Cube Root of a Rational Number

Understanding the Concept

- A rational number is a number that can be written in the form ^p/_q where p and q are integers and q is not equal to 0.
- The cube root of a rational number is found by taking the cube root of the numerator and the cube root of the denominator separately.

• Formula used is
$$\sqrt[3]{\frac{p}{q}} = \frac{\sqrt[3]{p}}{\sqrt[3]{q}}$$
.

- This method works only when both numerator and denominator are perfect cubes.
- Useful for solving cube root problems involving fractions.

Important Points

- Find the cube root of the numerator and denominator separately.
- If numerator and denominator are perfect cubes the answer is a rational number.
- If either numerator or denominator is not a perfect cube the result may be irrational.
- Negative signs stay with the numerator when taking cube roots.
- Useful in simplifying fractions and solving real-world problems.

Examples with Solutions

Example Easy Level

Find
$$\sqrt[3]{\frac{8}{27}}$$

Solution:
$$\frac{\sqrt[3]{8}}{\sqrt[3]{27}} = \frac{2}{3}$$

Example Easy Level

Find
$$\sqrt[3]{\frac{1}{64}}$$

Solution: $\frac{\sqrt[3]{1}}{\sqrt[3]{64}} = \frac{1}{2}$

Example Moderate Level

$$\succ$$
 Find $\sqrt[3]{\frac{125}{8}}$

Solution: $\frac{\sqrt[3]{125}}{\sqrt[3]{8}} = \frac{5}{2}$

Example Moderate Level

> Find
$$\sqrt[3]{\frac{216}{343}}$$

Solution: $\frac{\sqrt[3]{216}}{\sqrt[3]{343}} = \frac{6}{7}$

Example Word Problem

A cube-shaped water tank has volume $\frac{512}{27}$ cubic meters Find the side length Solution: Side length = $\sqrt[3]{\frac{512}{27}}$ = $\frac{\sqrt[3]{512}}{\sqrt[3]{27}}$ = $\frac{8}{3}$ meters

Summary Points

• Cube root of a rational number is cube root of numerator divided by cube root of denominator.

•
$$\sqrt[3]{\frac{p}{q}} = \frac{\sqrt[3]{p}}{\sqrt[3]{q}}.$$

- Numerator and denominator must both be perfect cubes for easy calculation.
- Result is rational if both parts are perfect cubes.
- Negative signs remain in the numerator while finding cube roots.