CLASS - 12 **JEE - MATHS**

ADJOINT MATRIX & COFACTOR MATRIX

Consider $A = [a_{ij}]_n$ as a square matrix. The matrix obtained by replacing each element of A with its corresponding cofactor is termed the cofactor matrix of A, denoted as cofactor A. The transpose of the cofactor matrix of A is referred to as the adjoint of A, denoted as adj A.

then, cofactor $A = [c_{ij}]_n$ when c_{ij} is the cofactor of a_{ij} " for each pair (i, j).

$$Adj A = [d_{ij}]_n$$

Where,

$$d_{ij} = c_{ij}$$
 " i & j.

Properties of cofactor A and adj A

(a) A adj
$$A = |A| I_n = (adj A) A$$
 where $A = [a_{ij}]_n$.

(b)
$$|adj A| = |A|^{n-1}$$
, where n is order of A.
In particular, for 3×3 matrix, $|adj A| = |A|^2$

- If A is a symmetric matrix, then adj A are also symmetric matrices. (c)
- (d) If A is singular, then adj A is also singular.

Ex Find B × (adj A), If
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 4 & 2 \\ 0 & -3 & 1 \end{bmatrix}$$
 and $B = [-1 \ 2 \ -1]$ is given.

Sol. The cofactors are

$$c_{11} = +(4+6) = 10$$

$$c_{12} = -(-1-0) = 1$$

$$c_{13} = +(3-0) = 3$$

$$c_{21} = -(-1+9) = -8$$

$$c_{22} = +(2-0) = 2$$

$$c_{23} = -(-6+0) = 6$$

$$c_{31} = +(-2-12) = -14$$

$$c_{32} = -(4+3) = -7$$

$$c_{33} = +(8-1) = 7$$

$$adjA = \begin{bmatrix} 10 & 1 & 3 \\ -8 & 2 & 6 \\ -14 & -7 & 7 \end{bmatrix}^{T} = \begin{bmatrix} 10 & -8 & -14 \\ 1 & 2 & -7 \\ 3 & 6 & 7 \end{bmatrix}$$

$$c_{33} = +(8-1) = 7$$

$$adjA = \begin{bmatrix} 10 & 1 & 3 \\ -8 & 2 & 6 \\ -14 & -7 & 7 \end{bmatrix}^{T} = \begin{bmatrix} 10 & -8 & -14 \\ 1 & 2 & -7 \\ 3 & 6 & 7 \end{bmatrix}$$

$$B \cdot (adjA) = \begin{bmatrix} -1 & 2-1 \end{bmatrix} \begin{bmatrix} 10 & -8 & -14 \\ 1 & 2 & -7 \\ 3 & 6 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -10 + 2 - 3 & 8 + 4 - 6 & 14 - 14 - 7 \end{bmatrix}$$

$$= \begin{bmatrix} -11 & 6 & -7 \end{bmatrix}$$

Inverse of a Matrix (Reciprocal Matrix)

Consider A as a non-singular matrix. In this case, the matrix $\frac{1}{|A|}$ adj A serves as the

Multiplicative inverse of A, commonly referred to as the inverse of A, and is Symbolized as A⁻¹.

We have A (adj A) =
$$|A| I_n = (adj A) A$$

CLASS - 12 **JEE - MATHS**

$$A\left(\frac{1}{|A|}adjA\right) = I_n = \left(\frac{1}{|A|}adjA\right)A \text{ for A is non-singular}$$

$$A^{-1} = \frac{1}{|A|}adjA$$

REMEMBER

The essential condition for the existence of the inverse of A is that A is non-singular.

 A^{-1} is always non-singular. (ii)

(iii) If
$$A = dia(a_{11}, a_{22},, a_{nn})$$

 $a_{ii} \neq 0$ " i, Where

 $A^{-1} = \text{diag } (a_{11}^{-1}, a_{22}^{-1}, ..., a_{nn}^{-1}).$ Then

(iv) $(A^{-1})' = (A')^{-1}$ for any non-singular matrix A. Also adj (A') = (adj A)'.

 $(A^{-1})^{-1} = A$ if A is non-singular.

(vi) Let k be a non-zero scalar & A be a non-singular matrix.

 $(kA)^{-1} = \frac{1}{2}A^{-1}$. Then

(vii) $|A^{-1}| = \frac{1}{|A|}$ for $|A| \neq 0$

(viii) Let A be a non-singular matrix.

Then AB = AC

B = C

BA = CA&

B = C.

(ix) A is non-singular and symmetric

 A^{-1} is symmetric.

 $(AB)^{-1} = B^{-1} A^{-1}$ if A and B are non-singular. (x)

In general AB = 0 does not imply A = 0 or B = 0. But if A is non-singular and AB = 0, then B = 0.

Similarly B is non-singular and AB = 0

⇒ A = 0.

AB = 0Therefore,

either both are singular or one of them is 0.

If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ then verify the equation A adj $A = [A \mid I]$. Additionally, determine the find A^{-1} Ex.

 $|A| = 1(16-9) - 3(4-3) + 3(3-4) = 1 \neq 0$ Sol. We have Now $A_{11} = 7$,

 $A_{12} = -1$,

 $A_{13} = -1$,

 $A_{21} = -3$,

 $A_{22} = 1$

 $A_{23} = 0$

 $A_{31} = -3$,

 $A_{32} = 0$,

 $A_{33} = 1$

CLASS – 12 JEE – MATHS

Therefore
$$adj \ A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A(adj \ A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 - 3 - 3 & -3 + 3 + 0 & -3 + 0 + 3 \\ 7 - 4 - 3 & -3 + 4 + 0 & -3 + 0 + 3 \\ 7 - 3 - 4 & -3 + 3 + 0 & -3 + 0 + 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$$

$$A^{-1} \frac{1}{|A|} \ adj \ A = \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Ex. Demonstrate that the matrix A = [(2,3), (1,2)] satisfies the equation $A^2 - 4A + I = 0$, where I is the 2×2 identity matrix, and 0 is the 2×2 zero matrix. Utilizing this equation, determine the inverse of A, denoted as A^{-1} .

Sol. We have
$$A^{2} = A \cdot A$$

$$= \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$
Hence
$$A^{2} - 4A + I$$

$$= \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$
Now
$$A^{2} - 4A + I = 0$$
Therefore
$$AA - 4A = -I$$
or
$$AA(A^{-1}) - 4AA^{-1} = -IA^{-1}$$
(Post multiplying by A⁻¹ because $|A| \neq 0$)
or
$$A(AA^{-1}) - 4I = -A^{-1}$$
or
$$AI - 4I = -A^{-1}$$
or
$$A^{-1} = 4I - A$$

$$= \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$
Hence
$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Ex. calculate the inverse of the matrix, $A = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$

Sol. We have,
$$|A| = \begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix} = (14 - 12) = 12 \neq 0.$$

So, A^{-1} exists.

CLASS – 12 JEE – MATHS

The cofactors of the elements of the determinant |A| are expressed as:

$$A_{11} = 7$$
,

$$A_{12} = (-4) = 4$$
.

$$A_{21} = -(-3) = 3,$$

$$A_{22} = 2$$
.

$$(adjA) = \begin{bmatrix} 7 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$

Hence,

$$A^{-1} = \frac{1}{|A|} \cdot (adjA)$$

$$=\frac{1}{2} \cdot \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{7}{2} & \frac{3}{2} \\ 2 & 1 \end{bmatrix}.$$