SIGN OF THE QUADRATIC EXPRESSION WITH GRAPHICAL PERSPECTIVE

It has been observed that $ax^2 + bx + c$ can be factored as $a(x - \alpha)$ $(x - \beta)$, where α , and β are the roots of the corresponding equation $ax^2 + bx + c = 0$. This indicates that the sign of $ax^2 + bx + c$ is contingent on the value of 'a'.

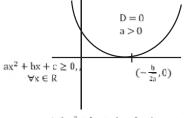
Case I: D = 0 (α and β are real and equal)

In this case
$$ax^2 + bx + c = a(x - \alpha)^2 \ge 0$$
, if $a > 0$

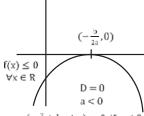
$$\leq 0$$
, if a $<$

That is, the quadratic expression $ax^2 + bx + c$ is positive or negative depending on whether a > 0or a < 0. The expression equals zero when $x = \alpha$.

Graphically, this is illustrated as follows:



 $min(ax^2 + bx + c) = 0$, when a > 0



 $\max(ax^2 + bx + c) = 0$, if a < 0

Graph of y = f(x) touches x-axis.

Case II: D < 0 ($b^2 - 4ac < 0$),

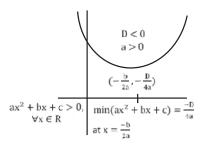
In this case the roots of the corresponding equation are conjugate complex numbers say p + iq and

Let
$$\alpha = p + iq$$
, $\beta = p - iq$.

Now,
$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$

$$= a [(x-p)-iq] [(x-p)+iq]$$

 $= a [(x-p)^2 + q^2] > 0$ according as a > 0; because $(x-p)^2 + q^2 > 0$ for real values of x, p, q This indicates that the expression $ax^2 + bx + c$ is consistently positive or negative depending on whether a > 0 or a < 0, respectively. This graphical representation is illustrated below.



 $f(x) < 0, \forall x \in R$ a < 0

Graph of y = f(x) neither touches nor intersects x-axis.

Case III: > 0 i.e., $(b^2 - 4ac > 0)$,

In this case roots are real and distinct,

i.e., α , $\beta \in R$ and $\alpha \neq \beta$.

Let $\alpha < \beta$

For
$$x < \alpha \Rightarrow x < \beta$$

 $x - \alpha < 0$ and $x - \beta < 0$
 $(x - \alpha)(x - \beta) > 0$
 $ax^2 + bx + c = a(x - \alpha)$

 $(x - \beta) \ge 0$ If $a \ge 0$

For $\alpha < x < \beta$

 $x - \alpha > 0$ and $x - \beta < 0$ $(x - \alpha)(x - \beta) < 0$

 $ax^2 + bx + c = a(x - \alpha)$

 $(x - \beta) \ge 0$

For $x > \beta \Rightarrow x > \alpha$

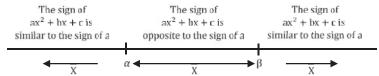
 $(x - \alpha)(x - \beta) > 0$ $ax^2 + bx + c \ge 0$

According as $a \ge 0$

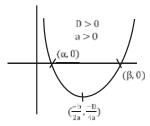
According as $a \ge 0$

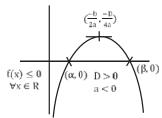
CLASS – 11 JEE – MATHS

The above cases can be interpreted on the number line as.



The intersection of the graph y = f(x) with the x-axis is evident from the graphs below, revealing two points of intersection.





$$\begin{aligned} & \min(ax^2+bx+c) = \frac{-D}{4a} \text{ which occurs at } x = \frac{-b}{2a} \\ & ax^2+bx+c \geq 0, \forall x \in (-\infty,\alpha] \cup [\beta,\infty) \\ & \text{and } ax^2+bx+c \leq 0, \forall x \in [\alpha,\beta] \end{aligned}$$

$$\max(ax^2 + bx + c) = \frac{-D}{1a} \text{ which occurs at } x = \frac{-b}{2a}$$
$$ax^2 + bx + c \le 0, \forall x \in (-\infty, \alpha] \cup [\beta, \infty)$$
and
$$ax^2 + bx + c \ge 0, \forall x \in [\alpha, \beta]$$

Graph of y = f(x) intersects x-axis at two distinct points.