Division Of Algebraic Expressions

Understanding of Division of Algebraic Expressions

- Division of algebraic expressions means dividing one algebraic expression by another.
- When dividing, divide the coefficients and apply the laws of exponents for variables.
- If variables with the same base are divided, subtract the powers: $a^m \div a^n = a^{m-n}$

Important Points

- Divide the numerical coefficients normally.
- Subtract the powers of variables with the same base.
- Arrange variables properly in the final expression.
- Watch out for division by 0 it is undefined.
- Simplify the final expression fully.

Examples with Solutions

Example: Simple Division of Monomials

```
≻ 8x³ ÷ 2x
```

Solution: Divide coefficients: $8 \div 2 = 4$

Subtract exponents of x: $x^3 \div x^1 = x^2$

Final Answer: 4x²

Example: Division with Multiple Variables

➢ 6a²b³ ÷ 2ab

Solution: Divide coefficients: $6 \div 2 = 3$

Subtract exponents: $a^2 \div a^1 = a^1$, $b^3 \div b^1 = b^2$

Final Answer: 3ab²

Example: Division Involving Negative Sign

> (−12x²y³) ÷ (3xy)

Solution: Divide coefficients: $-12 \div 3 = -4$

Subtract exponents: $x^2 \div x^1 = x^1$, $y^3 \div y^1 = y^2$

Final Answer: -4xy²

Example: Division of Polynomials by Monomials

Solution: Divide each term separately:

$$6x^2 \div 3x = 2x$$

 $9x \div 3x = 3$

Final Answer: 2x + 3

Example: Division with Fractions

> Divide: $\left(\frac{1}{2}\right) \mathbf{x}^2 \div \left(\frac{1}{4}\right) \mathbf{x}$

Solution: Divide coefficients: $\left(\frac{1}{2}\right) \div \left(\frac{1}{4}\right) = 2$

Subtract exponents: $x^2 \div x^1 = x^1$

Final Answer: 2x

Summary Points

- Divide the coefficients as in normal numbers.
- Subtract the exponents of like variables.
- Divide each term separately if dividing a polynomial by a monomial.
- Always simplify the final expression.
- Division by 0 is not allowed.