LAW OF RADIOACTIVE DECAY

- Radioactivity is a random process
- A particular nucleus can decay at anytime between t = 0 to $t \to \infty$
- It is impossible to predict when a particular nucleus will decay/disintegrate
- Rutherford & Soddy conducted experimental study on different kinds of nuclei & gave a statistical law:

Rate of decay/disintegration ∝ No. of active nuclei in the sample

- The rate of decay/disintegration means the number of decay per unit time
- Let N_0 be the no. of active nuclei at time t = 0 and N be the no. of active nuclei at any time t. Since "Rate of decay/disintegration \propto No. of active nuclei in sample", we can write:

 $\begin{array}{l} -\frac{dN}{dt} \varpropto N \qquad [\mbox{The negative sign shows that upon disintegration, no. of active nuclei decreases}] \\ \Rightarrow -\frac{dN}{dt} = \lambda N [\mbox{ Where } \lambda = \mbox{ Decay constant }] \\ \Rightarrow \int_{N_0}^N \frac{dN}{N} = -\lambda \int_0^t \mbox{ dt} \\ \Rightarrow \ln \frac{N}{N_0} = -\lambda t \\ \Rightarrow \frac{N}{N_0} = e^{-\lambda t} \Rightarrow N = N_0 e^{-\lambda t} \end{array}$

 $N = N_0 e^{-\lambda t}$

 $N \rightarrow No.$ of nuclei left undecayed at time t

 $N_0 \rightarrow$ Initial No. of undecayed nuclei (t = 0)

At $t = \infty \rightarrow N = 0$ Complete Decay

Rate of disintegration,

tion,
$$R = -\frac{dN}{dt} = \lambda N$$

$$\Rightarrow \lambda N = \lambda N_0 e^{-\lambda t} [\text{ Since } N = N_0 e^{-\lambda t}, \frac{dN}{dt} = -\lambda N_0 e^{-\lambda t}]$$

Where,

$$R_0$$
 = Rate of disintegration at time $t = 0$

$$R = R_0 e^{-\lambda t}$$

The half life of radioactive decay is the time in which half of active nuclei decays. It means at

$$t = t_{1/2} \rightarrow N = \frac{N_0}{2}$$

We know,

$$N = N_0 e^{-\lambda t}$$

Putting N $=\frac{N_0}{2}$ for $t=t_{1/2}$ in the above equation, we get,

$$\begin{split} \frac{N_0}{2} &= N_0 e^{-\lambda t_{1/2}} \\ &\ln 2 = \lambda t_{1/2} \\ t_{1/2} &= \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda} [\because \ln 2 = 0.693] \\ t_{1/2} &= \frac{\ln 2}{\lambda} \end{split}$$

Half Life of Radioactive Decay

Number of nuclei left after 'n' half lives:

After 1 half life,

$$N = \frac{N_0}{2} = \frac{N_0}{2^1}$$

After 2 half life,

$$N = \frac{N_0}{4} = \frac{N_0}{2^2}$$

After 3 half life,

$$N = \frac{N_0}{8} = \frac{N_0}{2^3}$$

After 'n' half life,

$$N = \frac{N_0}{2^n}$$

No. of half lives,

$$n = \frac{t}{t_{1/2}}$$

For e.g.: Let t = 16 days

$$t_{1/2} = 4 \text{ days}$$

$$\therefore n = \frac{t}{t_{1/2}} = \frac{16}{4} = 4$$

Unit of Activity

Becquerel = 1 Bq = 1 disintegrations/s

Rutherford = 10^6 disintegrations/s = 10^6 Bq

Curie = 1 $Ci = 3 \times 10^{10}$ disintegrations/s = $3 \times 10^{10} Bq$

$$R = R_0 e^{-\lambda t}$$

Mean Life of Radioactive Decay

The mean life of radioactive decay of an element is defined as,

$$\tau = \frac{\text{Sum of lives of all nuclei}}{N_0} = \frac{S}{N_0}$$

Let at time *t*, number of active nuclei be *N* and in time *dt*, *dN* nuclei disintegrates.

We know,

$$\frac{-dN}{dt} = \lambda N$$
$$dN = \lambda N dt$$

[Here, we have considered the magnitude only]

Total life span of dN nuclei = $(dN)t = (\lambda Ndt)t$

$$= (\lambda Nt)dt$$

As $N = N_0 e^{-\lambda t}$, sum of lives of all nuclei becomes.

$$S = \int_0^\infty \lambda N t dt$$

$$S = \int_0^\infty \lambda N_0 e^{-\lambda t} t dt = \lambda N_0 \int_0^\infty t e^{-\lambda t} dt$$

Integrating by parts, we get,

$$\begin{split} S &= \lambda N_0 [t \! \int e^{-\lambda t} dt - \int (1 \times \int e^{-\lambda t} dt) dt] \\ S &= \lambda N_0 \! \int t \! \int e^{-\lambda t} dt - \int (\int e^{-\lambda t} dt) dt \\ &= \lambda N_0 [t \! \left(\frac{e^{-\lambda t}}{-\lambda} \right) - \int \frac{e^{-\lambda t}}{-\lambda} dt] \\ &= \lambda N_0 [t \cdot \frac{e^{-\lambda t}}{-\lambda} - \left(\frac{-1}{\lambda} \left(\frac{e^{-\lambda t}}{-\lambda} \right) \right) \right]_0^\infty \\ &= \lambda N_0 \left[\frac{t e^{-\lambda t}}{-\lambda} - \frac{e^{-\lambda t}}{\lambda^2} \right]_0^\infty \end{split}$$

CLASS – 12 JEE – PHYSICS

$$\begin{split} &= -N_0 [te^{-\lambda t} + \frac{e^{-\lambda t}}{\lambda}]_0^{\infty} \\ &= -N_0 ([te^{-\lambda t}]_0^{\infty} + [\frac{e^{-\lambda t}}{t}]_0^{\infty}) \\ &= N_0 ([\frac{t}{e^{\lambda t}}]_0^{\infty} + \frac{1}{\lambda} [\frac{1}{e^{\lambda t}}]_0^{\infty}) \\ &= -N_0 ([0] + \frac{1}{2} [0-1]) \\ &= \frac{N_0}{\lambda} \end{split}$$

Mean life of radioactive decay,

$$\tau = \frac{s}{N_0} = \frac{1}{\lambda}$$

$$\tau = \frac{1}{\lambda}$$

Half life,

$$t_{1/2} = \frac{\ln 2}{\lambda}$$

Mean life,

$$\tau = \frac{1}{\lambda}$$
$$\therefore t_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2$$

Since $\ln 2 < 1$, from the relation given above, we can say that $\tau > t_{1/2}$. Thus, "Mean Life > Half life".

Questions based on law of radioactive decay

Ex. A radioactive element decays by β — emission. A detector records n beta particles in 2 s and in next 2 s it records 0.75n beta particles. Find mean life correct to nearest whole number. Given ln 2 = 0.6931, ln 3 = 1.0986.

Sol. Let at t = 0, number of active nuclei $= N_0$

Now, one β particle is emitted for each disintegration.

It is given that a detector records n beta particles in 2s.

Therefore, at $t_0 = 2s$, number of nuclei remaining, $N = N_0 e^{-\lambda t_0}$

Number of nuclei disintegrated, $N_{d} = N_{0} - N_{0} e^{-\lambda t_{0}}$

Hence, number of β particle emitted, $n=N_d=N_0(1-e^{-\lambda t_0})$ (1)

At $t = 2t_0 = 4s$,

Number of nuclei remaining, $N = N_0 e^{-\lambda(2t_0)}$

Number of nuclei disintegrated b/w t = 2s and t = 4s, $N'_d = N_0 e^{-\lambda t_0} (1 - e^{-\lambda t_0})$

It is also given that the detector records 0.75n beta particles in next 2s

i.e., b/w t = 2 s and t = 4s.

Dividing equation (1) by equation (2), we get,

$$\frac{1}{0.75} = \frac{1}{e^{-\lambda t_0}}$$

$$e^{\lambda t_0} = \frac{4}{3}$$

$$\lambda t_0 = \ln 4/3$$
Mean life,
$$\tau = \frac{1}{\lambda} = \frac{t_0}{\ln(\frac{4}{3})} = \frac{2}{2\ln 2 - \ln 3} = \frac{2}{2 \times 0.6931 - .0986} = 7 \text{ s}$$

$$\tau = 7 \text{s}$$

Ex. I^{131} is an isotope of Iodine that β decays to an isotope of Xenon with a half-life of 8 days. A small amount of a serum labelled with I^{131} is injected into the blood of a person. The activity of the amount of I^{131} injected was 2.4×10^5 Becquerel (Bq). It is known that the injected serum will get distributed uniformly in the blood stream in less than half an hour. After 11.5 hours, 2.5 ml of

CLASS - 12 **IEE - PHYSICS**

blood is drawn from the person's body, and gives an activity of 115 Bq. The total volume of blood in the person's body, in liters is approximately (you may use $e^x \approx 1 + x$ for $x \ll 1$ and $\ln 2 \approx 0.7$) Initial activity of I^{131} , $R_0=2.4\times 10^5\;$ Bq Half life of I^{131} , $t_{1/2}=8\;$ days

Sol.

The injected serum i.e., I^{131} will get distributed uniformly in the blood stream in t = 12hrs Activity of I^{131} in entire blood after time t, $R = R_0 e^{-\lambda t}$

Let total volume of blood in the body be V litres

If R is the activity in V litres of blood, then activity in 2.5ml of blood is, $\frac{R}{V} \times 2.5 \times 10^{-3} = 115$ Bq \Rightarrow V = 5 litres