THE VECTOR PRODUCT

(A) If \vec{a} & \vec{b} are two vectors & $\vec{\theta}$ is the angle between them, then $\overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}||\overrightarrow{b}|\sin \theta$ n, where n is the unit vector perpendicular to both \vec{a} & \vec{b} such that \vec{a} , \vec{b} & \vec{n} forms a right handed screw system

Sign convention

(A) Right handed screw system

 \vec{a} , \vec{b} and \vec{n} form a right handed system it means that if we rotate vector \vec{a} towards the direction of \vec{b} . through the angle θ , then \vec{n} advances in the same direction as a right handed screw would, if turned in the same way

(B) Lagranges Identity

For any two vectors
$$\vec{a} \& \vec{b}$$
; $(\vec{a} \times \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$

(C) Formulation of vector product in terms of scalar product

The vector product $\vec{a} \times \vec{b}$ is the vector \vec{c} , such that

A.
$$|\vec{c}| = \sqrt{\vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2}$$

B.
$$\overrightarrow{c} \cdot \overrightarrow{a} = 0$$
; $\overrightarrow{c} \cdot \overrightarrow{b} = 0$

C. \vec{a} , \vec{b} , \vec{c} form a right handed system

(ii)
$$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$$
 (not commutative)

(iii)
$$(\vec{ma}) \times \vec{b} = \vec{a} \times (\vec{mb}) = \vec{m(a \times b)}$$
 where m is a scalar.

(iv)
$$\stackrel{\rightarrow}{a} \times (\stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}) = (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) + (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{c})$$
 (distributive over addition)
(v) $\stackrel{\rightarrow}{i} \times \stackrel{\rightarrow}{i} = \stackrel{\rightarrow}{j} \times \stackrel{\rightarrow}{j} = \stackrel{\rightarrow}{k} \times \stackrel{\rightarrow}{k} = 0$
(vi) $\stackrel{\rightarrow}{i} \times \stackrel{\rightarrow}{j} = \stackrel{\rightarrow}{k}, \stackrel{\rightarrow}{j} \times \stackrel{\rightarrow}{k} = \stackrel{\rightarrow}{i}, \stackrel{\rightarrow}{k} \times \stackrel{\rightarrow}{i} = \stackrel{\rightarrow}{j}$

(v)
$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

(vi)
$$i \times j = k, j \times k = i, k \times i = j$$

(E) If
$$\vec{a} = \vec{a_1} + \vec{a_2} + \vec{a_3} = \vec{a_3} = \vec{a_1} + \vec{a_2} + \vec{a_3} = \vec{a_3} = \vec{a_3} = \vec{a_1} = \vec{a_1} + \vec{a_2} = \vec{a_3} = \vec{a_3} = \vec{a_1} = \vec{a_2} = \vec{a_3} = \vec{a_3} = \vec{a_3} = \vec{a_3} = \vec{a_3} = \vec{a_1} = \vec{a_2} = \vec{a_3} = \vec{a_3} = \vec{a_3} = \vec{a_1} = \vec{a_2} = \vec{a_3} = \vec{a$$

(F) Geometrically $|\vec{a} \times \vec{b}| = \text{area of the parallelogram whose two adjacent sides are represented by$ $\vec{a} \& \vec{b}$.

(ii) A vector of magnitude 'r' & perpendicular to the plane of
$$\vec{a} \& \vec{b}$$
 is $\pm \frac{\vec{r}(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$

(iii) If
$$\theta$$
 is the angle between $\overrightarrow{a} \& \overrightarrow{b}$, then $\sin \theta = \frac{\overrightarrow{|a \times b|}}{\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} \\ \overrightarrow{a} & \overrightarrow{b} \end{vmatrix}}$

(H) Vector area:

(i) If \vec{a} , \vec{b} are the pv's of 3 points A, B & C then the vector area of triangle

$$ABC = \frac{1}{2} \left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right]$$

(ii) The points A, B & C are collinear if
$$\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$$

(iii) Area of any quadrilateral whose diagonal vectors are
$$\vec{d}_1 \& \vec{d}_2$$
 is given by $\frac{1}{2} |\vec{d}_1 \times \vec{d}_2|$.