CLASS – 12 JEE – PHYSICS

LENSES

Magnification in spherical refraction

Consider an object placed in front of a spherical surface, as shown in the figure

$$Magnification = \frac{\frac{\text{Height of image}}{\text{Height of object}}}$$

Snell's law:

$$n_1 \sin \alpha = n_2 \sin \beta$$

For paraxial rays, α and β are very small. Thus, $\sin \alpha = \tan \alpha$ and $\sin \beta = \tan \beta$

$$n_1 tan \, \alpha \approx n_2 tan \, \beta$$

$$\eta_1 \frac{h_0}{u} = \eta_2 \cdot \frac{h_i}{v}$$

$$m = \frac{h_1}{h_0} = \frac{n_1}{n_2} \cdot \frac{v}{u}.$$

 $[\because \tan\alpha = \frac{h_u}{u} \text{ and } \tan\beta = \frac{h_1}{v}]$

While solving the problems, h, h_o , u and v should be put with sign.

Velocity in spherical refraction

Generalized formula for spherical refraction,

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$

Differentiating with respect to time,

$$\begin{split} &\frac{-n_2}{v^2} \cdot \frac{dv}{dt} + \frac{n_1}{u^2} \cdot \frac{du}{dt} = 0 \\ &\frac{dv}{dt} = \frac{n_1}{n_2} \cdot \frac{v^2}{u^2} \cdot \frac{du}{dt}. \\ &V_{IS} = \frac{n_1}{n_2} \cdot \frac{v^2}{u^2} \cdot V_{OS}. \end{split}$$

 $\frac{du}{dt}$ = Velocity of object relative to spherical surface = v_{IS}

 $\frac{dv}{dt}$ = Velocity of image relative to spherical surface = v_{OS}

CLASS – 12 JEE – PHYSICS

Image position:

$$\frac{\frac{1.5}{v} + \frac{1}{30}}{\frac{3}{2v} = \frac{1}{20} - \frac{1}{30}}$$

$$V = 90 \text{ cm}$$

Image Velocity:

$$\begin{split} V_{IS} &= \frac{n_1}{n_2} \cdot \frac{V^2}{u^2} \cdot V_{0S} \\ V_I - V_S &= \frac{n_1}{n_2} \cdot \frac{V^2}{u^2} \cdot (V_0 - V_S) \\ V_I - 1 &= \frac{1}{3I_2} \left[\frac{90}{30} \right]^2 \cdot [2 - 1]. \\ v_1 &= \frac{2}{3} \cdot 3^4 + 1 = 7 \text{ c m/s ec} \end{split}$$

Types of lenses, concave and convex lens

- A lens is a piece of transparent glass which concentrates or disperses light rays when passes through them by refraction.
- Light gets refracted twice when passing through lens.
- At least one surface of a lens is spherical.

Convex Lens

Concave Lens

Centre of Curvature

The centre of sphere from which a lens is formed

Radius of Curvature

The radius of sphere from which a lens is formed

Optical axis

The line joining centre of curvature

Its not necessary to have same radius of curvature for both surfaces of a lens.

Optical Axis

Optical axis of plano-convex or plano-concave lens is found by drawing a perpendicular line to plane surface of the concerned lens, passing through centre of curvature of spherical surface.

Thin Lens

The thin lens is a lens where its thickness is significantly small as compared to other dimensions like distance of object/image

- Lens is bounded by two spherical surfaces.
- These bounding surfaces can be convex, concave or plane.
- A lens is called thin when,
- Radius of aperture specifies the size of lens.

Convex Lens

Optical Axis

Line joining both the centres of curvature.

Optical Centre

Central point of the lens through which a ray of light passes without any deviation

Aperture

Actual diameter of the circular outline of a spherical lens. Central portion of thin lens behaves as a slab.

Shift through the slab is zero for thin lens.

Lens maker's formula

Assumptions:

Rays should be paraxial Medium on both sides should be same Lens should be thin Assume Optic center as origin v, u, R_1 and R_2 should be taken with sign

First spherical refraction:
$$\frac{n_l}{v'} - \frac{n_s}{u} = \frac{n_l - n_s}{R_1} - (1)$$
Second spherical refraction:
$$\frac{n_s}{v} - \frac{n_l}{v'} = \frac{n_s - n_l}{R_2} - (2)$$

Second spherical refraction:
$$\frac{n_s}{v} - \frac{n_l}{v'} = \frac{n_s - n_l}{p} - (2)$$

Adding equations (1) and (2),

$$\begin{split} &\frac{n_S}{v} - \frac{n_S}{u} = n_l - n_S \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \\ &\frac{1}{v} - \frac{1}{u} = \left[\frac{n_l}{n_S} - 1 \right] \left[\frac{1}{R_1} - \frac{1}{R_2} \right] \\ &\frac{1}{v} - \frac{1}{u} = \left(\frac{n_l}{n_S} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \end{split}$$

We have.

$$\frac{1}{v} - \frac{1}{u} = \left(\frac{n_l}{n_s} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) - (1)$$

Focus:

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} - (2)$$

From equation (1) and (2),

$$\frac{1}{f} = \left(\frac{n_l}{n_5} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$