CLASS - 11 **JEE - MATHS**

ALGEBRA OF LIMITS

If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exists then

1.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{\substack{x \to a \\ \lim_{x \to a} g(x)}} \left(\lim_{x \to a} g(x) \neq 0 \right)$$

3.
$$\lim_{x \to a} [Kf(x)] = K \lim_{x \to a} f(x)$$

4.
$$\lim_{\substack{x \to a \\ x \to a}} [f(x)]^{g(x)} = [\lim_{\substack{x \to a \\ x \to a}} f(x)]^{\lim_{\substack{x \to a \\ x \to a}}} g(x)$$
5.
$$\lim_{\substack{x \to a \\ x \to a}} e^{f(x)} = e^{\lim_{\substack{x \to a \\ x \to a}}} f(x)$$

$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}$$

6.
$$\lim_{x \to a} \log f(x) = \log[\lim_{x \to a} f(x)]$$

7.
$$\lim_{x \to a} f(x) \times g(x) = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x)$$

7.
$$\lim_{\substack{x \to a \\ x \to a}} f(x) \times g(x) = \lim_{\substack{x \to a \\ x \to a}} f(x) \times \lim_{\substack{x \to a \\ x \to a}} g(x)$$
8.
$$\lim_{\substack{x \to a \\ x \to a}} f \circ g(x) = f[\lim_{\substack{x \to a \\ x \to a}} g(x)] (Provided f(x) is contineous at $x = \lim_{\substack{x \to a \\ x \to a}} g(x))$$$

9. Sandwich theorem:- If there exists a function h(x) such that

$$f(x) \leq h(x) \leq g(x) \forall x \text{ and } \lim_{x \to a} f(x) = \lim_{x \to a} g(x) \text{ Then } \lim_{x \to a} h(x) = \lim_{x \to a} g(x) \text{ or } \lim_{x \to a} f(x)$$

Theorem 2 (Sandwich Theorem)

Let f, g and h be real functions such that $f(x) \le g(x) \le h(x)$ for all x in the common domain of definition. For some real member a,

$$\lim_{x \to a} f(x) = l = \lim_{x \to a} h(x)$$
$$\lim_{x \to a} g(x) = 1.$$

This is illustrated in figure:

Here is a geometric demonstration of the following significant inequality involving trigonometric functions.

$$\cos x < \frac{\sin x}{x} < 1 \text{ for } 0 < |x| < \frac{\pi}{2}$$
 ... (i)

Proof: We are aware that $\sin(-x)$ and $\cos(-x) = \cos x$. Therefore, it is adequate to establish the inequality for $0 < x < \frac{\pi}{2}$. In the illustration, 0 is the centre of the unit circle, with angle AOC measuring x radians, and $0 < x < \frac{\pi}{2}$. Perpendicular line segments BA and CD are drawn to OA. Additionally, we connect AC.

Area of $\triangle OAC$ < Area of sector OAC < Area of $\triangle OAB$

CLASS - 11 JEE - MATHS

From
$$\triangle OCD$$

$$\sin x = \frac{CD}{OA}$$
 (Since $OC = OA$) and hence $CD = OA \sin x$
$$\tan x = \frac{AB}{OA}$$

$$AB = 0A \cdot \tan x$$

$$OA\sin x < 0A \cdot x < 0A \cdot \tan x$$

Since length OA is positive, we have

$$\sin x < x < \tan x$$

Since $0 < x < \frac{\pi}{2}$, $\sin x$ is positive and thus by dividing throughout by $\sin x$, $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$

Taking reciprocals throughout, we have $\cos x < \frac{\sin x}{x} < 1$, which complete the proof.

$$\lim_{x \to 0} \cos x < \lim_{x \to 0} \frac{\sin x}{x} < \lim_{x \to 0} 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Ex. Evaluate:
$$\lim_{\substack{x \to 2 \ x+4}} \frac{x-3}{x+4}$$

Sol. $\lim_{\substack{x \to 2 \ x+4}} \frac{x-3}{x+4} = \frac{2-3}{2+4} = -\frac{1}{6}$

Ex. Evaluate:
$$\lim_{x \to 2} \frac{x^5 - 32}{x^3 - 8}$$

Ex. Evaluate:
$$\lim_{x\to 2} \frac{x^5 - 32}{x^3 - 8}$$

Sol. $\lim_{x\to 2} \frac{x^5 - 32}{x^3 - 8} = \lim_{x\to 2} (\frac{x^5 - 32}{x - 2}) \div (\frac{x^3 - 8}{x - 2})$
 $\lim_{x\to 2} (\frac{x^5 - 2^5}{x - 2}) \div \lim_{x\to 2} (\frac{x^3 - 2^3}{x - 2})$
 $5(2)^4 \div 3(2)^2 = \frac{20}{3}$
[As $\lim_{x\to a} \frac{x^n - a^n}{x - a} = na^{n-1}$]