ADJOINT OF A SOUARE MATRIX

Consider a square matrix A of order n, represented as $A = [a_{ij}]$. Let C_{ij} be the cofactor of a_{ij} in A. The adjoint of A, denoted as adj A, is defined as the transpose of the cofactor matrix.

Then,
$$\text{adj } A = \begin{bmatrix} C_{ij} \end{bmatrix} T \\ \Rightarrow \qquad \qquad \text{adj} A = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{23} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^T$$

Theorem A (adj. A) = (adj. A).A = |A| In.

Proof:
$$A(adjA) = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}$$
$$\begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix} = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A. (Adj. A) = |A| I$$

(whatever may be the value only A will come out as a common element) If $|A| \neq 0$ then $\frac{A(\text{adj.A})}{|A|} = I = \text{unit matrix of the same order as that of } A$

Properties of adjoint matrix

If A be a square matrix of order n, then

(i)
$$|adj A| = |A|^{n-1}$$

(ii)
$$adj(adj A) = |A|^{n-2} A$$
, where $|A| \neq 0$

(iii)
$$adj(adjA) = |A|^{(i-1)^2}$$
, where $|A| \neq 0$

$$(iv) adj(AB) = (adj B) (adj A)$$

(v)
$$adj(KA) = Kn^{-1}(adj A)$$
, K is a scalar

(vi) adj
$$A^T = (adj A)^T$$

Sol.

Method to find Adjoint of a 2 ×2 Square Matrix, Directly

Consider A as a 2 × 2 square matrix. To obtain the adjoint, interchange the diagonal elements and reverse the sign of the off-diagonal elements (remaining elements). For example, if

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
$$adjA = \begin{bmatrix} s & -q \\ -r & p \end{bmatrix}$$

Ex. If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{bmatrix}$$
, then adj(adjA) is equal to -

 $|A| = \begin{vmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{vmatrix} = 8$ $adj(adjA) = |A|^{3-2}A$ $\begin{vmatrix} 2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2 \end{vmatrix} = 16 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ Now,

Inverse of a Matrix (Reciprocal Matrix)

A square matrix A is termed invertible (non-singular) if there exists a matrix B such

AB = I = BA

B is referred to as the inverse (reciprocal) of A and is symbolized as A-1

 $A^{-1} = B$ Thus AB = I = BA. A . $(adj A) = \frac{1}{2} A \frac{1}{2} I_n$ A · $(adj A) = A - 1 I_n |A|$ $A^{-1} A (adj A) = A - 1 \frac{1}{2} A \frac{1}{2} In$ $A^{-1} = \frac{(adj A)}{|A|}$ We have,

CLASS - 12 **IEE - MATHS**

Note: The condition that is both necessary and sufficient for a square matrix A to be invertible is that $\frac{1}{2}A^{\frac{1}{2}}\neq 0$.

Imp. Theorem:

If matrices A and B are invertible and have the same order,

 $(AB)^{-1} = B^{-1} A^{-1}$

This is reversal law for inverse.

Remember

(i) If A be an invertible matrix, then A^T is also invertible & $(A^T)^{-1} = (A^{-1})^T$

(ii) If A is invertible,

a) $(A^{-1})^{-1} = A$;

b) $(Ak)^{-1} = (A^{-1})k = A - k, k \in N$

(iii) If A is an Orthogonal Matrix. $AA^T = I = A_TA$

(iv) A square matrix is said to be orthogonal if, $A^{-1} = A^{T}$.

(v) $|A^{-1}| = \frac{1}{|A|}$

Ex. Demonstrate that if A is a non-singular matrix and it is symmetric, then the inverse of A, denoted as A⁻¹, is also symmetric.

Sol.

$$A^{T} = A$$
 [: A is a symmetric matrix]
 $(A^{T})^{-1} = A^{-1}$ [since A is non-singular matrix]
 $(A^{-1})T = A^{-1}$ Hence proved

If $A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and M = AB, then M^{-1} is equal to-Ex.

Sol.

$$M = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$$
$$|M| = 6, adjM = \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix}$$
$$M^{-1} = \frac{1}{6} \begin{bmatrix} 2 & -2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{6} \end{bmatrix}$$

Demonstrate that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = 0$, where I is 2×2 Ex. identity matrix and 0 is 2×2 zero matrix. Utilize this equation to determine the A-1

Sol. We have

$$A^{2} = A \cdot A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$

$$A^{2} - 4A + I$$

$$= \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

$$A^{2} - 4A + I = 0$$

Now Therefore

Hence

$$AA - 4A = -I$$

 $AA - 4A = -I$
 $AA - 1 = -I$

$$AA - 4A = -1$$

 $AA(A^{-1}) - 4 AA^{-1} = -1 A^{-1}$

(Post multiplying by A-1 because $|A| \neq 0$)

 $A (AA^{-1}) - 4I = -A^{-1}$ or

 $AI - 4I = -A^{-1}$ or

 $A^{-1} = 4I - A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ Or,

Hence,

CLASS – 12 JEE – MATHS

Matrix Polynomial

If
$$f(x) = a_0x^n + a_1x^n - 1 + a_2x^n - 2 + \dots + a_nx_0$$
, then we define a matrix Polynomial.
$$f(a) = a_0A^n + a_1A^{n-1} + a_2A^{n-2} + \dots + a_nI^n.$$

In the context of a given square matrix A, if the function f(a) evaluates to the null matrix, then A is referred to as the zero or root of the polynomial f(x).

System of Equation & Criterion For Consistency Gauss - Jordan Method

$$\begin{array}{l} x+y+z = 6 \\ x-y+z = 2 \\ 2\,x+y-z = 1 \\ \begin{bmatrix} x+y+z \\ x-y+z \\ 2x+y-z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \\ A\,X = B \\ A-1\,A\,X = A-1\,B \\ X = A^{-1}B = \frac{(a\operatorname{dj}\cdot A)\cdot B}{|A|}. \end{array}$$