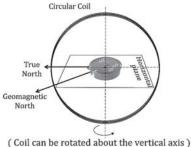
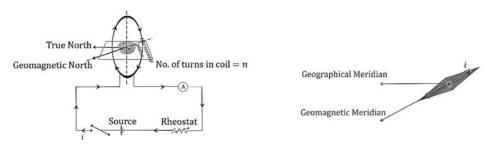
CLASS – 12 JEE – PHYSICS

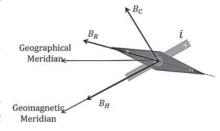

NEUTRAL POINT, TANGENT GALVANOMETER AND MAGNETIC INTENSITY

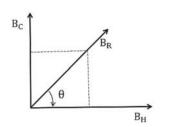
> The location where the electric field strength becomes zero is termed as the neutral point in an electric field.

- If two charges have the same type and amount, the neutral point is found at a point along the line connecting them, inside the space between the charges.
- When the charges are identical, the neutral point lies within the line connecting the two charges.
- At a neutral point in an electric field, the resultant electrostatic force becomes zero.


Tangent Galvanometer

- > This instrument is employed to determine the horizontal part of Earth's magnetic field.
- Additionally, it serves to gauge electric current.
- The magnetic needle of the compass can be turned in the horizontal direction, while the circular coil can be turned in the vertical direction around a vertical axis.


(Con can be rotated about the vertical axis)

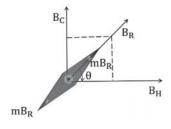

- Initially, the coil is positioned along the geomagnetic meridian before the key *K* is shut.
- When the key is closed, electricity will pass through the coil, causing it to generate its own magnetic field in the nearby area.

- Depending on the direction of the electric current flowing through the coil, the magnetic field at the center of the coil \overrightarrow{B}_C will align with the direction indicated in the diagram.
- $\begin{tabular}{ll} \hline \textbf{Formula} & \textbf{Formula} & \textbf{Formula} \\ \hline \textbf{Formula} & \textbf{Formula} \\ \hline \textbf{Formula} & \textbf{Formula} \\$
- Due to the interaction between these two magnetic fields, the compass needle rotates to align with the resultant magnetic field \overrightarrow{B}_R as depicted in the diagram.
- The strength and direction of the resultant magnetic field \overrightarrow{B}_R relative to BH are provided below.

$$B_R = \sqrt{(B_C)^2 + (B_H)^2} \qquad \qquad \theta = tan^{-1} \left(\frac{B_C}{B_H}\right)$$
 (Tangent law of perpendicular fields)

CLASS – 12 JEE – PHYSICS

We have:


$$\tan \theta = (\frac{B_C}{B_H})$$

Assuming the circular coil has n number of turns and radius R, we can write the field due the coil at its centre as,

$$B_C = \frac{\mu_0 n i}{2R}$$

Substituting the expression of Bc in tan θ , we get the expression of current i as follows:

$$tan\,\theta=(\tfrac{\mu_0ni}{2R_H})\Rightarrow i=(\tfrac{2RB_H}{\mu_0n})tan\,\theta$$

Since R and n are constants for a particular coil and $\overset{\rightarrow}{\mathrm{B}_{\mathrm{H}}}$ is also constant, the whole term in the parenthesis is a constant. This constant $\frac{^{2\mathrm{RB}_{\mathrm{H}}}}{\mu_{0}\mathrm{n}} = \mathrm{K}$ is known as 'Reduction factor. Therefore, the expression of current i becomes:

 $i = K \tan \theta$ Since $\tan \theta$ has no units, the unit of 'K' will be same as current i.e., Ampere.

Oscillation Magnetometer

Oscillation magnetometer is used to find the magnetic moment of the bar magnet.

A frame that can rotate in horizontal plane is suspended in a glass box. A bar magnet is attached with the frame. The magnet will orient in North-South direction.

When frame is rotated through small angle, torque due to magnetic moment acts and the frame rotates back. Time period of rotation is found practically

Torque, $\tau = -\text{MBsin}\,\theta \approx -\text{MB}\theta[\because \sin\theta \text{ is very small for small angle }]$

Time period,
$$T=2\pi\sqrt{\left\{\!\frac{I}{MB_H}\!\right\}}$$

[Time period is calculated experimentally, I = Moment of inertia of magnet]

Magnetic moment,
$$M = \frac{4\pi^2 I}{T^2 B_H}$$