Conjugate of a Complex Number

The mirror reflection of a complex number z = x + iy across the real axis is referred to as the conjugate of z. This point is represented by $\overline{z} = x - iy$.

Properties of Conjugate of a Complex Number

- 1. $(\overline{z}) = z$
- 2. $|z| = |\overline{z}| = |-z| = |-\overline{z}| = |iz| = |i\overline{z}|$
- 3. $z\overline{z} = |z|^2 = (Re(z))^2 + (Im(z))^2$
- 4. $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \operatorname{Im}(z) = \frac{z \overline{z}}{2i}$

If z is purely real number, then Im $(z) = 0 \Rightarrow z = \overline{z}$ If z is purely imaginary, then Re $(z) = 0 \Rightarrow z + \overline{z} = 0$ or $z = -\overline{z}$

 $\mathbf{5.} \qquad (\overline{z_1 + z_2}) = \overline{z}_1 + \overline{z}_2$

In general $z_1 + z_2 + \cdots + z_n = \overline{z}_1 + \overline{z}_2 + \overline{z}_3 + \cdots + \overline{z}_n$

- **6.** $z_1+z_2=\overline{z}_1\cdot\overline{z}_2$ or in general $z_1\cdot z_2$ $z_n=\overline{z}_1\cdot\overline{z}_2$ \overline{z}_n And also we may write that $(\overline{z}^n)=(\overline{z})^n$
- 7. If $z_2 \neq 0$, then $\left(\frac{\overline{z_1}}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}$
- 8. $arg(z) + arg(\overline{z}) = 2k\pi, k \in Z$
- **Ex.** If $z_1 = \overline{z}_1$ and $z_2 = -\overline{z}_2$ and z_1 and z_2 both are non-zero complex numbers, then find the sum of all possible principal values of $arg(z_1)$ and $arg(z_2)$.
- Sol. If $z_1=\overline{z}_1$ then z_1 is purely real number and in this case $\arg(z_1)=0$ or π . Similarly if $z_2=-\overline{z}_2$, then z_2 is purely imaginary number and in this case $\arg(z_2)=\frac{\pi}{2}, -\frac{\pi}{2}$ Hence sum $=0+\pi+\frac{\pi}{2}-\frac{\pi}{2}=\pi$.