CLASS – 12 JEE – PHYSICS

#### **ELECTRIC FLUX**

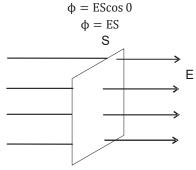
Consider some surface in an electric field  $\stackrel{\rightarrow}{E}$  Let us select a small area element  $\stackrel{\rightarrow}{dS}$  on this surface.

The electric flux of the field over the area element is given by  $d\varphi_E = \vec{E} \cdot \vec{dS}$ 

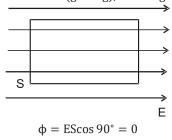


# Direction of $\vec{dS}$ is normal to the surface. It is along $\hat{n}$

$$d\varphi_E = EdScos\,\theta \text{ or } d\varphi_E = (Ecos\,\theta)dS \text{ or } d\varphi_E = E_n dS$$


Where  $E_n$  is the component of electric field in the direction of dS.

The electric flux over the whole area is given by  $\phi_E = \int_S \vec{E} \cdot \vec{dS} = \int_S E_n dS$ 


If the electric field is uniform over that area then  $\varphi_E = \overset{\rightarrow}{E} \cdot \overset{\rightarrow}{S}$ 

#### Special Cases:

Case I: If the electric field in normal to the surface, then angle of electric field E with normal will be zero



**Case II:** If electric field is parallel of the surface (glazing), then angle made by  $\vec{E}$  with normal=90°



#### Physical Meaning:

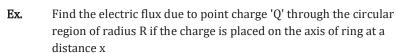
The electric flux through a surface inside an electric field represents the total number of electric lines of force crossing the surface. It is a property of electric field

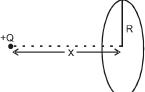
#### Unit

The SI unit of electric flux is Nm<sup>2</sup> C<sup>-1</sup> (gauss) or J m C<sup>-1</sup>.

Electric flux is a scalar quantity. (It can be positive, negative or zero)

**Ex.** The electric field in a region is given by  $\vec{E} = \frac{3}{5} E_0 \vec{i} + \frac{4}{5} E_0 \vec{j}$  with  $E_0 = 2.0 \times 10^3$  N/C. Find the flux of this field through a rectangular surface of area  $0.2m^2$  parallel to the Y–Z plane.


$$\text{Sol.} \qquad \varphi_E = \overset{\rightarrow}{E} \cdot \overset{\rightarrow}{S} = (\tfrac{3}{5} E_0 \overset{\rightarrow}{i} + \tfrac{4}{5} E_0 \overset{\rightarrow}{j}) \cdot (0.2 \overset{\circ}{i}) = 240 \tfrac{N-m^2}{C}$$


CLASS – 12 JEE – PHYSICS

**Ex.** A point charge Q is placed at the corner of a square of side a, then find the flux through the square.



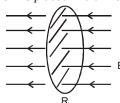
Sol. The electric field due to Q at any point of the square will be along the plane of square and the electric field line are perpendicular to square; so  $\varphi = 0$ . In other words we can say that no line is crossing the square so flux = 0.





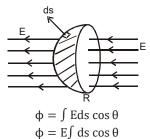
Sol. We can divide the circular region into small rings.

Lets take a ring of radius r and width dr. flux through this small element


$$d\varphi = Edscos \theta$$

$$\varphi_{net} = \int Edscos \theta = \int_{r=0}^{r=R} \frac{KQ}{(x^2+r^2)} (2\pi r dr) (\frac{x}{\sqrt{x^2+r^2}})$$

$$\frac{Q}{2\epsilon_0} [1 - \frac{x}{\sqrt{x^2 + R^2}}]$$


Case-III: Curved surface in uniform electric field.

Suppose a circular surface of radius R is placed in a uniform electric field as shown.

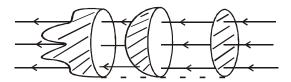


Flux passing through the surface  $\phi = E(\pi R^2)$ 

2. Now suppose, a hemispherical surface is placed in the electric field flux through Hemispherical surface



Where  $\int$  ds cos  $\theta$  is Projection of the spherical surface Area on base.


$$\int ds \cos \theta = \pi R^2$$

So  $\varphi = E(\pi R^2) = \text{same Ans. as in previous case}$ 

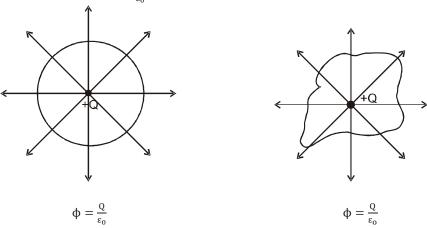
So we can conclude that

CLASS – 12 JEE – PHYSICS

If the number of electric field lines passing through two surfaces are same, then flux passing through these surfaces will also be same, irrespective of the shape of surface



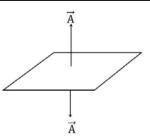
#### Case IV: Flux through a closed surface


Suppose there is a spherical surface and a charge 'q' is placed at center. flux through the spherical surface

$$\varphi = \int \vec{E} \cdot \vec{ds} = \int E ds \qquad \text{as } \vec{E} \text{ is along } \vec{ds} \text{ (normal)}$$
 
$$\varphi = \frac{1}{4\pi\epsilon_0} \frac{Q}{R^2} \int ds \qquad \text{where } \int ds = 4\pi R^2$$
 
$$\varphi = (\frac{1}{4\pi R^2} \frac{Q}{R^2})(4\pi R^2) \Rightarrow \varphi = \frac{Q}{\epsilon_0}$$

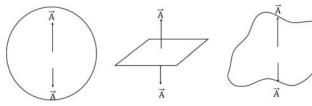
Now if the charge Q is enclosed by any other closed surface, still same lines of force will pass through the surface.

So here also flux will be  $\varphi=\frac{Q}{\epsilon_0}$  that's what Gauss Theorem is


So here also flux will be  $\varphi=\frac{\varrho}{\epsilon_0}$  , that's what Gauss Theorem is



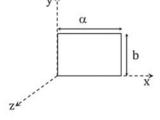
#### Area Vector


> The orientation of the area vector is consistently perpendicular to the surface.

- Vector Quantity.
- ➤ SI Unit: m²
- Think of one direction of the area vector as positive, while considering the opposite direction as negative.

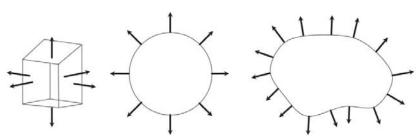


### Area vector Open Surfaces


All two-dimensional surfaces are regarded as open surfaces.



For a given problem, only one orientation of the area vector for an open surface is taken into account.


- **Ex.** A rectangle of length a and width b is placed in an x-y plane as shown. Find the area vector of the rectangle
- **Sol.** The magnitude of area of a rectangle of length a and width b is, A = abSince the rectangle is on xy-plane, the perpendicular vector of the rectangle will be along the x-cycle. Thus, the green vector of the

the rectangle will be along the z-axis. Thus, the area vector of the rectangle is,  $\overrightarrow{A} = \pm abk$ 



## Area Vector Closed Surfaces

Three-dimensional surfaces are universally regarded as closed surfaces.



For closed surfaces, the area vector's direction is invariably perpendicular to the surface, with the normal directed outward.