CLASS - 12 **IEE - MATHS**

SECTION FORMULA

If R divides PQ in the ratio m: n, then

$$\vec{r} = \frac{\vec{mq} + \vec{np}}{m+n}$$

If R be the mid-point of PQ then

$$\vec{r} = \frac{\vec{p} + \vec{q}}{2}$$

Again if G is the centroid of the triangle ABC, then

$$\vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

MAGNITUDE OF A VECTOR

Let
$$\overrightarrow{A} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$$
 then $|\overrightarrow{A}| = \sqrt{a^2 + b^2 + c^2}$

DOT PRODUCT (Scalar Product of two Vectors)

(A) $\vec{a} \cdot \vec{b} = \vec{a} \parallel \vec{b} \mid \cos \theta (0 \le \theta \le \pi), \theta \text{ is angle between } \vec{a} \stackrel{\rightarrow}{\&} \vec{b}.$

Note that if θ is acute then $\vec{a}\cdot\vec{b}>0\&$ if θ is obtuse then $\vec{a}\vec{b}<0$

(B)
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2 = \vec{a}^2, \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 (commutative) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (distributive)

(C)
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0 \Leftrightarrow \overrightarrow{a} + \overrightarrow{b} : (\overrightarrow{a}, \overrightarrow{b} \neq 0)$$

(E) Projection of
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$.

Note:

The vector component of \vec{a} along $\vec{b} = \begin{pmatrix} \vec{a} \cdot \vec{b} \\ \frac{\vec{a}}{\vec{b}^2} \end{pmatrix} \vec{b}$ and perpendicular

to
$$\vec{b} = \vec{a} - \left(\frac{\vec{a} \cdot \vec{b}}{\overset{\rightarrow}{b^2}}\right) \vec{b}$$
 [by triangle law of vector Addition]

CLASS - 12 **JEE - MATHS**

ii. The angle
$$\varphi$$
 between $\vec{a} \overset{\rightarrow}{\&} \vec{b}$ is given by $\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} 0 \le \varphi \le \pi$

iii. If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \otimes \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$
, then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}, |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$$

iv.
$$-|\vec{a}||\vec{b}| \le \vec{a} \cdot \vec{b} \le |\vec{a}||\vec{b}|$$

v. Any vector
$$\vec{a}$$
 can be written as, $\vec{a} = (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{j})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k}$
vi. A vector in the direction of the bisector of the angle between the two vectors

$$\vec{a} \& \vec{b}$$
 is $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$

Hence bisector of the angle between the two vectors $\vec{a} \& \vec{b}$ is $\lambda(\hat{a} + \hat{b})$, where $\lambda \in R^+$.

Bisector of the exterior angle between $\vec{a} \& \vec{b}$ is $\lambda(\hat{a} - \hat{b}), \lambda \in \mathbb{R}^+$

vii.
$$|\vec{a} \pm \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \pm 2\vec{a} \cdot \vec{b}$$

viii.
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}| = 2\vec{a} \cdot \vec{b}$$

viii. $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}| + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$