Chapter 5

Motion in 2D Plane

- Introduction to 2D motion
 - 1. Introduction to 2D motion
- Projectile motion
 - 1. Parameters of projectile motion,
 - 2. Maximum range landing speed,
 - 3. Symmetry of the projectile motion
- Equation of Trajectory and Analysis of Horizontal projectile
 - 1. Equation of Trajectory
 - 2. Factors affecting Projectile Motion
 - 3. Horizontal Projection
- Analysis of Projectile on an Inclined Plane.
 - 1. Elastic collision of Projectile motion
 - 2. Projection on inclined plane
- Relative motion in two dimensions.
 - 1. Relative Motion of Projectiles,
- River-man problem and its applications
 - 1. River- Swimmer Problems,
 - 2. Aircraft- wind Problems
- Rain-man problem and its applications
 - 1. Rain Man Problem
 - 2. Rain-Lorry Problems
- Cross product and Introduction to circular motion
 - 1. Cross Product of Vectors
 - 2. Introduction to Circular Motion
 - 3. Angular parameters of a circular motion
- Uniform and Non uniform circular motion
 - 1. Angular parameters
 - 2. Analogy of Linear and Angular Parameters

INTRODUCTION TO 2D MOTION

After studying motion along a straight path and its three equations, we now delve into motion within a plane. When discussing motion in a plane, we're essentially talking about movement across two directions because a plane consists of two dimensions. Hence, we consider two axes, typically the X-axis and Y-axis. To develop equations for such motion, understanding motion in one dimension is crucial.

The Equations of Motion in a Straight Line Are:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

Where,

 $v = final \ velocity \ of \ the \ particle$

u = initial velocity of the particle

s = displacement of the particle

a = acceleration of the particle

t = time interval in which the particle is in consideration In a plane, we have to apply the same equations separately in both the directions: Y axis and Y-axis.

This would give us the equations for motion in a plane:

$$v_y = u_y + a_y t$$

 $s_y = u_y t + \frac{1}{2} a_y t^2$
 $v_y^2 = u_y^2 + 2 a_y s$

Where

 $V_y =$ final velocity of the particle in y direction

 u_y = initial velocity of the particle in y direction

s_y= displacement of the particle in y direction

a_y= acceleration of the particle in y direction

t = time interval in which the particle is in consideration

Similarly, for X-axis:

$$V_x = u_x + a_x t$$

$$S_x = u_x t + \frac{1}{2} a_x t^2$$

$$V_x^2 = u_x^2 + 2a_x s$$

Where,

 v_x = final velocity of the particle in x direction u_x = initial velocity of the particle in x direction

CLASS – 11 JEE – PHYSICS

 $s_x = \text{displacement of the particle in } x \text{ direction} \\ a_x = \text{acceleration of the particle in } x \text{ direction} \\ t = \text{time interval in which the particle is in consideration}$