SCALAR MULTIPLICATION

If \vec{a} is a vector and m is a scalar, then the product m(\vec{a}) results in a vector parallel to , with a magnitude equal to |m| times that of .

This operation is referred to as scalar multiplication. If \vec{a} and \vec{b} are vectors, and m and n are scalars, then the result is expressed as:

- (i) $m(\vec{a}) = (\vec{a})m = m\vec{a}$
- (ii) $m(n\vec{a}) = n(m\vec{a}) = (mn)\vec{a}$
- (iii) $(m+n)\vec{a} = m\vec{a} + n\vec{a}$
- (iv) $m(\vec{a} + \vec{b}) = m\vec{a} + m\vec{b}$

Note: In general, for any non-zero vectors, $\vec{a}, \vec{b} \& \vec{c}$ one may note that although $\vec{a} + \vec{b} + \vec{c} = 0$ it is important to observe that while, it does not necessarily form the three sides of a triangle.

Ex. ABCD is a parallelogram with intersecting diagonals at P. If O is a constant point, then the expression is $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ equivalent to.

Sol. Since, P bisects both the diagonal AC and BD,

so
$$\overline{OA} + \overline{OC} = 2\overline{OP}$$

And $\overline{OB} + \overline{OD} = 2\overline{OP}$
 $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = 4\overline{OP}$

Ex. Given $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ that represent two adjacent sides of a parallelogram, determine unit vectors that are parallel to the diagonals of the parallelogram.

Sol. Let ABCD be a parallelogram such that

Then
$$\overrightarrow{AB} = \overrightarrow{a} \text{ and } \overrightarrow{BC} = \overrightarrow{b}.$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b} = 3\hat{i} + 6\hat{j} - 2\hat{k}$$

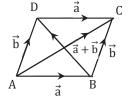
$$|\overrightarrow{AC}| = \sqrt{9 + 36 + 4} = 7$$

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

$$\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}$$

$$= \overrightarrow{b} - \overrightarrow{a} = \hat{i} + 2\hat{j} - 8\hat{k}$$

$$|\overrightarrow{BD}| = \sqrt{1 + 4 + 64} = \sqrt{69}$$



Unit vector along $\overrightarrow{AC} = \frac{\overrightarrow{AC}}{|\overrightarrow{AC}|} = \frac{1}{7}(3\hat{i} + 6\hat{j} - 2\hat{k})$

Unit vector along $\overrightarrow{BD} = \frac{\overrightarrow{BD}}{|\overrightarrow{BD}|} = \frac{1}{\sqrt{69}}(\hat{i} + 2\hat{j} - 8\hat{k})$

Ex. A, B, P, Q, R are five points in a plane. If force \overrightarrow{AP} , \overrightarrow{AQ} , \overrightarrow{AR} is applied to point A and force \overrightarrow{PB} , \overrightarrow{QB} , \overrightarrow{RB} is applied to point B, then the resultant force is represented by.

Sol. From figure

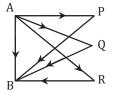
So,

$$\overline{AP} + \overline{PB} = \overline{AB}$$

$$\overline{AQ} + \overline{QB} = \overline{AB}$$

$$\overline{AR} + \overline{RB} = \overline{AB}$$

$$(\overline{AP} + \overline{AQ} + \overline{AR}) + (\overline{PB} + \overline{QB} + \overline{RB}) = 3\overline{AB}$$



So, required resultant = $3\overrightarrow{AB}$

- **Ex.** ABCDE is a pentagon. Demonstrate that the resultant of the forces \overrightarrow{AB} , \overrightarrow{AE} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{ED} and \overrightarrow{AC} is $3\overrightarrow{AC}$. is.
- **Sol.** Let \overrightarrow{R} be the resultant force

$$\begin{split} \vec{R} &= \overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} \\ \vec{R} &= (\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{AE} + \overrightarrow{ED} + \overrightarrow{DC}) + \overrightarrow{AC} \\ \vec{R} &= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AC} \\ R &= 3\overrightarrow{AC} \end{split} \qquad \qquad \text{Hence proved}$$

- **Ex.** Demonstrate that the line connecting the midpoints of two sides of a triangle is parallel to the third side and is half of its length.
- **Sol.** Consider the midpoints of side AB and AC of triangle ABC as D and E, respectively.

Now in $\triangle ABC$, by triangle law of addition

$$\overrightarrow{BA} = 2\overrightarrow{DA}$$
$$\overrightarrow{AC} = 2\overrightarrow{AE}$$

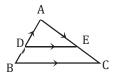
Now, in $\Delta ABC\text{,,}$ applying the triangle law of addition

$$\overrightarrow{BA} + \overrightarrow{AC} = \overrightarrow{BC}$$

$$2\overrightarrow{DA} + 2\overrightarrow{AE} = \overrightarrow{BC}$$

$$\overrightarrow{DA} + \overrightarrow{AE} = \frac{1}{2}\overrightarrow{BC}$$

$$\overrightarrow{DE} = \frac{1}{2}\overrightarrow{BC}$$



Therefore, the line DE is parallel to the third side BC of the triangle and is half of its length.