#### **RIVER-MAN PROBLEM AND ITS APPLICATIONS**

## **River- Swimmer Problems**

Condition for Minimum Distance

Case I:





 $|\overset{\rightarrow}{v}_{br}|>|\overset{\rightarrow}{v}_{rg}|$ 

For zero drift

$$v_{br}\sin \theta = v_{rg}$$
$$\sin \theta = \frac{v_{rg}}{v_{br}}$$

Case II:





 $|\overrightarrow{v}_{rg}| > |\overrightarrow{v}_{br}|$ 

$$\theta = \sin^{-1} \left( \frac{v_{br}}{v_{rg}} \right)$$

$$\sin \theta = \frac{\text{smaller speed}}{\text{larger speed}}$$

**Ex** A boatman wishes to cross a river along the shortest possible path. The speed of the boat in still water is  $3 \, m/s$ . The speed of the river is  $5 \, m/s$  as shown in figure. The width of the river is  $20 \, m$ . Find the time required to cross the river.





Sol. Given

$$v_{br} = 3 \ m/$$
 ,  $v_{rg} = 5 \ m/s$ 

CLASS – 11 JEE – PHYSICS



To Find: time

Here;  $v_{br} = 3 \ m/s$ ,  $v_{rg} = 5 \ m/s$ 

$$\vec{v}_{bg} = \vec{v}_{br} + \vec{v}_{rg}$$

For shortest path:

$$\sin \theta = \frac{v_{br}}{v_{rg}} \Rightarrow \theta = 37^{\circ}$$

$$t = \frac{d}{v_{br}\cos 37^{\circ}} = \frac{20}{12/5} = \frac{25}{3}$$

$$t = \frac{25}{3}s$$

#### Aircraft- wind Problems

Ex. Engine speed of a plane is  $500 \, km/hr$ , wind is blowing with constant speed of  $300 \, km/hr$  towards east direction. Find the time taken by plane to complete a square of side  $80 \, km$ .



**Sol.** Choose the positive *X*-axis along the east



Velocity of the plane with respect to the wind is given as:

$$\vec{v}_{pw} = 500 \text{km/hr} \, \hat{i}$$

From point *A* to *B* 

$$\vec{v}_{pg} = \vec{v}_{pw} + \vec{v}_{wg}$$
 
$$\vec{v}_{pg} = 500 \text{ km/hr } \hat{i} + 300 \text{ km/hr } \hat{i} = 800 \text{ km/hr } \hat{i}$$
 
$$\text{Time, } t = \frac{80 \text{ km}}{800 \text{ km/hr}} = 0.1 \text{hr}$$

CLASS – 11 JEE – PHYSICS

## From point B to C



# From point C to D



# From point D to A



CLASS – 11 JEE – PHYSICS

$$\begin{split} \vec{v}_{pg} &= \vec{v}_{pw} + \vec{v}_{wg} \\ \vec{v}_{pg} &= \{(300 - 500 \sin \theta)\hat{1} - 500 \cos \theta\hat{j}\} km/hr \\ (v_{pg})_x &= 0 \Rightarrow \theta = 37^0 \\ \vec{v}_{pg} &= -400 \ km/hr\hat{j} \\ Time &= t = \frac{80 \ km}{400 \ km/hr} = 0.2 hr \\ Total time &= 0.9 hr = 54 \ min \end{split}$$