Class 11 JEE Biology

THE C4 PATHWAY

• In the arid tapestry of dry tropical regions, a botanical phenomenon known as the C₄ pathway takes center stage, adorned by plants like Sugarcane, Maize, Sorghum, and Amaranthus. Pioneered by the insightful discoveries of botanists Hatch and Slack, this pathway orchestrates a dual carbon fixation dance, crafting the initial product as the four-carbon compound, Oxaloacetic acid (OAA).

• C₄ Plants equipped with the C₄ pathway boast a unique leaf anatomy, a testament to their adaptation to higher temperatures, responsiveness to intense light, and an ingenious avoidance of the wasteful choreography of photorespiration. The hallmark of their leaf structure is the 'Kranz' anatomy—characterized by bundle sheath cells enveloping vascular bundles with copious chloroplasts, absence of grana, impermeable thick walls, and a distinct lack of intercellular spaces.

The Hatch-Slack Cycle

• In the C₄ pathway, the crucial interplay between mesophyll cells and bundle sheath cells unfolds, requiring the orchestrated regeneration of phosphoenolpyruvate (PEP) from C₃ acid. Unlike the C₃ cycle, there is no net gain or loss of NADPH in the C₄ cycle. The energy economy in C₄ plants involves a consumption of 2 ATP per fixed CO₂, leading to a total expenditure of 5 ATP per fixed CO₂ when considering both cycles.

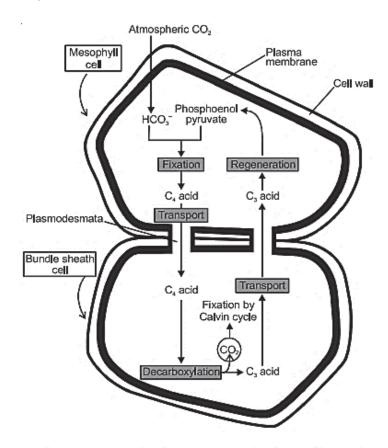


Fig. : Diagrammatic representation of the Hatch and Slack Pathway

• ATP Dynamics in C₄ Plants: A Balancing Act The energy investment in C₄ plants is notably efficient, requiring 2 ATP for the C₄ cycle compared to the 3 ATP demanded by the C₃ cycle per fixed CO₂. The

Class 11 JEE Biology

aggregate cost sums up to 5 ATP per fixed $\rm CO_2$, showcasing the judicious financial management in the energetic economy of these plants.

Importance of C₄ Plants

- Salinity Tolerance: C₄ plants exhibit remarkable tolerance to saline conditions, attributed to the abundance of organic acids, such as malic and oxaloacetic acid, reducing their water potential compared to the soil.
- Stomatal Resilience: These plants showcase the remarkable ability to conduct photosynthesis even when stomata are closed, courtesy of the potent CO₂-fixing enzyme, phosphoenolpyruvate carboxylase (PEP case).
- Water Utilization: The concentric cell arrangement in C₄ plant leaves optimizes the leaf's surface area in relation to volume, enhancing water utilization efficiency.