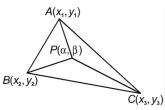
CLASS – 11 JEE – MATHS

POSITION OF A POINT WHICH LIES INSIDE A TRIANGLE

1st method:

Let P (α, β) be a given point and the equation of the side BC, CA and AB of a given triangle ABC with vertices $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be



$$a_1x + b_1y + c_1 = 0$$
, $a_2x + b_2y + c_2 = 0$ and $a_2x + b_2y + c_3 = 0$

Respectively. Let P lie inside the triangle, then the points P and A are on the same side of BC, P and B are on the same side of AC, P and C are on the same side of AB and hence

$$(a_1\alpha + b_1\beta + c_1)(a_1x_1 + b_1y_1 + c_1) > 0 ... (1)$$

$$(a_2\alpha + b_2\beta + c_2)(a_2x_2 + b_2y_2 + c_2) > 0 \qquad ... (2)$$

$$(a_3\alpha + b_3\beta + c_3)(a_3x_3 + b_3y_3 + c_3) > 0$$
 ... (3)

The required values of P (α, β) must be intersection of these inequalities (1), (2) and (3).

2st method:

Let us first draw the exact diagram of the problem. If the point $P(\alpha, \beta)$ move on the straight line y = ax + b for all a, then P = (a, ax + b) and the portion DE of the line y = ax + b (Excluding D and E) lies within the triangle. Now line y = ax + b cuts any two sides out of three sides, then we find coordinates of D and E.

$$D \equiv (x', y')$$
 and $E \equiv (x'', y'')$. Then $x' < \alpha < x''$ and $y' < a\alpha + b < y''$.

- **Ex.** Find the possible values of a for which the point (a, a^2) lies inside the triangle formed by the straight line 2x + 3y-1=0, x+2y-3=0 and 5x 6y 1 = 0.
- Sol 1st method

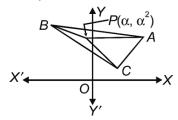
The equations of sides of a triangle ABC are given by

$$2x + 3y - 1 = 0$$
, $x + 2y - 3 = 0$ and $5x - 6y - 1 = 0$.

The coordinates of the point of intersection (vertices) taken two by two are $A(\frac{5}{4}, \frac{7}{9})$

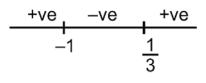
$$B(-7,5)$$
 and $C(\frac{1}{3},\frac{1}{9})$

Since $P(\alpha, \alpha^2)$ lies inside the \triangle ABC, then



- 1. A and P must lie on the same side of BC
- 2. P and B must lie on the same side of CA and C & P must lie on the same side of AB, hence

$$\begin{split} &(\frac{5}{2} + \frac{21}{8} - 1)(2\alpha + 3\alpha^2 - 1) > 0 \\ &3\alpha^2 + 2\alpha - 1 > 0 \\ &(\alpha + 1)(\alpha - \frac{1}{3}) > 0 \\ &\alpha \in (-\infty, -1) \cup (\frac{1}{3}, \infty) \end{split} \qquad ... (1)$$



CLASS – 11 JEE – MATHS

and
$$(-35-30-1)(5\alpha-6\alpha^2-1)>0$$

$$5\alpha-6\alpha^2-1<0$$

$$6\alpha^2-5\alpha+1>0$$

$$(\alpha-\frac{1}{2})(\alpha-\frac{1}{3})>0$$

$$\alpha\in(-\infty,\frac{1}{3})\cup(\frac{1}{2},\infty)$$
Also, $(\frac{1}{3}+\frac{2}{9}-3)(\alpha+2\alpha^2-3)>0$

$$2\alpha^2+\alpha-3<0$$

$$(2\alpha+3)(\alpha-1)<0$$

$$\alpha\in(-\frac{3}{2},1)$$
From (1), (2), and (3) we get,
$$\alpha\in(-\frac{3}{2},-1)\cup(\frac{1}{2},1).$$

$$+ve -ve +ve$$

$$+ve$$

$$-3$$

$$-3$$
1

2st method:

The point $P(\alpha, \alpha^2)$ move on the curve $y = x^2$ for all α .

The intersection of $y = x^2$ and 2x + 3y - 1 = 0. i.e., $2x + 3x^2 - 1 = 0$ is $x = -1, \frac{1}{3}$

The points of intersection are D(-1,1) and $E(\frac{1}{3},\frac{1}{9})$.

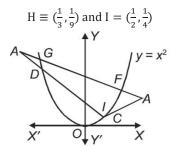
Similarly the intersection of $y = x^2$ and x + 2y - 3 = 0 or $x + 2x^2 - 3 = 0 \Rightarrow x = 1, x = \frac{-3}{2}$

Let the intersection points $F \equiv (1,1)$ and $G(-\frac{3}{2},\frac{9}{4})$ and intersection of $y=x^2$ and

$$5x - 6y - 1 = 0 \Rightarrow 5x - 6x^2 - 1 = 0$$

$$x = \frac{1}{3}, \frac{1}{2}$$

Let intersection points be



Thus the points on the curve $y=x^2$ whose coordinates lies between $-\frac{3}{2}$ and -1 and $\frac{1}{2}$ and 1lies within the triangle ABC.

Consequently,
$$-\frac{3}{2} < \alpha < -1$$
 and $\frac{1}{2} < \alpha < 1$ $\alpha \in (\frac{-3}{2}, -1) \cup (\frac{1}{2}, 1)$