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STANDING WAVE IN ORGAN PIPE AND BEATS

Reflection of Sound Waves

Reflection from denser medium
Consider a scenario where a sound wave traverses through a medium and undergoes reflection
from a rigid wall, as depicted in the illustration. Immediately preceding the reflection, the particles
of the medium adjacent to the wall become compressed, resembling a compression wave in terms
of propagation. Following the reflection from the wall particles, the medium's particles rebound in
a manner akin to their state just before the reflection. In simpler terms, after reflecting at a fixed
end (displacement node), a compression pulse returns as a compression pulse, and a rarefaction
pulse returns as a rarefaction pulse. Consequently, the denser medium, representing the fixed end,
behaves like a displacement node.
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As the wave pulse retains its nature unchanged upon reflection from the denser medium, there is
no introduction of any phase difference in the sound wave pulse after this reflection

Reflection from rarer medium
Examine a sound wave advancing through a denser medium and undergoing reflection from a
rarer medium. In this scenario, as the disturbance progresses through the medium, it reaches the
interface precisely in the form of a compression at the moment of reflection, as depicted in the
figure.

In this context, the interface acts akin to a free end. When the compression encounters the
interface, the particles of the medium displace into the rarer medium, reflecting back into the initial
medium as a rarefaction. Consequently, the rarer medium (representing the free end) behaves like
a displacement antinode, as illustrated in the figure.
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In summary, when a sound wave reflects from the rarer medium, the initial compression
transforms into a rarefaction. Therefore, it can be concluded that the sound wave pulse undergoes
a phase change of m after reflecting from the rarer medium.
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Note  For the reflection of sound waves:
1. In the denser medium:
(@ A displacement node or pressure antinode will emerge at the interface.
(1)) A compression pulse will revert as a compression pulse, and a rarefaction pulse will
revert as a rarefaction pulse.
© The reflected pressure wave will undergo no phase change, indicating no inversion.
2. In the rarer medium:
@ A displacement antinode or pressure node will manifest at the interface.
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Ex.

Sol.

Ex.

(b) A compression pulse will return as a rarefaction pulse, and a rarefaction pulse will return
as a compression pulse.
© The reflected pressure wave will undergo a phase change of m, signifying wave inversion.

The total phase difference between sound waves Ap = Ad, + ¢y + Ad,, where A is the phase
difference due to the path difference ¢, 0 is the initial phase difference or epoch, and A¢, is the
phase difference due to the reflection of the sound waves.

A source of sound S and a detector D are placed at some distance from one another. A big cardboard
is placed near the detector and perpendicular to the line SD as shown in the figure. It is gradually
moved away, and it is found that the intensity changes from the maximum to the minimum as the
board is moved through a distance of 20 cm. Find the frequency of the sound emitted. The velocity
of sound in air is 336 ms-1.

S D

[t's important to highlight that due to the interference between the sound wave originating from
the source and the reflected sound wave from the cardboard, the detector registers both maximum
and minimum intensities of sound waves as the cardboard progressively moves away.

S D

ol
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In addressing this issue, considering that the sound wave reflects off the cardboard, it is reasonable
to infer that the sound wave undergoes reflection from a denser medium, thus A¢,. = 0.

As the incident and reflected waves stem from the identical source, the initial phase (epoch) ¢, = 0
Hence, the overall phase difference is, A¢ = Ad, Therefore, the phase difference arises exclusively
due to the disparity in the path traveled.

Consider the distance between the source and the detector as d, and the initial separation between
the detector and the cardboard as lo. At this cardboard position, let the path difference between
the incident and reflected waves be denoted as Axi. It is specified that due to this path difference,
the detector registers the maximum intensity.

Now, let's assume the cardboard is displaced to a distance x from its original position.
Consequently, for this cardboard location, the path difference between the incident wave and the
reflected wave becomes: Ax; = Ax; + 2x and due to this variation in path length, the detector
registers the minimum intensity.

The intensity at the detector transitions from maximum to minimum due to the cumulative path

difference. (Ax¢ — Ax;), this path difference will be equal to %

Therefore Ax¢ — Ax; = %

A

2x = -
2

A =4x
A=4x%x20cm
A =80cm
A= % m
Therefore, the frequency of the sound

f=Y=2°Hz = f=84 x5 = 420Hz

@
A source S and a detector D are placed at a distance d apart. A big cardboard is placed at a distance
v2d from the source and the detector as shown in the figure. The source emits a wave of wavelength
gwhich is received by the detector after the reflection from the cardboard. It is found to be in phase

with the direct wave received from the source. By what minimum distance should the cardboard be
shifted away so that the reflected wave becomes out of phase with the direct wave?
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Sol. There are two waves received by the detector.
1. One wave directly goes to the detector.
2. The other one goes to the detector after getting reflected at the cardboard as shown in the figure.
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The path difference between these two waves is,
Ax; = (SP + PD) —SD
i = 2(SP) — SD Since SP = PD]

Ax; _2/(\/_d)2+()2
-—2/2d2+——d
_ Z\E

A =2x2—d
Xi =2d
Given that, in this scenario, they are in phase upon superposition at the detector, the phase
difference between them is zero for this specific path difference. Consequently, the detector will

register the maximum intensity.
Now, suppose that the cardboard is moved by a distance x as shown in the figure.

J2d X

NNE-¥

For this case, the path difference between these two waves is,
Ax¢ = (SP’ + PD') — SD
Ax¢ = 2(SP") — SD [Since SP’ = PD' ]

Ax; = ZJ(ﬁd +x)2+ ()2 -

Axp =2 /(ﬁd+x)2+d72—d

Since for this position of the cardboard, it is given that the waves will be out of phase when
superposed at the detector, the phase difference between them will be T for this path difference.
Hence, the minimum intensity will be detected at the detector. Therefore,

Axp — Ax; = 2

Given that the wavelength of the sound wave is, A = g Thus,
d
AXf — AXi = Z
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By putting the values of Ax¢ and Ax;, we get,

2)(W2d+20? + & —dj-2d=¢
2 |(VZd +x)? +d72=%+3d
2 /(ﬁd+x)2+i—2=%

|(VZd + %2 +L -1
Squaring both the sides of the equation, we get,
2
V2d+ %% + 5 = (59?
2 _ 169d* d*
W2d+x)?% = 0
(VZd +x)? = (X d?
(V2d +x)? = 22 d?
— (13842
V2d+x = / —-d
1.414d + x = 1.546d
x = 1.546d — 1.414d
x = 0.132d
Therefore, the cardboard should be shifted away by a distance 0.132d for which the reflected wave
becomes out of phase with the direct wave.

Reflection of Sound Waves y
Closed organ pipe

Closed organ pipe
Contemplate a closed organ pipe with one end sealed and the other e
end open. A source of sound wave is positioned at the open end, as u
illustrated in the figure. Open Closed
At the closed end of the organ pipe, the wave exhibits a end end
displacement node, resulting in a pressure antinode. As established,
no phase change accompanies the reflected wave when a Closed organ pipe g:‘c:jsed
displacement node or pressure antinode occurs at the point of - 7 !
reflection. Conversely, it's crucial to note that a phase change of 1 is u
associated with the reflected wave when a displacement antinode or
pressure node occurs at the point of reflection. Consequently, for the eor?:n Ap. =0

incident wav e reflecting from the closed end, the phase difference
due to reflection is (Ad,); = 0, and for the reflec ted wave that again
gets reflected from the open end, the phase change due to reflection i

2 Al
is, (Ad,); = i
Hence, the cumulative phase difference following two reflections of !
the wave is A}, = (Ad,); + (Ad,), =0+ dl 3 I
For an organ pipe with a length of L, the path difference between the u
incident wave and the reflected wave at the open end is 2L.
We are aware that the overall phase difference for a sound wave is:

A = Ay + b + A,
Here, the epoch, ¢o, is zero since the source is same for all the waves.

The phase difference originated due to path difference is Adp, = ZTH (2L)

Now, let's contemplate two waves: one emitted directly from the source and the other having
undergone double reflection, traversing a path length of 2L. If they undergo constructive
interference, then:
Ap = 2nm
ZTTI (2L) + m = 2nm

%+1=2n
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4L
7 =2n-1
L=(2n-1)2 (D)
Since we know that A = %, from the above equation, we get,
L=(2n-1)
f=(@n-1)- - (2)
Open organ pipe
Open organ pipe
Examine an open organ pipe with both ends exposed. A q 3888333338333

source of sound wave is positioned at one of the open ends,
as depicted in the figure.

In this instance, both ends are open. Consequently, the
wave emitted from the source travels to the opposite end Open organ pipe
and reflects from the open end there. The reflected wave

then moves back toward the source end and reflects once l[l Open

Open end Open end

1 Open
end

. . end
more from the open end. This leads to a compression pulse
transforming into a rarefaction pulse, and vice versa, with
. . . . 2
each reflection incurring a phase difference of . llJ
a4

A =m

The cumulative phase difference resulting from the wave
reflecting as it travels from one open end to the other and
returns to the initial open end is: Ad¢, = 2m This is ' 3
equivalent to a full cycle, signifying that there is no phase

alteration.

Given the length of the organ pipe as L, the path difference between the incident wave and the

reflected wave at the initial open end is 2L, and the associated phase difference due to this path
difference is: Ap = 2TT[(ZL)

Now, let's examine two waves: one emitted directly from the source and the other having
undergone double reflection, traversing a path length of 2L. If they undergo constructive

interference, then:

Ad = 2nm
2 (2L) = 2nm
2 _
=
L=2 e

Since we know that A = %, from the above equation, we get,
E
T oof

f=n()) - (2)

Modes of Vibration of a Closed Organ Pipe
Following the principles of string waves, when a string is anchored at both ends, a standing wave
arises between the two nodes. Conversely, when the string is fastened at one end, a standing wave
occurs between a node and an antinode. Analogously, in a closed organ pipe, a standing wave is
formed between one node and one antinode, while in an open organ pipe, a standing wave is
established between two nodes (pressure nodes).

Displacement Displacement
antinode node
Closed
end
Pressure Pressure
node antinode
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In the scenario of a closed organ pipe with a length of L, one end will feature a displacement
antinode (or pressure node), while the closed end will exhibit a displacement node (or pressure
antinode), as illustrated in the figure. The criteria for achieving a perfect standing wave between

one node and one antinode, as derived in the closed organ pipe section, are L = (2n — 1) % and f =

(2n—-1) :—L which in general can be expressed as,

nA |, A
L=—%7 . (1)
v
f=(_>Cnx DE - (2)
Fundamental mode: By substituting n = 0 in equation (1) and equation (2), we get L = % and f = i.
S
X
X

A

< >
< >

Since L = %, there will be a half of one loop in between the open end and the closed end as shown

in the figure Therefore, the fundamental frequency is, f, = 4—VL

First overtone or third harmonic: By substituting n = 1 in equation (1) and equation (2), we get,
L=24+2andf=3()
2 4 4L

SinceL=§+§
2 4

There will be one loop and a half of a loop in between the open end and the closed end as shown
in the figure.
The frequency for this case is represented as, f; = 3(&) = 3f,
Second overtone or fifth harmonic: By substituting n = 2 in equation (1) and equation (2), we get,
L=20C)+7andf=5()
Since L = 2¢) +7,
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There will be two loops and a half of one loop in between the open end and the closed end as shown

in the figure.
The frequency for this case is represented as, f, = 5(4—VL) = 5f,

. AL A : .
n'" overtone or (2n + 1)™ harmonic: Here, L. = n? +7 And hence the frequency of this cases is

fa = 20+ 1)(;) = (2n + D)fy wheren = 0,123, ...

Modes of Vibration of an Open Organ Pipe
In the context of an open organ pipe with a length of L, displacement antinodes (or pressure nodes)

will be present at both ends, as depicted in the figure.

Displacement Displacement
antinode antinode

Pressure Pressure
node node

The requirements for the formation of an ideal standing wave between two nodes with a length of

L are as follows:

L="2 (D
f=n()) - (2)
Fundamental mode or first harmonic: By substituting n = 1 in equation (1) and equation (2), we get,
L=2andf=2
2 2L
Since L = %

A

A
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Note

In terms of pressure, there will be a single loop between the open ends, while in terms of
displacement, there will be two halfloops between the open ends, as depicted in the figure.
Hence, the frequency of the fundamental mode is, f, = ZV—L

Second harmonic or first overtone: By substituting n = 2 in equation (1) and equation (2), we get,
A v
L=2(3) andf=2(2).

Since L = 2(%)

From the perspective of pressure, there will be two loops between the open ends, resulting in one
node between them.

In terms of displacement, there will be one loop and two half loops between the fixed ends.
Consequently, from the displacement standpoint, there will be two nodes between the open ends,
as illustrated in the figure.

The frequency for this case is represented as, f; = Z(ZV—L) = 2f,

Third harmonic or second overtone: By putting n = 3 in equation (3) and equation (4), we get,
A v
L= 3(5) andf = 3(2—])

In this context, in terms of pressure, there are three loops between the open ends, resulting in two
nodes between them. From the displacement perspective, there are two loops and two half loops
between the fixed ends, leading to three nodes between the fixed ends, as depicted in the figure.

The frequency for this scenario is denoted as: f, = 3(%) = 3f,

(n + 1)™ harmonic or n" overtone: Here, L = (n + 1)(%) and hence, the frequency of this case is,
fo=@O+1)G) =@+ Df
In summary of the entire discussion, the following conclusions can be drawn:

A closed organ pipe (open at one end) corresponds to the scenario of a string fixed at one end.
An open organ pipe (open at both ends) corresponds to the scenario of a string fixed at both ends.
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Ex.

Sol.

An air column is constructed by fitting a movable piston in a long cylindrical tube. Longitudinal
waves are sent in the tube by a tuning fork of frequency 416 Hz. How far from the open end should
the piston be so that the air column in the tube vibrate in its first overtone? The speed of sound in
air is 333 ms-L.

Since an air column is constructed by fitting a movable piston in a long cylindrical tube, this is
nothing but the case of a closed organ pipe. Therefore, the first overtone will actually be the third
harmonic as shown in the figure.

Closed end P Open end
Source

For the third harmonic, the length should be L = 3(%) and the wavelength of the sound wave is,
v

T h
Therefore L= 34—}L
3,.v
L=:@)
Given, v=1333ms"!tandf; =416 Hz
L = E X ﬁ
T 47 416
L = 0.6m
L = 60 cm

Therefore, the piston should be 60 cm away from the open end so that the air column in the tube
may vibrate in its first overtone.
40 cm
Consider the situation shown in the figure. The wire, which is fixed at both the
ends, has a mass of 4 g, oscillates in its second harmonic, and sets the air column ——
in the tube into vibrations in its fundamental mode. Assuming that the speed of _ p
sound in air is 340 ms-}, find the tension in the wire. AR
1 i ,I \‘
\
\
\
y

Given,
The length of the wireis, L =40 cm = 0.4 m
The mass of the wireis, m=4g=4 x 103 kg
The speed of sound in air is, Vair = 340 ms-1
Therefore, the linear mass density of the wire is given by,
m
h=1
_ 4x1073
T 04
pu=10"2Kgm™?!
If the tension in the string is F, then the velocity of the string will be,
F
v= |-
n
F
1072
v =10VF
Now, it is given that the wire fixed at both the ends oscillates in its second harmonic. Therefore, if
fo is the fundamental frequency of the wire fixed at both the ends, then according to the question,
the frequency of the wire is, f = 2fo
Therefore, f= Z(ZV—L)
[ Since fy = i for a string fixed at both the ends ]

v
f=1

_ 10vF

0.4
f=25VF

vV =
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This frequency behaves as the source for the air column in the half-filled cylinder. Since the
cylinder is half-filled, it can be assumed as a closed organ pipe. It is also given that the air column
vibrates in its fundamental mode.
Therefore, the frequency of the air column is, (fy).; = :—Iir,
Given, The length of the air columnis,L’=1m

'

Therefore, f=25VF = 41‘:
25VF =222

4X1

\/F — 340

25%x4x1

N L

100
VF =34
F = (3.4)?
F=1156N
Therefore, the tension in the wire is 11.56 N.

The vibration of air in an open organ pipe of length 60 cm is represented by the equation: p =
4sin(g)cos(96nt) where x, p, and t are in cm, Nm-2, and s, respectively.
(@ What is the excess pressure amplitude atx = 5 cm?
(b) Where are the pressure nodes located along the pipe?
By comparing the given equation, p = 4sin(g)cos(96nt) with the general equation of standing
waves, p = 2pysin(kx)cos(wt), we get,
k= 115 cm™! (The unit is cm™?! because x is given in cm )

w = 96ms™!

2py =4

Po = 2Nm™2

(@) The excess pressure amplitude at any position x is, p(x) = 4sin(111—:)

Therefore, at x = 5 cm, the excess pressure amplitude becomes,
X5

p(x=15) = 4sin(1—5)
p(x =5) = 4sin(})

pix="5)=4x2

p(x =5) = 2//3Nm~2
(b) Here, the concerned organ pipe is an open organ pipe. Therefore, at both the ends of the
organ pipe, a displacement antinode or a pressure node is formed.
Given, The length of the open organ pipe is, L = 60 cm
T

Now, k=—
15
2m _ m
A 15
A
;=15cm

. . Ay
We know that the distance between any two consecutive nodes is ESmce the length of the open

organ pipe is, L = 60 cm and % = 15 cm , there will be a node after every 15 cm.

Thus, there are three nodes or four loops in between the open ends of the organ pipe. Therefore, it
is the fourth harmonic or third overtone.

15¢cm 15cm 15cm 15ecm

NN

60 cm

Hence, the pressure nodes are located at 0 cm, 15 ¢cm, 30 cm, 45 cm, and 60 cm.
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The air column in a pipe closed at one end is made to vibrate in its second overtone by a tuning
fork of frequency 440 Hz. The speed of sound in air is 330 ms-1. The end corrections may be
neglected. Let PO denote the mean pressure at any point in the pipe and APo be the maximum
amplitude of pressure variation.

@) Find the length (L) of the air column.

(b) What is the amplitude of pressure variation at the middle of the column?
© What are the maximum and minimum pressures at the open end of the pipe?
(d) What are the maximum and minimum pressures at the closed end of the pipe?

Since the pipe is closed at one end, it behaves as a closed organ pipe. Also, we know that for a closed

organ pipe, L = (2n — 1)% and f = (2n — 1)4—‘1 Hence, for the second overtone (n = 3), the length

of the air columnis L = 54—}‘ and the frequency is f, = S(i).

Given,

The frequency of the tuning fork that sets the air column to vibrate in its second overtone mode is,
f2 =440 Hz

The speed of the sound in air is, v = 330 ms!

Therefore, the wavelength is,

=Y
Tt
330
A=
A=%m
(@ The length of the air column is,
A
L= S(Z)
53
L= Z X Z
- 15
T 16
(b) Since it is a closed organ pipe, there should be a pressure node at the open end. Suppose

that the closed organ pipe is placed in such a way that the open end is at x = 0. The
equation of pressure should be,

p = Apysin(kx)cos(wt), where Apysin(kx) is the amplitude of pressure.

Now, the angular wave number is given by

2n
k=—
A

2T 3
k== (SinceA =-m
(%)( ™)

k=—m"
3111

We also know that the length of the air column s, L = i—Zm
Therefore, at the middle of the air column, i.e., at x = % = gm the amplitude of the
pressure becomes,
p = Apysin(kx)
= Apysin(E x )
p = Aposin(7- X =2
. 5T
p = Apesin()
p = Apgsin(m + E)
p = —Apesin(})

)
V2
Since amplitude cannot be negative, the amplitude of the pressure will is, p = A—g’
(o) At the open end (pressure node), there will not be any fluctuation in the pressure. So, the

amplitude of the pressure is constant at the open end.
(d) At the closed end, the amplitude of the pressure is,
p = Apgsin(kL)
.81 15
p= Aposm(? X ;)
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p= Aposin(sf)
p = Appsin(2m + g)
p = Aposin(3)

p = Ap,
Therefore, the maximum amplitude is py.x = (po + Apy) and the minimum amplitude is pyi, =
(po — Apy), where p, is the average or mean value of the pressure.

Quincke’s Experiment

Ex.

Sol.

The Quincke's tube comprises two U-tubes, labeled A and B. Tube B is movable, allowing it to slide
along tube A, as depicted in the figure.

Quincke's Tube

Tube A is equipped with two openings: (i) S, serving as the source generating sound waves, and (ii)
R, designated as the receiver or detector. The sound waves generated by the source split within tube
A, and the resulting two beams of sound waves combine at the receiver. Due to their common origin,
these two beams are coherent. Consequently, interference occurs at the receiver or detector. The
overall phase difference between these two sound wave beams is then determined by.
b = ox + G + O

¢ = ¢y - (D
[Since there is no reflection of the beams of sound waves, they just travel in two different directions
inside the tubes. Also, they are coherent, and ¢o and ¢: are zero.]
Therefore, the total phase difference is only due to the path difference between the beams. We
know that for interference phenomenon,

A2 = A3 + A%+ 2A,A,c0s
L =1 +1, +2/I;\/I,cos ¢

The respective path differences for the maxima and the minima are,

Ax = nA

Ax=(2n+1)2

If tube B is displaced by a distance x from its initial position, the additional distance covered by the
sound wave beam following that route is 2x. Consequently, the supplementary path difference
between the two beams becomes Ax.y, = 2x Adjusting the position of tube B on either side induces
a path difference resulting in a phase difference. This phase difference, in turn, can lead to varying
intensities, manifesting as either maximum or minimum intensity. In essence, it has the capability to
generate constructive or destructive interference based on the specific phase difference.

In a Quincke’s experiment, the sound intensity has a minimum value I at a particular position. As
the sliding tube is pulled out by a distance of 16.5 mm, the intensity increases to a maximum of
91. Take the speed of sound in air to be 330 ms-L

(@) Find the frequency of the sound source.
(b) Find the ratio of the amplitudes of the two waves arriving at the detector, assuming that it
does not change much between the positions of minimum intensity and maximum intensity.
Given, Lpin =1
Imax = 91

The speed of sound in air is, v =330 ms-!

The sliding tube is pulled out by a distance x = 16.5 mm

(@) The extra path difference suffered by one of the two interfering beams is,
AXeyira = 2X = 33mm = 33 X 1073m
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Because of this extra path difference, the minima gets converted into the maxima and we know
. ) . S
that the distance between the consecutive maxima and minima is 3 Therefore,
Axextra =

AXextra =

Nl<nvi>

= 2x33x103
f= 10x103
2
f=75x10%Hz
f = 5KHz
Therefore, the frequency of the source is 5KHz
(b) We know that the resultant intensity of two interfering sound waves is,

=L+ + Zﬁﬁcosd)
Now, for maximum intensity, cos ¢ = +1 and for minimum intensity, cos ¢ = -1. Therefore,
Inax =1 + 1, + 211, = (JI; +/1,)?
Imin =11 + 1, = 2J/11{I, = (/I = /1,)°
Imax _ (TityT2)?

Imin - (\/H_\/E)Z
ol _ (fli+/Tz)?
1 (h—1)?

RN

ORI
Wlilz) _ &
Gh-yT) 1

Now by applying componendo-dividendo rule, we get,
21; _ 4
0 2
JIii _ 2
mo1
Ay 2
A, 1

Therefore, the ratio of the amplitudes of the two waves arriving at the detector is 2:1.
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