Class 11 NEET Biology

MUSCLE RELAXATION

After the muscle contracts, calcium goes back into the sarcoplasmic reticulum. The decrease in calcium in the sarcoplasm means it doesn't bind to troponin C. Troponin changes shape, and both tropomyosin and troponin go back to their original positions. This blocks the active site of myosin on actin, preventing myosin from binding to actin and causing muscle relaxation.

Two things help a muscle fiber relax after contracting. First, the enzyme acetylcholinesterase (AChE) quickly breaks down acetylcholine (ACh). When action potentials stop in the motor neuron, the release of ACh stops, and AChE breaks down the ACh already in the synaptic cleft. This stops the generation of muscle action potentials, and the Ca^{2+} release channels in the sarcoplasmic reticulum membrane close.

Second, Ca^{2+} active transport pumps rapidly remove Ca^{2+} from the sarcoplasm into the sarcoplasmic reticulum. There, molecules of a calcium-binding protein called calsequestrin bind to the Ca^{2+} . This causes the tropomyosin-troponin complex to move back over the myosin binding site of actin, preventing further binding of myosin head to actin. As a result, the thin filaments slide back to their normal relaxed position.

Red and White Muscle fibres

Distinguishing Features of Red and White Muscle Fibers

S.No	Red Muscle fibres	White Muscle fibres
1	Red muscles have a smaller amount of	White muscles have more sarcoplasmic reticulum.
	sarcoplasmic reticulum.	
2	They perform aerobic oxidation without	They use anaerobic oxidation (glycolysis) to produce
	building up a lot of lactic acid. Because of this,	energy and build up a lot of lactic acid during intense
	red muscle fibers can keep contracting for a	activity, causing them to get tired quickly.
	longer time without getting tired.	
3	They have larger diameter	They have larger diameter
4	Mitochondria are more in number.	Mitochondria are less in number
5	These muscle fibers look dark red because	These muscle fibers have a lighter color because
	they contain a red protein called myoglobin.	they contain very little myoglobin.
	Myoglobin grabs and holds onto oxygen,	
	forming oxymyoglobin in the red fibers. When	
	muscles contract, oxymyoglobin releases	
	oxygen for use.	
6	They have more blood capillaries.	They have less blood capillaries.
7	These musde fibres have a slow rate of	These muscle fibres have a fast rate of contraction
	contraction for long periods.	for short periods.
8	Example: Extensor muscles of the human	Example: Eye ball muscles, Flight muscles of
	back, Flight muscles of kites.	sparrow.