughts' is either - pz/ma Clear - mi The codes are given below thoughts -pz/ma Intellectual - ga in - ma/pz bright - pa/la 17. Ans. C. The code for 'bright and clear' - la pa mi and - la/pa The codes are given below mind - dh Intellectual - ga students - mt Fresh - ni bright - pa/la Clear - mi and - la/pa mind - dh thoughts -pz/ma students - mt in - ma/pz 20. Ans. A. Fresh - ni The code 'ga' stand for - Intellectual Clear - mi The codes are given below thoughts -pz/ma Intellectual - ga in - ma/pz bright - pa/la 18. Ans. A. The code 'ni' stand for fresh and - la/pa The codes are given below mind - dh Intellectual - ga students - mt Fresh - ni bright - pa/la and - la/pa Clear - mi mind - dh thoughts -pz/ma students - mt in - ma/pz 21. Ans. B. Fresh - ni R bought car in August. Case 1: If U bought car in June-Clear - mi U bought a car in a month which was having 30 days but not in September. So U bought

car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

	,
Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	Р
July(31)	Т
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

22. Ans. D.

All the persons bought the car in a month which was having 31 days except P **Case 1: If U bought car in June-**U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

Case 2: If U bought car in November-U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	Р
July(31)	Т
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

23. Ans. A.

Only one person bought car between P and R.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	Р
July(31)	Т
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

24. Ans. E.

None is correct.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

Case 2: If U bought car in November-U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

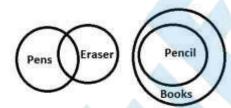
Month	Person
June(30)	Р
July(31)	Т
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

25. Ans. B.

2 persons bought car after Q.
Case 1: If U bought car in JuneU bought a car in a month which was having
30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

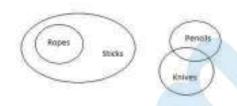
Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	Т
November(30)	
December(31)	

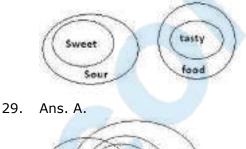

Case 2: If U bought car in November-U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

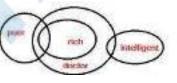
Month	Person
June(30)	Р
July(31)	Т
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S


26. Ans. D.


Conclusion I is false

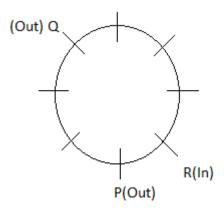
Conclusion II is false

27. Ans. D.



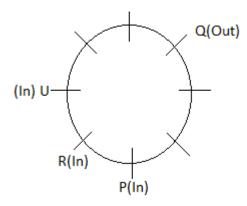
if neither Conclusion I nor II follows. 28. Ans. E.

Only **Conclusion** I follows Ans. E.

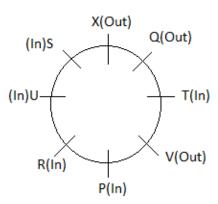

Some intelligent are doctor. So, All intelligent being doctors is a possibility.

31. Ans. C.

30.

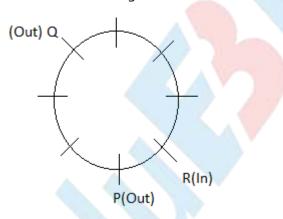

According to first clue, P is either facing inside or outside

Scenario I: P is facing outside

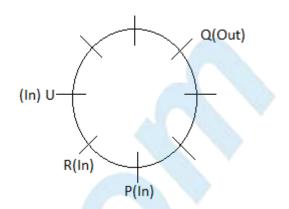


U sits immediate left of R which is not possible in this scenario.

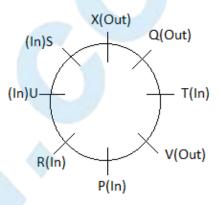
Scenario II: P is facing inside



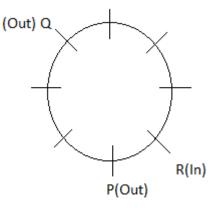
Using the other clues, we get



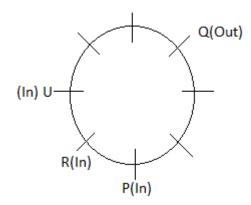
32. Ans. D.


According to first clue, P is either facing inside or outside Scenario I: P is facing outside

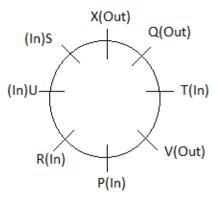
U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside

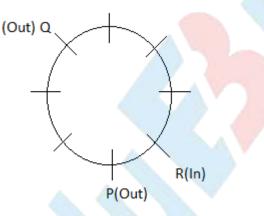


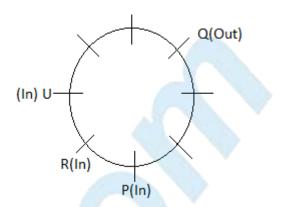
Using the other clues, we get

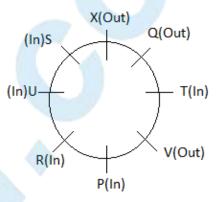


33. Ans. D.

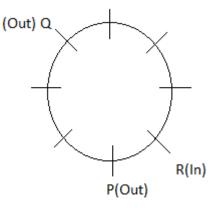

According to first clue, P is either facing inside or outside Scenario I: P is facing outside


U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside

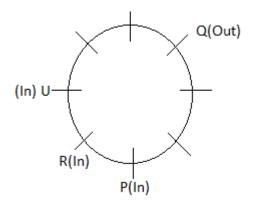

Using the other clues, we get

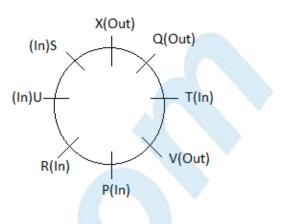

Ans. B.
 According to first clue, P is either facing inside or outside
 Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside



Using the other clues, we get




35. Ans. B.

According to first clue, P is either facing inside or outside Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside

Using the other clues, we get

36. Ans. C.

All the persons are at the end except B.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		М	
Row 2	D				

Case 1B:

Row 1	N		М	
Row 2		D		

Case 2A:

Row 1	М		N	
Row 2				D

Case 2B:

Row 1	М		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	М	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	М	Q
Row 2	Е		D			F

Take case 2A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M it means 3 people are between them but from this

cannot be possible so this case gets rejected.

Row 1	0	М	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	М	Q	Р	N	R
Row 2	С	Α	F	D	В	Е

37. Ans. D.

D is facing P.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		М	
Row 2	D				

Case 1B:

Row 1	N		М	
Row 2		D		

Case 2A:

Row 1	М		N	1
Row 2				D

Case 2B:

Row 1	М		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	М	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	М	Q
Row 2	Е		D			F

Take case 2A:

R	ow 1	0	М	Q	Ν	
R	ow 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	М	Q	Р	N	R
Row 2	С	Α	F	D	В	Е

38. Ans. D.

3 persons sit between O and N.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		М	
Row 2	D				

Case 1B:

Row 1	N		М	
Row 2		D		

Case 2A:

Row 1	М		N	1
Row 2				D

Case 2B:

Row 1	M		Ν	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	М	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	М	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	М	Q	Ν	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	М	Q	Р	N	R
Row 2	С	Α	F	D	В	Е

39. Ans. B.

R is 3^{rd} to the left of Q.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		М	
Row 2	D				

Case 1B:

Row 1	N		М	
Row 2		D		

Case 2A:

Row 1	М		N	1
Row 2				D

Case 2B:

Row 1	М		Ν	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	М	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	М	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	М	Q	Ν	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	М	Q	Р	N	R
Row 2	С	А	F	D	В	Е

40. Ans. C.

A and M are facing each other.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		М	
Row 2	D				

Case 1B:

Row 1	N		М	
Row 2		D		

Case 2A:

Row 1	М		N	1
Row 2				D

Case 2B:

Row 1	M		Ν	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	М	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	М	Q
Row 2	Е		D			F

Take case 2A:

Row 1	0	М	Q	Ν	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Quantitative Aptitude Solutions

Here is the final arrangement:

Row 1	0	М	Q	Р	N	R
Row 2	С	Α	F	D	В	Е

1.	Ans. B. 131 - 64 = 67 67 - 32 = 35	6.	Ans. E. $2x^{2} + 11x + 14 = 0$ $2x^{2} + 4x + 7x + 14 = 0$ 2x (x+2) + 7 (x+2) = 0
2.	35 - 16 = 19 19 - 8 = 11 11 - 4 = 7 Ans. C. 25 + 3 = 28 28 - 6 = 22 22 + 9 = 31		(x+2)(2x+7) = 0 i.e. $x = -2$ or $-7/2$ $2y^2 + 13y + 21 = 0$ $2y^2 + 6y + 7y + 21 = 0$ 2y (y+3) + 7 (y+3) = 0 i.e. $y = -3$ or $-7/2$ Thus, Relationship cannot be established.
3.	31 - 12 = 19 19 + 15 = 34 Ans. A. $7 \times 0.5 + 1 = 4.5$ $4.5 \times 1 + 1.5 = 6$ $6 \times 1.5 + 2 = 11$	7.	
4.	11 x 2 + 2.5 = 24.5 Ans. B. 1 + 3 = 4 4 + 5 = 9 9 + 9 = 18 18 + 17 = 35 Again we have to check here -	8.	y = (16)1/2 y = 4 or -4 Thus, x >= y Ans. C. $x^2 - 7x + 12 = 0$ $x^2 - 4x - 3x + 12 = 0$ x (x-4) -3 (x-4) = 0
5.	3 + 2 = 5 5 + 4 = 9 9 + 8 = 17 17 + 16 = 33 We will add 33 in 35 = 68 Ans. D. $3.5 \times 2 - 3 = 4$ $4 \times 3 - 4 = 8$ $8 \times 4 - 5 = 27$	9.	x (x-4) - 3 (x-4) = 0 i.e. $x = 3 \text{ or } 4$ $y^2 - 11y + 30 = 0$ $y^2 - 5y - 6y + 30 = 0$ y (y-5) - 6 (y-5) = 0 i.e. $y = 5 \text{ or } 6$ Thus, $y > x$ Ans. C. $x^2 - 8x + 15 = 0$ $x^2 - 5x - 3x + 15 = 0$
_	27 x 5 - 6 = 129 129 x 6 - 7 = 767		$x^{2} - 5x - 3x + 15 = 0$ x (x-5) -3 (x-5) = 0

i.e. x = 5 or 3 $y^2 - 12y + 36 = 0$ $y^2 - 6y - 6y + 36 = 0$ y(y-6) - 6(y-6) = 0i.e. y = 6Thus, y > x10. Ans. E. $2x^2 + 9x + 7 = 0$ $2x^2 + 7x + 2x + 7 = 0$ x(2x+7) + 1(2x+7) = 0i.e. x = -1 or -7/2 $y^2 + 4y + 4 = 0$ $y^2 + 2y + 2y + 4 = 0$ y(y+2) + 2(y+2) = 0i.e. y = -2Thus, Relationship cannot be established between X & Y. 11. Ans. A. Required Average = (3750+3000+2500+3750+3500)/5 = 330012. Ans. B. Total number of students (males and females together) in University P = (3000 + 3750) =6750 Total number of students (males and females together) in University R = 2500+4250 =6750 Ratio = 1:113. Ans. B. Required ratio = (3750 + 3000) : (4250 +2750) = 27 : 2814. Ans. D. Required percentage = [4000/(3750+3000+2500+3750+3500)]*100= (4000/16500)*100 = 24% (approx) 15. Ans. C. Required number = 2750 + 50% of 2750 +3500 = 762516. Ans. A. Number of teachers in physics subject = 1800 17 ×– 100 = 306 Number of female teachers in physics = $306 \times$ 2 9 = 68Number of male teachers in physics = 306 -68

= 238Number of teachers in chemistry subject = 23 1800×100 = 414 238 Required percentage = 414= 57 % (approx). 17. Ans. B. Number of teachers in Chemistry subject = $1800 \times 23\% = 414$ Number of teachers in English subject = 1800 × 27%= 486 Number of teachers in Biology subject = 1800 $\times 12\% = 216$ Required number = 414 + 486 + 216 = 111618. Ans. B. Total number of teachers English and Physics = 486 + 306 = 792Total number of teachers Mathematics and Biology = 234 + 216 = 450Required difference = 792 - 450 = 34219. Ans. E. Number of teachers in Mathematics subject= $1800 \times 13\% = 234$ Number of teachers in Hindi subject = $1800 \times 8\% = 144$ Required ratio = 234 : 114= 13 : 8 20. Ans. C. Number of increased Mathematics teachers = $234 + 234 \times 50\% = 351$ Number of decreased Hindi teachers = 144 - $144 \times 25\% = 108$ Required total number = 351 + 108= 459 21. Ans. A. Average number of students, who appeared for Physics from the year, 2011 to 2015 =(650 + 250 + 350 + 600 + 350)/5 = 44022. Ans. D. Total number of students who appeared for Physics from 2013 to 2015 = (350 + 600 +350) = 1300Total number of students, who appeared for Chemistry from 2011 to 2013 = (800 + 630 + 630)550) = 1980Required ratio = 1300 : 1980 = 65:99

23. Ans. B. Students who did not pass in Physics in the year 2011 = 70/100 * 650 = 455 Students who did not pass in Physics in the year 2015 = 30/100 * 350 = 105 Average = (455 + 105)/2 = 28024. Ans. D. Total number of students, who passed in Chemistry in 2011 = 50/100 * 800 = 400Total number of students who did not pass in Physics in 2015 = 30/100 * 350 = 105 Difference = 400 - 105 = 29525. Ans. B. Total number of students who did not pass Physics in 2013 = 50/100 * 350 = 175 Total number of students who did not pass Chemistry in 2013 = 80/100 * 550 = 440Percentage = 175/440 * 100 = 39.77% = 40% 26. Ans. A. Take nearest values $21.003 \times 39.998 - 209.91 = 126 \times ?$ $630 = 126 \times ?$? = 5 (approx) 27. Ans. C. $\left(\frac{47}{100} \times 1442 - \frac{36}{100} \times 1412\right) \div 63$ $= (677.74 - 508.32) \div 63 = 169.42/63 =$ 2.689 = 3 (Approx) Hence option C is correct 28. Ans. D. $? = 2418.065 + 88 \div 14.2 \times 6$ $? = 2418.065 + 88 \times \frac{1}{14.2} \times 6$? = 2418.065 + 6.197 × 6 ? = 2418.065 + 37.18? = 2455.25 ? = 2455 (Approx.) 29. Ans. E. $1200 \div 15 \times 20 + 400 = 80 \times 20 + 400$ = 1600 + 400 = 2000 (Approx) Hence option E is correct 30. Ans. E. $? = 726 \times \frac{15.2}{100} \times 643 \times \frac{12.8}{100}$ $= 110.352 \times 82.304$ = 9082.41 \approx 9082 (approx) 31. Ans. A.

Third Number = $(128 \times 5) - (118 \times 2) - (126)$ \times 2) = 152 32. Ans. A. Let present age of Anita = 'x' years And present age of Bablu = 'y' years Now, $\frac{1}{4(y-4)} = 5/12$ 12x - 48 = 40v - 1603x - 10y + 28 = 0(i) And, $\frac{1}{2}(x+8) = (y+8)-2$ x + 8 = 2y + 12x - 2y = 4 (ii) Now, from eqn. (i) & (ii) Bablu present age, Y=10 years 33. Ans. B. Let 100 (CP) 80 (SP) 110 (SP) Diff. 30 30 units $\rightarrow 24$ 1 unit \rightarrow 30 $\frac{24}{20} \times 100$ = Rs. 80 100 units \rightarrow 30 CP = Rs. 8034. Ans. A. A started a business with investing Rs. 8000 and after some months, B joined with investing Rs. 5000. Equivalent capital of A = Rs. 8000 × 12 = Rs. 96000 Let B joined after x months. So, equivalent capital of B = Rs. 5000 \times (12 - x) = Rs. 60000 - 5000x Total profit after one year = Rs. 4250 Share of A = Rs. 3000. Then, the share of B =Rs. 4250 - 3000 = Rs. 1250 So, the ratio of their share; A : B = 3000 : 1250 = 12 : 5 Now, we can write, 96000/(60000 - 5000x) = 12/5 $\Rightarrow 60000 - 5000x = 96000 \times (5/12)$ $\Rightarrow 60000 - 5000x = 8000 \times 5$ $\Rightarrow 5000x = 60000 - 40000$ $\Rightarrow x = 20000/5000 \Rightarrow x = 4$: After 4 months, B joined in the business.

35. Ans. D. Let the length of train P and Q are 5a and 4a. speed of train P = 5a/6therefore, (5a/6 + 21)*4 = 5a/3 + 4a-5a/3 + 4a = 84a = 36 speed of train P = 36*5/6 = 30m/s36. Ans. D. Total no of balls = 8 + 7 + 6 = 21Let, E be the event where the ball can be selected which is neither yellow nor black Number of events where the ball can be selected which is neither yellow nor black = 7P(E) = 7/21 = 1/337. Ans. D. Ratio of days of B and C = 2:1 $\frac{1}{A} + \frac{1}{B} = \frac{1}{60}$1) $\frac{1}{A} + \frac{1}{C} = \frac{1}{45}$2) $\frac{1}{A} + \frac{2}{B} = \frac{1}{45}$3) I) and 2) $-\frac{1}{180} \Rightarrow B - 180 \, days$ From equation 1) A = 90 days, and C = 90 days One day work of A, B and C $= \frac{1}{90} + \frac{1}{90} + \frac{1}{180} = \frac{2+2+1}{180} = \frac{1}{36}$ 36 Days = 36 days.38. Ans. B. First and second varieties of pulses are mixed in equal proportions \therefore Their average price = INR (32+45)/2 = INR 38.5/kg Let the price of third variety pulse be INR x/kg The mixture is formed by mixing two varieties becomes one at INR 38.5/kg By the rule of allegation: Cost of 1 kg of 1st + 2st variety Cost of 1 kg of 3[™] variety INR 38.5 INR x Mean price INR 88 49.5 (x - 38)x - 881 49.5

 $\Rightarrow x - 88 = 49.50$ $\Rightarrow x = 137.50$ Hence, the price of the third variety per kg will be INR 137.50/ka 39. Ans. D. The time required to travel a certain distance upstream is five times than that of downstream for the same distance. Let the speed of the boat in upstream be x km/hr. and in downstream be 5x km/hr. We know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed in still water = $1/2 \times$ (x + y) km/hr. So, the speed of the boat in still water $= 1/2 \times (x + 5x) \text{ km/hr}.$ $= 1/2 \times 6x \text{ km/hr}.$ = 3x km/hr.Given, the speed of a boat in still water is (27/4) km/hr. So, we can write now, 3x = 27/4 $\Rightarrow x = 9/4$ So, the speed of the boat in upstream = 9/4km/hr. And the speed of the boat in downstream = 5 \times (9/4) km/hr. = 45/4 km/hr. Again, we know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed of the stream = $1/2 \times (x - y) \text{ km/hr}$. : The speed of the stream = $1/2 \times [(45/4) -$ (9/4)] km/hr. $= 1/2 \times 9 \text{ km/hr}.$ = 9/2 km/hr. = 4.5 km/hr. Ans. C. 40. Curved Surface Area of Cylinder = $2\pi rh$ Total Surface Area of Cylinder = $2\pi r (h+r)$ According to question, $2\pi rh : 2\pi r (h+r) =$ 3:5 i.e. h/(h+r) = 3/5i.e., 2h = 3r - (a)Also, Curved surface area of the cylinder = 1848 metre square i.e. $2\pi rh = 1848$ From (a), $2\pi (2/3h) * h = 1848$ On solving the above equation, h = 21m