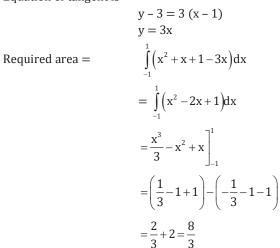
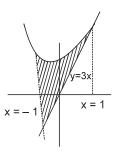

AREA BETWEEN TWO CURVES

If $f(x) \ge g(x)$ for $x \in [a,b]$ then the area enclosed by the curves (graphs) y = f(x) and y = g(x) between the ordinates x = a and x = b is given by:

$$x = b \text{ is } \int\limits_{a}^{b} \Bigl(f\Bigl(x\Bigr) - g\Bigl(x\Bigr) \Bigr) dx$$

Ex. Determine the area enclosed by the curve (graph) $y = x^2 + x + 1$ and its tangent at (1,3) between the ordinates x = -1 and x = 1.


Sol.


$$\frac{dy}{dx} = 2x + 1$$

$$x = 1$$

$$\frac{dy}{dx} = 3$$

Equation of tangent is

Note: The area enclosed between the curves y = f(x) and y = g(x) between the ordinates (x = a) and (x = b) is

$$\int_{0}^{b} |f(x)-g(x)| dx.$$

Ex. Find the area of the region enclosed by the curves $y = \sin x$, $y = \cos x$, and the ordinates x = 0, $x = \cos x$

 $\frac{\pi}{2}$

Sol. $\int_{0}^{\frac{\pi}{2}} \left| \sin x - \cos x \right| dx$

$$\int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (\sin c - \cos x) dx$$
$$= 2(\sqrt{2} - 1)$$