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MOMENT OF INERTIA OF 3D BODIES AND PARALLEL AXIS THEOREM
Moment of Inertia of: Hollow Cylinder, Solid Cylinder, Hollow Sphere, Solid Sphere and Rectangular
Lamina:
Moment of Inertia of a Thin Uniform Hollow Cylinder:
The calculation of the moment of inertia for a slender, even-walled hollow cylinder, characterized
by its mass MM, length LL, and radius RR, is delineated in the subsequent paragraphs.
Given that the cylinder's mass is uniformly spread across its surface y

area, we ascertain the mass per unit area as follows:
M
2mRL
We can conceptualize the slender hollow cylinder as comprising a

series of closely stacked thin rings. To analyze its structure, we |
establish the y-axis as the centroidal axis, with the center of the base

serving as the origin. Now, we focus on a specific ring, characterized ||
by its thickness dy and mass dmdm, situated y units above the origin. N/

So, ~ <
dm = o(2nR)dy ‘
The calculation of the moment of inertia for this specific segment

concerning the centroidal axis entails further examination.

dl = dmR?

dl = (o(2mR)dy)R2

dl = o(2nR3)dy
Consequently, the moment of inertia for the entire cylinder can be determined through
comprehensive analysis.

=

l
fdl = [, o(2nR*)dy
0

I 3 (L
Jydl =2moR® [ dy
[1]6 = 2moR®[y]§
Our understanding encompasses the fact that,

__M

" 27RL

_ 3y M
[=(2nR )(ZHRL)L
[ = MR?

Therefore, the moment of inertia pertaining to a uniform hollow
cylinder with respect to its centroidal axis can be derived as follows:
[ = MR?

Moment of Inertia of a Uniform Solid Cylinder:
The subsequent lines outline the procedure for calculating the
moment of inertia of a uniform solid cylinder characterized by
mass M, length L, and radius R concerning its centroidal axis,
which is parallel to the height of the cylinder. To comprehend its
structure, we envision the solid cylinder as comprising successive
thin discs stacked precisely on top of one another.
For analysis purposes, we establish the y-axis as the centroidal
axis, with the center of the base serving as the origin. Now, we
direct our attention to a particular disc, characterized by its
thickness dy and possessing mass dmdm, situated at a distance y
above the origin.

dm = p(mR*)dy

The inquiry pertains to the determination of the moment of inertia
for this particular segment concerning its centroidal axis.

11



CLASS -11 JEE - PHYSICS

di = %dmRz Y

dl = = (p(mR?)dy)R?
dl = = (mpR*)dy

The expression refers to the moment of inertia encompassing
the entirety of the cylinder.

L
1 1
Jodl = fo 5 (mpRM)dy

1
1 L
fo dl = - (mpR*) [ dy

1
(116 = 5 (pR*) [y
M
We know that, P=—
_1 4N M
I = 3 (mR )(T[RZL)L
_ MR?

I
2
Therefore, the forthcoming statement elucidates the moment of inertia concerning a uniform solid

cylinder with respect to its centroidal axis.
MR?
[=
2

Moment of Inertia of a Uniform Hollow Sphere:
The forthcoming lines outline the procedure for calculating the moment of inertia of a uniform
hollow sphere characterized by mass MM and radius RR concerning its centroidal axis.
The entire mass of the sphere is uniformly distributed across its surface area, thus yielding the

mass per unit area. )
L -

M

0= r2
The structure of the hollow sphere suggests a composition of
successive thin rings, each with different radii, carefully
arranged in layers.
To facilitate analysis, we designate the y-axis as the centroidal
axis, locating the origin at the sphere's center. Let's focus on a
particular ring, characterized by its mass dmdm as illustrated.
This chosen segment is positioned at an angle 6 relative to the
x-axis, and the ring itself spans an angle of d6 at the origin.
Therefore, the radius of the selected ring corresponds to Rcos8.
When the ring is sectioned vertically and unfolded, it transforms into a rectangle with a length of
2mtRcos6 and a width of Rd6.
Consequently, the area enclosed by the ring can be expressed as dA=(2mRcos8) Rd6.
Subsequently, the mass of the ring is given by dm=cdA,
where o represents the mass per unit area. Substituting dA into the expression yields

dm=oc(2mRcos6) Rd6.
Finally, the moment of inertia concerning this segment with respect to the centroidal axis is
determined.

dI = dm(Rcos 0)?
dl = (6(2mRcos B)RdB)(Rcos 0)?
dl = (2moR*)cos® 8d0

The moment of inertia of the entire sphere is,

l T
f dI = ["Z(2moR*) cos>0d0
0 2
cos 360+3c 0

[y dl = (2naR") f :(f) do

(~ cos 30 = 4cos® 6 — 3cos 6)
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T[
0
sin 3 + 3sin 9] ,2[

2

ut =%[

T[O'R

=T (53 -G-3)

T[O'R (_)

It is within our knowledge that,
M

= anr?
M | mR%, 16
I= G G
I = 2MR?
Therefore, the moment of inertia concerning a uniform hollow sphere with respect to its centroidal
axis is as follows:

1=2MR?
3

Solid Sphere and Rectangular Lamina:

Moment of Inertia of a Uniform Solid Sphere:
The forthcoming lines detail the computation of the moment of inertia for a uniform solid sphere
with mass MM and radius RR regarding its centroidal axis.
The entire mass of the sphere is uniformly spread across its

entire volume, thus yielding the mass per unit volume.
3M

4mR3
Now, let's consider a specific disc of mass dmdm, as

depicted in the figure. This selected segment is positioned

at an angle 6 with respect to the x-axis, and the disc itself

encompasses an angle d0 at the origin.

Consequently, the radius of the chosen disc is Rcos6, and

its thickness is Rcos6d®.

Therefore, the volume of the disc can be expressed as
dV=(mR2cos?0)RcosBd6.

Hence, the mass of the disc is dm=p dVdm=pdV, where p denotes the mass per unit volume.

Thus, we obtain dm=p(nR3cos30)d®6.

dl = %dm(Rcos 0)2
dl = %(p(1tR3cos3 0)d8)R?cos? 6
dl = %(thRs)cos5 6de

The calculation pertains to the moment of inertia encompassing the entirety of the sphere.

de f —(ans)cos5 0de
2

1 T
f dl = l(p1'[R5) f_JrEZ cos® 8d6
0

1= (5
It is understood that, p= 3M3
4mR
3M | mR5, /16
I= GGG
[ = ZMR?
Therefore, the moment of inertia for a uniform solid sphere concerning its centroidal axis is as
follows:
1=2MR?
5
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Moment of Inertia of a Uniform Rectangular Lamina:

The procedure for calculating the moment of inertia for a uniform rectangular lamina with mass
M, concerning the centroidal axis perpendicular to the plane of the lamina, is detailed in the
following page.

Considering the three mutually perpendicular axes denoted by x, y, and z as illustrated in the figure,
the moment of inertia of the rectangular lamina about the centroidal axis is denoted as Iz=I.

2 2

. . - Mb . Mb
The moment of inertia about the x-axis is Ix = and about the y-axis is Iy=7.

12
According to the perpendicular axis theorem, the total moment of inertia I equals the sum of the
individual moments of inertia along the x and y axes, expressed as [=Ix+]Iy.
= MI?+Mb? _ M(12+b?)
12 12
Therefore, the moment of inertia concerning a uniform rectangular lamina about its centroidal axis
perpendicular to its plane is as follows:
[= M(1%2+b?%)
12

Perpendicular Axis Theorem:

Proof:

The concept known as the perpendicular axis theorem

establishes that when considering the moment of z § Perpendicular to the plane

inertia of a planar object, denoted as z-axis, which is
perpendicular to the plane of the object and intersects
with two mutually perpendicular axes (x and y) located
within the object's plane, the resulting moment of

inertia is equal to the combined sum of the object's

moments of inertia about the two perpendicular axes \' _J
. C o In the plane of the body
within the object's plane.

Let's consider a particle belonging to the planar sheet, denoted by mi, positioned at coordinates
(x5, o). The distance of this particle from the z-axis is (ri = x? + y?)205.
Therefore, the moment of inertia of this particle about the z-axis is given by

dl, = mr?= mi(x? + y?).
Additionally, yi and xi represent the perpendicular distances from the y and x axes, respectively.
The moment of inertia of the particle about the x-axis is dl;=miy?
while the moment of inertia about the y-axis is dly=mix?.
So, dl, = m;(x? + y?) = m;x? + m;y?

dl, = dl, + dI,
By integrating this equation, we arrive at

I, =1+
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