SYMMETRIC & SKEW-SYMMETRIC MATRIX

A square matrix A is characterized as symmetric if its transpose A' = A

i.e. Let
$$A = [a_{ij}]_n$$
. A is symmetric iff $a_{ij} = a_{ij}$ " i & j.

A square matrix A is said to be skew-symmetric if A' = -A

i.e. Let
$$A = [a_{ij}]n$$
. A is skew-symmetric if $a_{ij} = -a_{ji}$ " i & j.

For example.
$$A = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$
 is a symmetric matrix.
$$B = \begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix}$$
 is a skew-symmetric matrix.

Remember

(i) In a skew-symmetric matrix, all the diagonal elements are zero, as denoted by the condition

$$(\because aii = -aii \implies aii = 0)$$

- (ii) For any square matrix A, A + A' is symmetric and A A' is skew-symmetric.
- (iii) Every square matrix can be distinctly represented as a sum of two square matrices, one being symmetric and the other is skew-symmetric.

$$A = B + C, \\ B = \frac{1}{2} \ (A + A') \ \& \ C = \frac{1}{2} \ (A - A').$$
 Where,

Ex. If A is both symmetric and skew symmetric matrix, then A can be expressed as.

Sol. Let
$$A = [a_{ij}]$$
 Since A is skew symmetric $a_{ij} = -a_{ij}$

For
$$i = j, a_{ii} = -a_{ii}$$
 $\Rightarrow a_{ii} = 0$

For $i \neq j, aij = -aji$ [:: A is skew symmetric]

& aij = aji [:: A is symmetric]

aij = 0 for all $i \neq j$

So, aij = 0 for all 'i' and 'j' i.e. A is null matrix.

If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is a matrix given by, determine the values of θ satisfy the equation $A^T + A = \cos \theta$ Ex.

$$I_{12} = I_{12} = I_{12} = I_{13} = I_{13} = I_{13} = I_{14} = I_{14} = I_{15} = I$$

We have,
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
Now,
$$A^{T} + A = I_{2}$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2\cos \theta & 0 \\ 0 & 2\cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2\cos \theta = 1$$

$$2\cos \theta = \frac{1}{2}$$

$$\cos \theta = \cos \frac{\pi}{3}$$

$$\theta = 2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$$

Represent the matrix $B = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ as the combination of a symmetric matrix and a skew Ex. symmetric matrix.

Sol.
$$B' = \begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$

$$P = \frac{1}{2}(B + B') = \frac{1}{2} \begin{bmatrix} 4 & -3 & -3 \\ -3 & 6 & 2 \\ -3 & 2 & -6 \end{bmatrix}$$

CLASS – 12 JEE – MATHS

$$\begin{bmatrix} 2 & -\frac{3}{2} & -\frac{3}{2} \\ -\frac{3}{2} & 3 & 1 \\ -\frac{3}{2} & 1 & -3 \end{bmatrix}$$

$$P' = \begin{bmatrix} 2 & \frac{-3}{2} & \frac{-3}{2} \\ -\frac{3}{2} & 3 & 1 \\ -\frac{3}{2} & 1 & -3 \end{bmatrix} = P$$

Thus, $P = \frac{1}{2} (B + B')$ is a symmetric matrix

Also, Let

$$Q = \frac{1}{2}(B - B') = \frac{1}{2} \begin{bmatrix} 0 & -1 & -5 \\ 1 & 0 & 6 \\ 5 & -6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & \frac{-1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 0 & 3 \\ \frac{5}{2} & -3 & 0 \end{bmatrix}$$

$$Q' = \begin{bmatrix} 0 & \frac{1}{2} & \frac{5}{3} \\ -\frac{1}{2} & 0 & -3 \\ -\frac{5}{2} & 3 & 0 \end{bmatrix} = -Q$$

Thus, $Q = \frac{1}{2}(B - B')$ is a skew symmetric matrix

Now,

$$P + Q = \begin{bmatrix} 2 & \frac{-3}{2} & \frac{-3}{2} \\ \frac{-3}{2} & 3 & 1 \\ \frac{-3}{2} & 1 & -3 \end{bmatrix} + \begin{bmatrix} 0 & \frac{-1}{2} & \frac{-5}{2} \\ \frac{1}{2} & 0 & 3 \\ \frac{5}{2} & -3 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix} = B$$

Thus, B is represented as the sum of a symmetric and a skew symmetric matrix.

Orthogonal Matrix

A square matrix is considered an orthogonal matrix if A $\mathsf{A}^T = \mathsf{I}$

Note

(i) The determinant value of orthogonal matrix is either 1 or -1.

(ii) Let
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

$$A^T = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$

$$AA^T = \begin{bmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3 \\ b_1a_1 + b_2a_2 + b_3a_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3 \\ c_1a_1 + c_2a_2 + c_3a_3 & c_1b_1 + c_2b_2 + c_3b_3 & c_1^2 + c_2^2 + c_3^2 \end{bmatrix}$$
If
$$AA^T = I,$$
Then
$$\sum_{i=1}^3 a_i^2 = \sum_{i=1}^3 b_i^2 = \sum_{i=1}^3 c_i^2 = 1$$
And
$$\sum_{i=1}^3 a_ib_i = \sum_{i=1}^3 b_ic_i = \sum_{i=1}^3 c_ia_i = 0$$

CLASS – 12 JEE – MATHS

Ex. Find the values of a, b, g, for $\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ which is considered orthogonal.

Sol.

$$A = \begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$$

$$A' = \begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{bmatrix}$$

But given A is orthogonal

$$AA^{T} = I$$

$$\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \end{bmatrix} \begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 4\beta^{2} + \gamma^{2} & 2\beta^{2} - \gamma^{2} & -2\beta^{2} + \gamma^{2} \\ 2\beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} \\ -2\beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Setting the corresponding elements equal, we get:

$$4b^2 + g^2 = 1 \qquad(i) \\ 2b^2 - g^2 = 0 \qquad(ii) \\ a^2 + b^2 + g^2 = 1 \qquad(iii) \\ From (i) and (ii) \qquad 6\beta^2 = 1, \ \beta^2 = \frac{1}{6} \\ And \qquad \gamma^2 = \frac{1}{3} \\ From (iii) \qquad \alpha^2 = 1 - \beta^2 - \gamma^2 \\ = \qquad 1 - \frac{1}{6} - \frac{1}{3} = \frac{1}{2} \\ Hence \qquad \alpha = \pm \frac{1}{\sqrt{2}}, \beta = \pm \frac{1}{\sqrt{6}} \ and \ \gamma = \pm \frac{1}{\sqrt{3}}$$

Properties of Symmetric and Skew Symmetric Matrices

(i) Any square matrix has a special representation that is the sum of two unique matrices: a symmetric matrix and a skew-symmetric matrix. To illustrate, consider matrix A, which can be expressed as follows:

$$A = \frac{A + A'}{2} + \frac{A - A'}{2}$$
Let $P = \frac{A + A'}{2}$ and $Q = \frac{A - A'}{2}$
Here $P' = \left(\frac{A + A'}{2}\right)' = \frac{(A')' + A'}{2} = \frac{A + A'}{2} = \frac{A' + A}{2} = P$

Hence P is symmetric Similarly

$$Q = \frac{A - A'}{2} \Rightarrow Q' = \frac{A' - (A')'}{2} = \frac{A' - A}{2} = -Q$$

- (ii) If A is symmetric then A^n , $n \in N$ will be symmetric.
- (iii) A is skew symmetric then A^n , $n \in \mathbb{N}$ will be symmetric if n is even and An will be skew symmetric n is odd.
- (iv) Null matrix is both symmetric and skew symmetric.
- (v) A and B both are symmetric then AB + BA is symmetric and AB BA is skew symmetric.