# **Understanding: Pythagoras Theorem**

- The Pythagoras Theorem applies only to right-angled triangles.
- In a right-angled triangle, the side opposite the right angle is called the hypotenuse.
- The other two sides are called the base and perpendicular.

# **Statement of the Theorem**

• In a right-angled triangle,

 $(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2$ 

# Formula

•  $h^2 = b^2 + p^2$ 

where h = hypotenuse, b = base, p = perpendicular

## Use of the Theorem

- To check whether a triangle is right-angled
- To find the missing side of a right-angled triangle

A right triangle has a right angle. An important theorem called Pythagoras Theorem relating to a right triangle is states as follows:

In a right triangle, the square of the hypotenuse equals the sum of the squares of its remaining two sides.

In a right triangle ABC right-angled at C i.e., AB is the hypotenuse and AC and BC are the other two sides of the triangle, we have

$$(AB)2 = (BC)^2 + (CA)^2$$

i.e., 
$$c^2 = a^2 + b^2$$
, where  $a = BC$ ,

b = CA and c = AB



### Let us understand with an example:

**Example:** A ladder is placed in such a way that its foot is at a distance of 5m from a wall and its top reaches a window 12 m above the ground. Determine the length of the ladder. A

#### Solution:

Let AB be the ladder and B be the window.

Thus, BC = 5m and AC = 12m.

Since ABC is a right triangle, right-angled at C

 $AB^2 = AC^2 + BC^2$  (Pythagoras theorem)

i.e.,  $AB^2 = 5^2 + (12)^2 = 25 + 144 = 169$ 

or  $AB \times AB = 13 \times 13$  or AB = 13cm

Hence, the length of the ladder is 13 m.

#### Example

Perpendicular = 6 cm, Hypotenuse = 10 cm

$$b^2 = 10^2 - 6^2 = 100 - 36 = 64$$
  
 $b = \sqrt{64} = 8 \text{ cm}$ 

Base = 8 cm

### Example

Check whether a triangle with sides 6 cm, 8 cm, and 10 cm is a right triangle

Check:  $10^2 = 6^2 + 8^2 \rightarrow 100 = 36 + 64 = 100$ 

Yes, it is a right-angled triangle

#### Example

In a triangle, base = 9 cm, perpendicular = 12 cm

 $h^2 = 9^2 + 12^2 = 81 + 144 = 225$ 

 $h = \sqrt{225} = 15 \text{ cm}$ 

Hypotenuse = 15 cm



## **Summary Points**

- Pythagoras theorem is used only for right-angled triangles.
- (Hypotenuse)<sup>2</sup> = (Base)<sup>2</sup> + (Perpendicular)<sup>2</sup>.
- It helps in finding any one side if the other two are known.
- Can be used to check if a triangle is right-angled.
- Always apply square and square root operations carefully.