QUADRATIC EXPRESSION

An expression of the form $ax^2 + bx + c$, where $0 \neq a$, b, $c \in R$ is called a quadratic expression or quadratic polynomial in independent variable x.

Let
$$y=f(x)=ax^2+bx+c=a[x^2+\frac{b}{a}x+\frac{c}{a}]=a[x^2-(\alpha+\beta)x+\alpha\beta]=[a(x-\alpha)(x-\beta)]$$

 α and β represent the solutions of the equation $ax^2 + bx + c = 0$.

Here, α and β denote the roots of the associated quadratic equation $ax^2 + bx + c = 0$.

$$y = f(x) = a\left[x^2 + 2x \cdot \frac{b}{2a} + (\frac{b}{2a})^2\right] - \frac{b^2}{4a} + c$$

$$= a\left[(x + \frac{b}{2a})^2\right] - \frac{b^2 - 4ac}{4a}$$

$$(y + \frac{D}{4a}) = a\left[(x + \frac{b}{2a})^2\right]; D = b^2 - 4ac$$

 $(y+\frac{D}{4a})=a[(x+\frac{b}{2a})^2]; D=b^2-4ac$ Which represent a parabola with vertex at $(\frac{-b}{2a},\frac{-D}{4a})$

Range of the Quadratic Function

Let
$$f(x) = ax^2 + bx + c$$
, $a \neq 0$

A. Range when $x \in R$

If
$$a > 0$$
 then $f(x) \in [-\frac{D}{4a}, \infty)$

If a < 0, then
$$f(x) \in (-\infty, \frac{-D}{4a})$$

B. Range in restricted domain

Case I:
$$(x_1 < -\frac{b}{2a} < x_2)$$

For
$$f(x) = ax^2 + bx + c$$
, $x \in [x_1, x_2]$ find $f(x_1)$, $f(x_2)$ and $f(-\frac{b}{2a})$

If the least value of f(x) among $f(x_1)$, $f(x_2)$ and $f\left(-\frac{b}{2a}\right)$ is m and greatest value is M,

then the range off(x) is [m, M].

Case II:
$$-\frac{b}{2a} \notin (x_1, x_2)$$

For the function $f(x) = ax^2 + bx + c$, where $x \in [x_1, x_2]$, determine $f(x_1)$ and $f(x_2)$. If the minimum of $f(x_1)$ and $f(x_2)$ is denoted as m, and the maximum as M, then the range of f(x) is [m, M].