#### **ELECTRIC FIELD**

Electric field is the region around charged particle or charged body in which if another charge is placed, it experiences electrostatic force.

#### Intensity of Electric Field

Electric field intensity at a point is equal to the electrostatic for experienced by a unit positive point charge both in magnitude and direction. If a test charge  $q_0$  is placed at a point in an electric field and experiences a force  $\vec{F}$  due to some charges (called source charges), the electric field intensity at that point due to source charges is given by

$$\vec{E} = \frac{\vec{F}}{q_0}$$

If the  $\vec{E}$  is to be determined practically then the test charge  $q_0$  should be small otherwise it will affect the charge distribution on the source which is producing the electric field and hence modify the quantity which is measured.

- **Ex.** A positively charged ball hangs from a long silk thread. We wish to measure E at a point P in the same horizontal plane as that of the hanging charge. To do so, we put a positive test charge  $q_0$  at the point and measure  $F/q_0$ . Will  $F/q_0$  be less than, equal to, or greater than E at the point in question?
- Sol. When we try to measure the electric field at point P then after placing the test charge at P it repels the source charge (suspended charge) and the measured value of electric field  $E_{measured} = \frac{F}{q_n}$  will be less than the actual value  $E_{act}$  that we wanted to measure.

## Properties of electric field intensity $\stackrel{\rightarrow}{E}$ :

- **1.** It is a vector quantity. Its direction is the same as the force experienced by positive charge.
- **2.** Direction of electric field due to positive charge is always away from it while due to negative charge always towards it.
- **3.** Its S.I. unit is Newton/Coulomb.
- **4.** Its dimensional formula is [MLT<sup>-3</sup>A<sup>-1</sup>]
- Electric force on a charge q placed in a region of electric field at a point where the electric field intensity is  $\vec{E}$  is given by  $\vec{F} = q\vec{E}$ . Electric force on point charge is in the same direction of electric field on positive charge and in opposite direction on a negative charge.
- **6.** It obeys the superposition principle, that is, the field intensity at a point due to a system of charges is vector sum of the field intensities due to individual point charges.

$$\overset{\rightarrow}{E} = \overset{\rightarrow}{E}_1 + \overset{\rightarrow}{E}_2 + \overset{\rightarrow}{E}_3 + \cdots.$$

- 7. It is produced by source charges. The electric field will be a fixed value at a point unless change the distribution of source charges.
- Ex. Electrostatic force experienced by  $3\mu C$  charge placed at point 'P' due to a system 'S' of fixed point charges as shown in figure is  $\vec{F} = (21\hat{i} + 9\hat{j})\mu N$ .



•P

- **1.** Find out electric field intensity at point P due to S.
- 2. If now  $2\mu C$  charge is placed and  $-3\mu C$  is removed at point P then force experienced by it will be.
- force experienced by it will be. Sol. 1.  $\vec{F} = \vec{qE} \Rightarrow (2\hat{i} + 9\hat{j})\mu N = -3\mu C(\vec{E}) \Rightarrow \vec{E} = -7\hat{i} - 3\hat{j}\frac{\mu N}{C}$ 
  - 2. Since the source charges are not disturbed the electric field intensity at 'P' will remain same.  $\vec{F}_{2GC} = +2(\vec{E} = 2(-7\hat{i} 3\hat{j}) = -14\hat{i} 6\hat{j}\mu N$

Ex. Calculate the electric field intensity which would be just sufficient to balance the weight of a particle of charge –10  $\mu c$  and mass 10 mg. (Take g = 10 ms<sup>2</sup>)

Sol. As force on a charge q in an electric field  $\vec{E}$  is  $\vec{F}_q = \vec{qE}$ So according to given problem

$$\begin{split} |\overrightarrow{F}_q| &= |\overrightarrow{W}| \text{ i.e., } |q|E = mg \\ E &= \frac{mg}{|q|} = 10 \text{ N/C., in downward direction.} \end{split}$$



## E - x CURVE

## Sign convention

| Direction of electric field | Nature |
|-----------------------------|--------|
| <b>→</b>                    | (+)    |
| <b>—</b>                    | (-)    |

$$E(x) \rightarrow x$$

$$x = \infty, E = 0$$

$$x = -\infty, E = 0$$



## E - x CURVE



## E - x CURVE



### E - x CURVE



### E - x CURVE



### **Electric Field Due To Continuous Charge Distribution**

The charge Q is spread across the surface of the object.



In such scenarios, determine the electric field caused by individual small charge elements, then integrate it across the entire area.

### Linear Charge Density $(\lambda)$

It represents the charge density per unit length.



To determine the electric field along the axis of the rod:

dE = 
$$\frac{kdq}{x^2} = \frac{k \cdot \lambda d}{x^2}$$
  
 $E_{net} = k\lambda \int_a^{a+1} \frac{dx}{x^2}$   
 $k\lambda \left[\frac{1}{a} - \frac{1}{a+1}\right]$ 

Because the electric field from each small charge element aligns in the same direction, we can integrate it across the length being considered to obtain the ultimate value.

### **Electric Field Due To Finitely Charged Rod**





$$\tan \theta = \frac{y}{d}$$
$$y = \operatorname{dtan} \theta.$$

Differentiation w.r.to  $\theta$ 

$$\begin{split} \frac{dy}{d\theta} &= d\frac{d\tan\theta}{d\theta} \\ dy &= dsec^2 \,\theta d\theta \\ dE &= \frac{k\cdot dq}{r^2} = \frac{k\cdot \lambda dy}{(dsec \,\theta)^2} \end{split}$$



 $\boldsymbol{\theta}$  And y both are variable

$$\frac{k \cdot \lambda \cdot dsec^2 \theta d\theta}{d^2 \cdot sec^2 \theta}$$
$$dE = \frac{k\lambda}{d} d\theta$$



$$\begin{split} E_{11} &= dEsin \int \theta \\ E_{11} &= \frac{k\lambda}{d} \int_{-\theta_2}^{\theta_1} sin \; \theta d\theta \\ &= \frac{k\lambda}{d} \left[ -cos \; \theta \right]_{-\theta_2}^{\theta_1} \\ E_{11} &= \frac{k\lambda}{d} \left[ Cos \theta_2 - Cos \theta_1 \right] \end{split}$$



$$E_{||} = \frac{k\lambda}{d}(\cos\theta_2 - \cos\theta_1)$$



$$\begin{split} E_{\perp} &= \int dE Cos\theta. \\ E_{\perp} &= \frac{k\lambda}{d} \int_{-\theta_2}^{\theta_1} cos \; \theta d\theta \\ E_{\perp} &= \frac{k\lambda}{d} \left[ sin \; \theta \right]_{-\theta_2}^{\theta_1} \\ E_{\perp} &= \frac{k\lambda}{d} \left[ sin \; \theta_1 + sin \; \theta_2 \right] \end{split}$$



$$E_{\perp} = \frac{k\lambda}{d}(\sin\theta_1 + \sin\theta_2)$$

- **1.**  $d = \perp$  Distance of point from wire.
- **2.**  $\theta_1$  and  $\theta_2$  is taken from  $\perp$ .
- **3.**  $\theta_1$  and  $\theta_2$  are taken in opposite same.

# List of formula for Electric Field Intensity due to various types of charge distribution :

| Name/ Type                                                                  | Formula                                                                               | Note                                                                                                                                                                                                                                                                                                                    | Graph               |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Point charge                                                                | $\vec{E} = \frac{Kq}{ \vec{r} ^2} \cdot \hat{r}$                                      | q is source charge.  Fis vector drawn from source charge to the test point. outwards duc to +charges & inwards due to charges.                                                                                                                                                                                          | E r                 |
| Infinitely long line charge                                                 | $\frac{\lambda}{2\pi\epsilon_0 r} \hat{r} = \frac{2K\hat{\gamma}, \hat{r}}{r}$        | q is linear charge density (assumed uniform) r is perpendicular distanc of paint from E ne charge. Is radlal unit vector drawn from the charge to test point                                                                                                                                                            | E r                 |
| Infinite non-conducting thin sheet                                          | $\frac{\sigma}{2\epsilon_0} \hat{n}$                                                  | Is surface charge density. (assumed uniform) Is unit normal vector. x=distance of point on the axis from centre of the ring. electric field is always along the axis,                                                                                                                                                   | σ/2ε <sub>0</sub> r |
| Uniformly charged ring                                                      | $E = \frac{\kappa_{QX}}{(R^2 + x^2)^{\beta/2}}$ $E_{avs} = 0$                         | Q is total charge of the ring x-distance of point on the axis from centre of the ring.  Electric field is always along the axis.                                                                                                                                                                                        | $E_{\text{max}}$    |
| Infinitely large charged conducing sheet                                    | $\frac{\sigma}{\varepsilon_0}$ n                                                      | Is the surface charge. density (assumed uniform) fils the unit vector perpendicular is the surface.                                                                                                                                                                                                                     | σ/ε <sub>0</sub>    |
| Uniformly charged hollow conducting/ no conducting /solid conducting sphere | (i) for $r \ge R$ $\vec{E} = \frac{kQ}{ \vec{r} ^2} \hat{r}$ (ii) for $r < R$ $E = 0$ | R is radius of the sphere. $\overrightarrow{r}$ is vector drawn from centre of sphere to the point Sphere acts like a point charge. placed at centre for paints outside the sphere. $\overrightarrow{E}$ is always along radial direction. $\overrightarrow{Q}$ is total charge $(=4R^2)$ . $(=surface charge density)$ | KQ/R <sup>2</sup> R |

CLASS - 12

Uniformly charged solid nan conducting sphere (insulating material)



(i) for  $r \ge R$   $\vec{E} = \frac{\vec{k0}}{|\vec{r}|^2} r$ (ii) for  $r \le R$   $\vec{E} = \frac{kQ}{R^3} \vec{r}$ 

 $\vec{\mathbf{r}}$  is vector drawn from centre of sphere to the point \*Sphere acts like a point charge placed at the centre for points outside the sphere  $\vec{\mathbf{E}}$  is always along radial dir \*0 is total charge (P =  $\frac{4}{3}\pi\mathbf{R}^3$ ). (p=volume charge density) Inside the sphere E  $\propto$  r.Outside the sphere E =  $1/r^2$ .



**Ex.** Six equal point charges are placed at the corners of a regular hexagon of side 'a'. Calculate electric field intensity at the center of hexagon?

Similarly electric field due to a uniformly charged ring at the centre of ring : +Q





**Note** 1. Net charge on a conductor remains only on the outer surface of a conductor. This property will be discussed in the article of the conductor.

**2.** On the surface of isolated spherical conductor charge is uniformly distributed.