Factorisation using identities

Understanding of Factorisation using Identities

- Identities are standard algebraic formulas that help quickly factorize expressions.
- Common identities used for factorisation are (a + b)² = a² + 2ab + b², (a b)² = a² 2ab + b², and (a + b)(a b) = a² b².
- Recognizing the correct identity helps factorize without lengthy calculations.

Important Points

- Identify the correct pattern matching the expression.
- Use $(a + b)^2$ when the middle term is positive.
- Use $(a b)^2$ when the middle term is negative.
- Use (a + b) (a b) when the expression is a difference of squares.
- Always expand and verify to check correctness.

Examples with Solutions

Example: Perfect Square Identity

> Factorize $x^2 + 6x + 9$.

Solution: $x^2 + 6x + 9 = (x + 3)^2$

Example: Perfect Square Identity with Negative Sign

➢ Factorize a² − 8a + 16.

Solution: $a^2 - 8a + 16 = (a - 4)^2$

Example: Difference of Squares Identity

➤ Factorize p² – 49.

Solution: $p^2 - 49 = (p + 7)(p - 7)$

Example: Application with Coefficients

Factorize $4x^2 + 12x + 9$.

Solution: $4x^2 + 12x + 9 = (2x + 3)^2$

Example: Complicated Difference of Squares

➢ Factorize 25x² − 36y².

Solution: $25x^2 - 36y^2 = (5x + 6y)(5x - 6y)$

Summary Points

- Recognize patterns matching standard identities.
- Use $(a + b)^2$, $(a b)^2$, or (a + b)(a b) for quick factorization.
- Simplify by identifying squares and middle terms.
- Verify by expanding the factored expression.
- Identities save time and reduce calculation errors.