CLASS – 12 JEE – PHYSICS

MAGNETIC ENERGY IN INDUCTOR AND L-R CIRCUIT

Magnetic Energy in an Inductor

Energy
$$U_B = \frac{1}{2}LI^2$$
, Energy Density $= \frac{1}{2}\frac{B^2}{\mu_0}$

Combination of Inductors

1. Inductor in series

(a) $L = L_1 + L_2$

(b) $L = L_1 + L_2 \pm 2M$ (If mutual inductance is also considered)

2. Inductor in parallel

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2}$$
 (Neglecting mutual induction)

Energy Density

When the current in an inductor is i at a particular moment and is rising with a rate di/dt, the induced electromotive force (emf) will resist the current. This behavior is illustrated in the figure.

Power consumed by the inductor $= i L \frac{di}{dt}$

Energy consumed in dt time = $i L \frac{di}{dt} dt$

: total energy consumed as the current increases from 0 to $I = \int_0^1 iLdi = \frac{1}{2}L^2$

$$\frac{1}{2}\text{Li}^2$$
 \Rightarrow $U = \frac{1}{2}\text{LI}^2$

Note: This energy is stored in the magnetic field with energy density

$$\frac{dU}{dV} = \frac{B^2}{2\mu} = \frac{B^2}{2\mu_0\mu_r}$$

Total energy

$$U=\int \frac{B^2}{2\mu_0\mu_r}dV$$

CLASS – 12 JEE – PHYSICS

Growth of current in L-R circuit

The diagram depicts a setup with a cell, an inductor (L), and a resistor (R) connected one after another in a circuit. Imagine closing the switch (S) at t = 0. Now, let's say at a certain moment, the current in the circuit is denoted as i, and it's rising at a rate di/dt.

Writing KVL along the circuit, we have

$$\epsilon - L \frac{di}{dt} - iR = 0$$

On solving we get,

$$i = \frac{\varepsilon}{R} \left(1 - e^{\frac{-Rt}{L}} \right)$$

The quantity $\frac{L}{R}$ is called time constant of the circuit and is denoted by τ . The variation of current with time is as shown.

Note

- 1. Final current in the circuit = $\frac{\epsilon}{R}$, which is independent of L.
- 2. After one time constant, current in the circuit = 63% of the final current (verify yourself)
- 3. More time constant in the circuit implies slower rate of change of current.
- 4. If there is any change in the circuit containing inductor then there is no instantaneous effect on the flux of inductor. L_1 $i_1 = L_2$ i_2

Decay of current in L-R circuit

Let the initial current in the circuit be Io .At any time t, let the current be i and let its rate of change at this instant be $\frac{di}{dt}$.

$$\begin{split} L \cdot \frac{di}{dt} + iR &= 0 \\ \frac{di}{dt} &= -\frac{iR}{L} \\ \int_{I_0}^{i} \frac{di}{i} &= -\int_{0}^{t} \frac{R}{L} \cdot dt \\ \ln \left(\frac{i}{I_0}\right) &= -\frac{Rt}{L} \text{ or } i = I_0 e^{\frac{-Rt}{L}} \end{split}$$

Current after one time constant: I = I_{\circ}\,e^{-1} = 0.37% of initial current.

CLASS – 12

Ex. In the following circuit the switch is closed at t=0. Intially there is no current in inductor. Find out current the inductor coil as a function of time.

Sol. At any time t
$$-\epsilon+i_1R-(i-i_1)R=0$$

$$-\epsilon+2i_1R-iR=0$$

$$i_1=\frac{iR+\epsilon}{2R}$$

Now,
$$-\varepsilon + i_1 R + i R + L \cdot \frac{di}{dt} = 0 \qquad -\varepsilon + \left(\frac{iR + \varepsilon}{2}\right) + i R + i \cdot \frac{di}{dt} = 0$$

$$-\frac{\varepsilon}{2} + \frac{3IR}{2} = -L \cdot \frac{di}{dt}$$

$$\left(\frac{-\varepsilon + 3iR}{2}\right) dt = -L \cdot di \qquad -\frac{-d}{2L} = \frac{di}{-\varepsilon + 3iR}$$

$$-\int_0^t \frac{dt}{2L} = \int_0^i \frac{di}{-\varepsilon + 3iR} \qquad -\frac{t}{2L} = \frac{1}{3R} \ln \left(\frac{-\varepsilon + 3iR}{-\varepsilon}\right)$$

$$-\ln \left(\frac{-\varepsilon + 3R}{-\varepsilon}\right) = \frac{3Rt}{2L}$$

$$i = +\frac{\varepsilon}{3R} \left(1 - e^{-\frac{3Rt}{2L}}\right)$$

JEE - PHYSICS