CONTINUITY OF SPECIAL TYPES OF FUNCTIONS

Continuity of Functions in which Greatest Integer Function is involved

f(x) = [x] is discontinuous when x is an integer.

Similarly, f(x) = [g(x)] is discontinuous at all integers when g(x) is an integer, but this is true only when g(x) is monotonic [g(x)] is strictly increasing or strictly decreasing].

For example, $f(x) = [\sqrt{x}]$ is discontinuous at all integers when $[\sqrt{x}]$ is integer, as $[\sqrt{x}]$ is strictly increasing (monotonic functions.)

 $f(x) = [x^2]$, $x \ge 0$, is discontinuous at all integers when x^2 is an integer, as x^2 is strictly increasing $x \ge 0$.

Now, consider $f(x) = [\sin x]$, $x \in [0, 2\pi]$. $g(x) = \sin x$ is not monotonic in $[0, 2\pi]$. For this type of function, points of discontinuity can be determined easily by graphical methods. We can note that $x = \frac{3\pi}{2}$, $\sin x$ takes integral value -1, but at $x = \frac{3\pi}{2}$, $f(x) = [\sin x]$ is continuous.

Ex. Discuss the continuity of the following functions ($[\cdot]$ represent the GIF)

- (A) $f(x) = [\log_e x]$
- (B) $f(x) = [\sin^{-1} x]$
- (C) $f(x) = \left[\frac{2}{1+x^2}\right], x \ge 0$
- **Sol.** (A) $log_e x$ is a monotonically increasing function.

Hence, $f(x) = [\log_e x]$ is discontinuous, where $\log_e x = k$ or $x = e^k$, $k \in Z$ Thus, f(x) is discontinuous at $x = e^{-2}$, e^{-1} , e^0 , e^1 , e^2

(B) sin⁻¹ x is a monotonically increasing function

Hence, $f(x) = [\sin^{-1} x]$ is discontinuous where $\sin^{-1} x$ is an integer.

Therefore, $\sin^{-1} x = -1,0,1$ or $x = -\sin 1,0,\sin 1$.

(D) $\frac{2}{1+x^2}$, $x \ge 0$, is a monotonically decreasing function.

Hence, $f(x) = \left[\frac{2}{1+x^2}\right]$, $x \ge 0$, is discontinuous, when $\frac{2}{1+x^2}$ is an integer.

Therefore, $\frac{2}{1+x^2} = 1.2 \text{ or } x = 1.0$

Continuity of functions in which Signum function is involved

We know that f(x) = sgn(x) is discontinuous at x = 0.

In general, f(x) = sgn(g(x)) is discontinuous x = a if g(a) = 0.

Ex. Discuss the continuity of

- (A) $f(x) = \operatorname{sgn}(x^3 x)$
- (B) $f(x) = \operatorname{sgn}(2\cos x 1)$
- (C) $f(x) = sgn(x^2 2x + 3)$
- **Sol.** (A) $f(x) = sgn(x^3 x)$

Here, $\mathbf{x}^3 - \mathbf{x} = 0 \Rightarrow \mathbf{x} = 0, -1, 1$.

Hence, f(x) is discontinuous at x = 0, -1, 1

(B) $f(x) = \operatorname{sgn}(2\cos x - 1)$

Here, $2\cos x - 1 = 0 \Rightarrow \cos x = \frac{1}{2}$

 $\Rightarrow x = 2n\pi + \left(\frac{\pi}{3}\right)$, $n \in Z$, where f(x) is discontinuous.

CLASS - 12 **JEE - MATHS**

(C)
$$f(x) = sgn(x^2 - 2x + 3)$$

Here, $x^2 - 2x + 3 > 0$ for all x.

Thus, f(x) = 1 for all x.

Hence, it is continuous for all x.

Continuity of Functions Involving Limit $\lim a^n$

We know that $\lim_{n \to \infty} a^n = \begin{cases} 0, & 0 \le a < 1 \\ 1, & a = 1 \\ \infty, & a > 1 \end{cases}$

Ex. Discuss the continuity of
$$f(x) = \lim_{n \to \infty} \frac{x^{2n} - 1}{x^{2n} + 1}$$

Sol.
$$f(x) = \lim_{n \to \infty} \frac{(x^2)^n - 1}{(x^2)^n + 1}$$

$$= \lim_{n \to \infty} \frac{1 - \frac{1}{(x^2)^n}}{1 + \frac{1}{(x^2)^n}}$$

$$= \begin{cases} -1, & 0 \le x^2 < 1 \\ 0, & x^2 = 1 \\ 1, & x^2 > 1 \end{cases}$$

$$= \begin{cases} 1, & x < -1 \\ 0, & x = -1 \\ -1, -1 < x < 1 \\ 0, & x = 1 \\ 1, & x > 1 \end{cases}$$

Thus, f(x) is discontinuous at $x = \pm 1$.

Continuity of Functions in Which f(x) is Defined Differently for Rational and Irrational Values of x

$$F(x) = \begin{cases} g(x), ; x \in Q \\ h(x), x \notin Q \end{cases}$$

 $g(x) = h(x) \rightarrow solution of this equation$

Ex.
$$F(x) = \begin{cases} x + 1; x \in Q \\ 6 - x; x \notin Q \end{cases}$$

Sol.
$$x + 1 = 6 - x$$

$$2x = 6 - 1$$

$$2x = 5$$

$$x = 2.5$$

f(x) is continuous at 2.5 and discontinuous for rest of the values.

Continuity of Composite Functions

If f is continuous at x = c and g is continuous at x = f(c),

Then the composite g[f(x)] is continuous at x = c.

f(x) = f(g(x)) is discontinuous also at those values of x where g(x) is discontinuous.

eg.
$$f(x) = \frac{x \sin x}{x^2 + 2}$$
 & $g(x) = |x|$ are continuous at $x = 0$

hence the composite function (gof) $(x) = \left| \frac{x \sin x}{x^2 + 2} \right|$ will also be continuous at x = 0.

For example, $f(x) = \frac{1}{1-x}$ is discontinuous at x = 1.

Now, $f(f(x)) = \frac{1}{1 - \frac{1}{1 - x}} = \frac{x - 1}{x}$ is not only discontinuous at x = 0 but also at x = 1.

CLASS – 12 JEE – MATHS

Now, $f(f(f(x))) = \frac{\frac{x-1}{x}-1}{\frac{x-1}{x}} = x$ seems to be continuous, but it is discontinuous at x = 1 and x = 0, where f(x) and f(f(x)) are discontinuous, respectively

Ex If $f(x) = \begin{cases} x - 2, x \le 0 \\ 4 - x^2, x > 0 \end{cases}$ then discuss the continuity of y = f(f(x)).

Sol. f(x) is discontinuous at x = 0.

Hence, f(f(x)) may be discontinuous at x = 0.

$$f(f(0+)) = f(4) = 4 - 16 = 12$$

and
$$f(f(0-)) = f(-2) = -4$$

Hence, f(x) is discontinuous at x = 0.

f(f(x)) is also discontinuous when f(x) = 0. Therefore,

$$x - 2 = 0$$
 when $x \le 0$ or $x^2 - 4 = 0$ when $x > 0$

So, it is discontinuous at x = 2.

Also, we can see that f(f(2)) = 0, f(f(2+)) = f(0-) = -2, and f(f(2-)) = f(0+) = 4.

Hence, f(f(x)) is discontinuous at x = 0 and x = 2.

Properties of Continuous Function in [a, b]

- i. If a function f is continuous on a closed interval [a, b] then it is bounded.
- ii. A continuous function whose domain is some closed interval must have its range also in closed interval.
- iii. If f is continuous and onto on [a, b] and is onto then f-1 (from the range of f) is also continuous.
- iv. Some Discontinuous Functions

Functions	Points of discontinuity
[x], {x}	Every Integer
tan x, sec x	$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots \dots$
cot x, cosec x	$x = 0, \pm \pi, \pm 2\pi, \dots$
$\sin\frac{1}{x},\cos\frac{1}{x},\frac{1}{x},e^{1/x}$	x = 0

v. Some continuous Functions

Function f(x)	Interval in which f(x) is continuous
Constant function	$(-\infty,\infty)$
x^n , n is an integer ≥ 0	$(-\infty,\infty)$
x^{-n} , n is a positive integer	$(-\infty,\infty)-\{0\}$
x - a	$(-\infty,\infty)$
$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	$(-\infty,\infty)$
$\frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomial in x	$(-\infty,\infty) - \{x: q(x) = 0\}$
sin x, cos x, e ^x	$(-\infty,\infty)$
tan x, sec x	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$
cot x, cosec x	$(-\infty,\infty)-\{n\pi:n\in I\}$
ln x	$(0,\infty)$