
CLASS – 12 JEE – PHYSICS

CONVERGING AND DIVERGING LENS

Converging and diverging lens

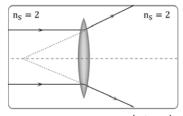
Is convex lens always converging and concave lens always diverging?

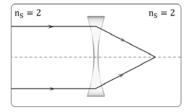
We have,

$$\tfrac{1}{f} = \left(\tfrac{n_l}{n_S} - 1 \right) \left(\tfrac{1}{R_1} - \tfrac{1}{R_2} \right)$$

Consider a bi-convex lens kept in air $(n_s = 1)$.

$$\frac{1}{f} = \left(\frac{n}{1} - 1\right) \left(\frac{1}{R} - \left(\frac{-1}{R}\right)\right)$$

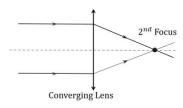

$$\frac{1}{f} = \frac{(n-1)\cdot 2}{R}$$

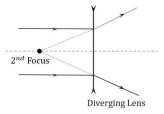

Thus, focal length is always positive in this case.

In air bi-convex lens is always Converging

When $n_s > n_l$, a biconvex lens becomes diverging.

Consider a bi-convex lens ($n_l = 1.5$) and bi-concave lens ($n_l = 1.5$) kept in water ($n_s = 2$).



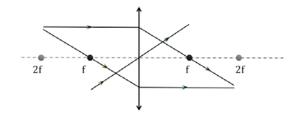

$$\frac{1}{f} = \left(\frac{1.5}{2} - 1\right) \cdot \frac{2}{R} = -\text{ve}$$

$$\frac{1}{f} = \frac{-\left(\frac{1.5}{2} - 1\right) \cdot 2}{R} = +\text{ve}$$

Both concave and convex lenses can be converging or diverging, depending on the refractive index of the medium.

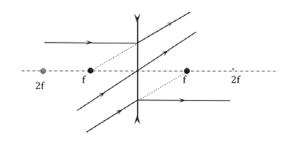
First focus and second focus

If the rays are parallel and paraxial to principal axis, then the point where they meet or appears to meet is known as second focus.


The position where object should be located or virtually situated so that rays become parallel to principal axis after refraction is known as first focus.

CLASS - 12 JEE - PHYSICS

Standard Ray diagram

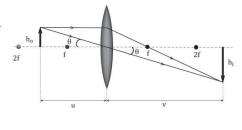

Converging Lens

Ray	Incidence	After refraction
Ray 1	Parallel to P.A.	Passes through
		focus
Ray 2	Passing	Parallel to P.A.
	through focus	
Ray 3	Passing	Undeviated
	through	

Diverging Lens

Ray	Incidence	After refraction
Ray 1	Parallel to P.A.	Passes through
		focus
Ray 2	Passing	Parallel to P.A.
	through focus	
Ray 3	Passing	Undeviated
	through	

Transverse magnification


We have,

$$\begin{split} \frac{1}{v} - \frac{1}{u} &= \frac{1}{f} \Rightarrow \frac{1}{v} = \frac{1}{f} + \frac{1}{u} \\ v &= \frac{u+}{u+f} \\ \tan \theta &= \frac{h_i}{v} = \frac{h_0}{u} \\ \frac{h_i}{h_0} &= m = \frac{v}{u} \\ m &= \frac{h_i}{h_0} = \frac{v}{u} \end{split}$$

From figure,

$$an \theta = \frac{h_i}{v} = \frac{h_0}{u}$$

$$\frac{h_i}{h_0} = m = \frac{v}{u}$$

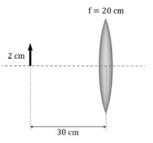
Ex. Find the height of the image and distance of image from the lens.

Sol. We have

ge and distance of image from the lens
$$v = \frac{uf}{u+f} = \frac{(-30)(20)}{-30+20} = \frac{-600}{-10} = 60 \text{cm}$$

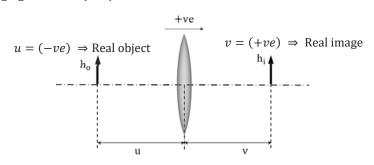
$$m = \frac{h_i}{h_0} = \frac{v}{u}$$

$$\frac{h_i}{2} = \left(\frac{+60}{-30}\right) h_i = -4 \text{ cm}$$

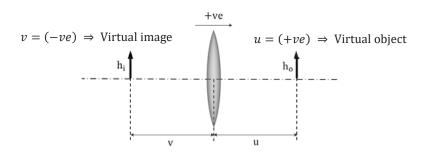

$$v = 60 \text{ cm}$$

Magnification formula,

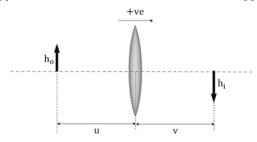
$$\frac{h_i}{2} = \left(\frac{+60}{-30}\right) h_i = -4 \text{ cm}$$

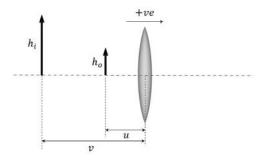

$$v = 60 \text{ cm}$$

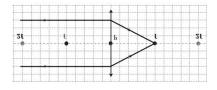
$$h_i = -4 \text{ cm}$$

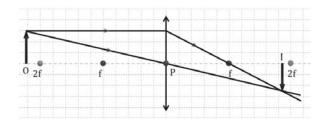


Important Points


For converging lens \Rightarrow f (+ve) For diverging lens \Rightarrow f (-ve)


CLASS – 12 JEE – PHYSICS


Inverted image \Rightarrow opposite sides *ho* and h_i or v_0 and v_i will have opposite sign.


Erect image \Rightarrow same sides h_0 and h_i or v_0 and v_i will have same sign.

Cases for converging lens Real Object

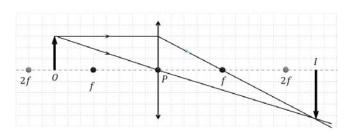
	Object	Image	Nature
ı	$0 = -\infty$	I = f	Real, Point Image

Object	Image	Nature
$-\infty < 0 < -2f$	<i>f</i> < <i>I</i> < 2f	Real, Inverted, Smaller

CLASS – 12 JEE – PHYSICS

When object is at centre of curvature,

We Have


$$u = -2f$$

$$v = \frac{uf}{u+f}$$

$$= \frac{(-2t) \cdot f}{-2t+f}$$

$$= +2f$$

Object	Image	Nature
0 = -2f	I = 2f	Real, Inverted, Same

Object	Image	Nature
-2f < 0 < -f	$2f < I < \infty$	Real, Inverted, Larger

When object is moved from slightly left to right of focus, image shifts from $+\infty$ to $-\infty$.

Object	Image	Nature
-f < 0 < P	$-\infty < I < P$	Virtual, Erect, Larger

Virtual Object

Object	Image	Nature
<i>P</i> < 0 < ∞	P < I < f	Real, Erect, Smaller

Ray diagram

We have

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{f} = c, \frac{1}{v} = y, \frac{1}{u} = x$$

Let,

Thus, y - x = This is an equation of straight line with slope -1.

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$