Area of a Polygon

Understanding of Area of a Polygon

- A polygon is a closed figure made up of three or more straight line segments.
- Common polygons include triangle, quadrilateral, pentagon, hexagon, etc.
- To find the area of a polygon, we divide it into simpler shapes like triangles and rectangles, find their areas, and add them.
- For regular polygons (all sides and angles equal), special formulas can be used, but usually basic division method is enough.

Polygons	Shapes	Formulas
Triangle		Area (A) = $\frac{1}{2}$ (b × h) here, b = base, h = height
Rectangle	A B, J	Area (A) = w × I here, w = width, I = length
Square		Area (A) = a² here, a = side
Parallelogram	B. b. C	Area (A) = b × h here, b = base, h = height
Rhombus	B do C D	Area (A) = $\frac{d_1 \times d_2}{2}$ here, d, and d ₂ are the diagonals
Trapezoid		Area (A) = $\frac{1}{2}(a + b) \times h$ here, a = long base b = short base h = height
Kite		Area (A) = $\frac{d_1 \times d_2}{2}$ here, d ₁ and d ₂ are the diagonals
Pentagon	B R C D D E	Area (A) = $\frac{1}{2}$ (p x a) here, p = perimeter a = apothem
Hexagon	B C F	Area (A) = $\frac{3\sqrt{3}}{2} \times (a)^2$ here, a = side

Important Points

- Divide complex polygons into known shapes like triangles, rectangles, and trapeziums.
- Find the area of each part separately.
- Add the areas of all parts to get the total area.
- Always use correct units like cm², m² etc.
- In regular polygons with given side length and apothem, Area = $\frac{1}{2}$ × Perimeter × Apothem

Examples with Solutions

Example: Area of Polygon Divided into Triangles

A quadrilateral is divided into two triangles with areas 25 cm² and 35 cm². Find the area of the polygon.

Solution: Total Area = $25 + 35 = 60 \text{ cm}^2$

Example 2: Polygon Divided into Rectangle and Triangle

A polygon consists of a rectangle of length 8 m and width 5 m attached to a triangle with base 8 m and height 6 m. Find the total area.

Solution: Area of rectangle = $8 \times 5 = 40 \text{ m}^2$

Area of triangle = $\frac{1}{2} \times 8 \times 6 = 24 \text{ m}^2$

Total Area = 40 + 24 = 64 m²

Example: Area of Regular Pentagon

> A regular pentagon has perimeter 30 cm and apothem 5 cm. Find its area.

Solution: Area = $\frac{1}{2}$ × Perimeter × Apothem

Area =
$$\frac{1}{2} \times 30 \times 5 = 15 \times 5 = 75 \text{ cm}^2$$

Example: Area of Irregular Polygon

A five-sided irregular polygon is divided into 2 triangles and 1 rectangle. Areas of triangles are 20 m² and 30 m², and area of rectangle is 40 m². Find the total area.

Solution: Total Area = 20 + 30 + 40 = 90 m²

Example: Polygon with Fractional Dimensions

> A polygon is made up of a rectangle $\frac{7}{2}$ m by $\frac{5}{2}$ m and a triangle of base $\frac{7}{2}$ m and height 3 m. Find total area.

Solution: Area of rectangle = $\left(\frac{7}{2}\right) \times \left(\frac{5}{2}\right)$

$$=\frac{35}{4}=8.75 \text{ m}^2$$

Area of triangle = $\frac{1}{2} \times \left(\frac{7}{2}\right) \times 3$

$$=\left(\frac{7}{4}\right) \times 3 = \frac{21}{4} = 5.25 \text{ m}^2$$

Total Area = 8.75 + 5.25 = 14 m²

Summary Points

- Divide polygons into known shapes
- Find area of each shape separately
- Add all areas carefully
- Use proper units like cm², m²
- **Regular polygon formula:** Area = $\frac{1}{2}$ × Perimeter × Apothem