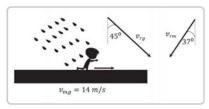
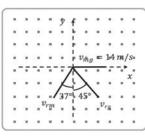
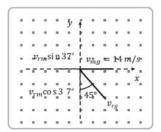

CLASS – 11 JEE – PHYSICS

RAIN-MAN PROBLEM AND ITS APPLICATIONS Rain Man Problem



Using Parallelogram law,

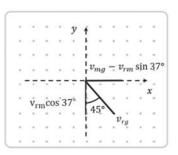

$$\stackrel{\rightarrow}{v}_{rm}=\stackrel{\rightarrow}{v}_{rg}+[-\stackrel{\rightarrow}{v}_{mg}]$$


The orientation of the umbrella is always against vhrm, in order to avoid getting drenched.

Ex. A boy is running on a horizontal road with speed $14 \, m/$. Rain is falling at an angle of $45 \, \circ$ with the vertical. For the boy, rain appears at an angle of $37 \, S \, \circ$ with the vertical as shown. Find the actual velocity of rain.

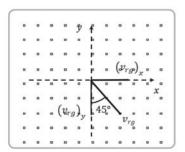
Sol. Adding the vectors using resolution technique

$$\vec{v}_{rg} = \vec{v}_{rm} + \vec{v}_{mg}$$


Representing, $\vec{v}_{rg} = \vec{v}_{rm} + \vec{v}_{mg}$ in figure:

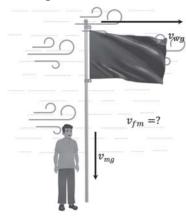
Let
$$v_{rm} = x$$

$$\tan 45^{\circ} = \left| \frac{\left(v_{rg}\right)_{x}}{\left(v_{rg}\right)_{y}} \right|$$

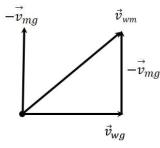

$$\frac{14 - \frac{3x}{5}}{4x/5} = 1$$

$$x = v_{rm} = 10 \text{ m/s}$$

CLASS – 11 JEE – PHYSICS


Representing,
$$\overrightarrow{v}_{rg} = \overrightarrow{v}_{rm} + \overrightarrow{v}_{mg}$$
 in figure:
$$\begin{pmatrix} v_{rg} \end{pmatrix}_x = 8 \ m/s \\ \qquad \qquad \left(v_{rg} \right)_y = 8 \ m/s \\ \qquad \qquad v_{rg} = \sqrt{8^2 + 8^2} \\ \qquad \qquad v_{rg} = 8\sqrt{2} \ m/s$$

Rain-Lorry Problems (Fluttering of Flag)


Let

Velocity of the wind w.r.t. ground be $\overset{
ightarrow}{v_{wg}}$ Velocity of the flag w.r.t. man be $\overset{
ightarrow}{v_{fm}}$ Velocity of the man w.r.t. ground be $\overset{
ightarrow}{v_{mg}}$

When the man is at rest, the velocity of the flag is same as the velocity of the wind, i.e. $\vec{v}_{fg} = \vec{v}_{wg}$

Velocity of wind w.r.t. man

 $\vec{v}_{wm} = \vec{v}_{wg} + (-\vec{v}_{mg}) = \vec{v}_{wg} - \vec{v}_{mg}$

Note: Flag flutters in the direction of \vec{v}_{wm}