
## OSCILLATIONS

## VELOCITY AND ACCELERATION IN SIMPLE HARMONIC MOTION

## VELOCITY AND ACCELERATION IN SHM

Consider a UCM of a particle corresponding to the following SHM:  $x = A \sin(\omega t + \varphi)$ 



The particle's speed in a circle with size A (amplitude) is A times  $\omega$ . When we consider only the part of the speed that points in the horizontal direction (x-component, $v_x$ ), it can be calculated using geometry,

 $v_x = A\omega\cos(\omega t + \emptyset)$ 

In the same way, we can find the part of the acceleration that affects the particle's horizontal movement (x-component).

 $a_x = (\omega^2 A) \times (-\sin(\omega t + \emptyset))$ 

Where  $\omega 2A$  is the centripetal acceleration of the particle in the UCM.

 $a_x = -A\omega^2 \sin(wt + \emptyset)$