Area of Special Quadrilateral-Rhombus

Understanding of Area of Special Quadrilateral - Rhombus

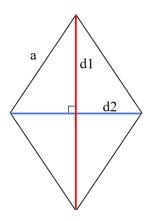
- A rhombus is a special type of quadrilateral where all four sides are equal in length.
- The diagonals of a rhombus bisect each other at right angles (90 degrees).
- The diagonals are not equal but they divide the rhombus into four right-angled triangles.
- The area of a rhombus can be found using the lengths of its diagonals.

Important Points

- Formula for Area of Rhombus = $\frac{1}{2}$ × (product of diagonals) = $\frac{1}{2}$ × d₁ × d₂
- d_1 and d_2 are the lengths of the diagonals.
- Diagonals meet at 90°.
- If diagonals are not given, other methods like using base and height can also be used: Area = base × height.
- Always express the final area in square units like cm² or m².

Examples with Solutions

Example: Using Diagonals


Find the area of a rhombus whose diagonals are 10 cm and 8 cm.

Solution: Area
$$=\frac{1}{2} \times 10 \times 8$$

 $=\frac{1}{2} \times 80 = 40 \text{ cm}^2$

Example: Using Base and Height

> Find the area of a rhombus with side 6 cm and height 5 cm.

Solution: Area = base × height = $6 \times 5 = 30 \text{ cm}^2$

Example: Area When Only One Diagonal and Side Given

A rhombus has one diagonal 12 cm long and each side 10 cm. Find the other diagonal and area.

Solution: Use Pythagoras Theorem

Half diagonal =
$$\sqrt{(side^2 - (half of given diagonal)^2)}$$

Half of given diagonal = 6 cm
Half of unknown diagonal = $\sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8$ cm

Full diagonal = $8 \times 2 = 16$ cm

Area = $\frac{1}{2} \times 12 \times 16 = 96 \text{ cm}^2$

Example: Area with Equal Diagonals

> Find the area of a rhombus if both diagonals are equal and measure 6 cm.

Solution: Area = $\frac{1}{2} \times 6 \times 6 = 18 \text{ cm}^2$

Example: Area Using Diagonals with Fractions

> Find the area of a rhombus with diagonals $\frac{7}{2}$ m and $\frac{5}{2}$ m.

Solution: Area =
$$\frac{1}{2} \times \left(\frac{7}{2}\right) \times \left(\frac{5}{2}\right)$$

= $\frac{1}{2} \times \frac{35}{4} = \frac{35}{8} = 4.375 \text{ m}^2$

Summary Points

- Area of a rhombus = $\frac{1}{2}$ × product of diagonals.
- Diagonals meet at right angles.
- If base and height are given, use Area = base × height.
- Always use the same unit for all measurements.
- Area is always expressed in square units.