
Total Surface Area of a Right Circular Cylinder

Understanding of Total Surface Area of a Right Circular Cylinder

- A right circular cylinder has two flat circular faces (top and bottom) and one curved surface.
- The total surface area (TSA) of a cylinder includes the area of both circular bases and the curved surface area.
- TSA gives the total outer area that needs to be covered if the cylinder is wrapped or painted.

Formula: Volume (V) = πr²h

 $\pi = \frac{22}{7} = 3.141,$ r = radius, h = height

Important Points

- Curved Surface Area (CSA) = 2π rh.
- Area of each circular base = πr^2 .
- Total Surface Area (TSA) = $2\pi r(h + r)$.
- π can be taken as $\frac{22}{7}$ or 3.14 depending on the question.
- TSA is always expressed in square units like cm², m².

Examples with Solutions

Example: Find TSA with Simple Values

Find the total surface area of a cylinder with radius 7 cm and height 10 cm.

Solution: TSA = $2\pi r(h + r) = 2 \times \frac{22}{7} \times 7 \times (10 + 7) = 2 \times \frac{22}{7} \times 7 \times 17 = 2 \times 22 \times 17 = 748 \text{ cm}^2$

Example: TSA Using $\pi = 3.14$

> Find the total surface area of a cylinder of radius 5 cm and height 12 cm using π = 3.14.

Solution: TSA = $2 \times 3.14 \times 5 \times (12 + 5) = 2 \times 3.14 \times 5 \times 17 = 534.8 \text{ cm}^2$

Example: Find Radius When TSA is Given

The total surface area of a cylinder is 528 cm² and height is 10 cm. Find the radius.

Solution: TSA = $2\pi r(h + r)$

$$528 = 2 \times \frac{22}{7} \times r \times (10 + r)$$

Solve step-by-step to find $r \approx 6 \text{ cm}$

Example: TSA with Fractional Dimensions

> Find the TSA of a cylinder with radius $\frac{3}{2}$ m and height 5 m using $\pi = \frac{22}{7}$.

Solution: TSA =
$$2 \times \frac{22}{7} \times \frac{3}{2} \times (5 + \frac{3}{2})$$

= $\frac{22}{7} \times 3 \times (\frac{13}{2})$
= $\frac{22 \times 3 \times 13}{14} = \frac{858}{14} \approx 61.29 \text{ m}^2$

Example: Compare TSA of Two Cylinders

Cylinder A has radius 4 cm and height 6 cm. Cylinder B has radius 3 cm and height 8 cm. Which has greater TSA?

cm²

TSA of A =
$$2\pi r(h + r)$$

$$= 2 \times \frac{22}{7} \times 4 \times (6 + 4)$$
$$= 2 \times \frac{22}{7} \times 4 \times 10 = 251.43 \text{ cm}^2$$

TSA of B =
$$2 \times \frac{22}{7} \times 3 \times (8 + 3)$$

= $2 \times \frac{22}{7} \times 3 \times 11 = 207.43$

Answer: Cylinder A has greater TSA.

Summary Points

- TSA of a right circular cylinder = $2\pi r(h + r)$.
- Always add height and radius before multiplying.
- Use same units for radius and height.
- Express final answer in square units.
- TSA includes both circular ends and curved surface area.