Factorization When an Expression is a Perfect Square

Understanding of Factorization When an Expression is a Perfect Square

- An expression is a perfect square if it can be written as $(a + b)^2$ or $(a b)^2$.
- The general forms are: $a^2 + 2ab + b^2 = (a + b)^2$ and $a^2 2ab + b^2 = (a b)^2$.
- Recognizing perfect square expressions helps in quick and easy factorization.

Important Points

- Check if the first and last terms are perfect squares.
- Check if the middle term is twice the product of the square roots of the first and last terms.
- If yes, the expression is a perfect square trinomial.
- Use $(a + b)^2$ when the middle term is positive.
- Use $(a b)^2$ when the middle term is negative.

Examples with Solutions

Example: Simple Perfect Square

> Factorize $x^2 + 6x + 9$.

Solution: $x^2 + 6x + 9 = (x + 3)^2$

Example: Perfect Square with Variables

Factorize 4a² + 12ab + 9b².

Solution: $4a^2 + 12ab + 9b^2 = (2a + 3b)^2$

Example: Negative Middle Term

- Factorize $p^2 8p + 16$.
- **Solution:** $p^2 8p + 16 = (p 4)^2$

Example: Higher Degree Powers

> Factorize $9x^4 + 12x^2 + 4$.

Solution: $9x^4 + 12x^2 + 4 = (3x^2 + 2)^2$

Example: With Fractional Coefficients

 $\succ \text{Factorize } \frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{4}.$

Solution:
$$\frac{1}{4}x^2 + \frac{1}{2}x + \frac{1}{4} = \left(\frac{1}{2x} + \frac{1}{2}\right)^2$$

Summary Points

- A perfect square trinomial follows the pattern of $a^2 \pm 2ab + b^2$.
- Identify perfect squares at first and last terms.
- Check if the middle term matches 2ab.
- Use $(a + b)^2$ for positive middle terms and $(a b)^2$ for negative.
- Always verify by expanding the factors.