CLASS – 11 JEE – MATHS

FAMILY OF CIRCLES

Family of circles passing through an intersection point $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ is

$$x^2+y^2+2g_1x+2f_1y+c_1+\lambda(x^2+y^2+2g_2x+2f_2y+c_2)=0, \lambda\in R-\{-1\}.$$
 If $\lambda=-1$ i.e., $2(g_2-g_1)x+2(f_2-f_1)y+c_2-c_1=0$ represents common chord (AB)

$$x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$$
 $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$

2. The family of circles passing through the point of intersection of the circle.

$$S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$$
 and the line

 $L \equiv ax + by + k = 0$ meeting the circle in two distinct points,is

$$S + \lambda L = 0, \lambda \in R$$
.

If, on the other hand, the line L touches the circle S=0 at point P, then the equation $S+\lambda L=0$ represents a family of circles, each of which touches the line L=0 at point P.

As a corollary, the equation for a family of circles touching a constant line is: $y - y_1 = m$ $(x - x_1)$ at the fixed point (x_1, y_1) is

$$(x - x_1)^2 + (y - y_1)^2 + \lambda[y - y_1 - m(x - x_1)] = 0$$
, where λ is a parameter.

4. Family of circles passing through a point $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$(x - x_1)(x - x_2) + (y - y_1)(y - y_2) + \lambda(y - y_1 - \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)) = 0$$

5. The equation for a family of circles passing through two specified points (x_1, y_1) and (x_2, y_2) can be

expressed as the form
$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)+\lambda|x_1$$
 y_1 $1|=0,\lambda$ being x_2 y_2 1

parameter.

6. Equation of the circle with a tangent T=0 at (x_1,y_1) is given by $(x-x_1)^2+(y-y_1)^2+\lambda T=0$.

Ex. Determine the equation of the circle passing through (1,1), (3,1) and (2,2).

Sol. Family of circle passing through (1,1) and (3,1) is

$$(x-1)(x-3) + (y-1)(y-1) + \lambda(y-1) = 0$$

$$x^2 - 4x + 3 + y^2 - 2y + 1 + \lambda(y-1) = 0$$

Equation (i) passes through (2,2),

$$4 - 8 + 3 + 4 - 4 + 1 + \lambda(2 - 1) = 0$$

 $\lambda = 0$ hence equation of required circle is

$$x^{2} - 4x + 3 + y^{2} - 2y + 1 = 0$$

$$x^{2} + y^{2} - 4x - 2y + 4 = 0$$

Ex. Find the equation of the circle which passes through the point (1,1) and which touches the circle $x^2 + y^2 + 4x - 6y - 3 = 0$ at the point (2,3) on it.

20

CLASS – 11 JEE – MATHS

Sol. Let $S \equiv x^2 + y^2 + 4x - 6y - 3 = 0$ be the given circle.

Its centre is C(-2,3).

Note that the line joining C to A(2,3) is parallel to x-axis

The equation of tangent at A to $S \equiv 0$ is x = 2

Now the equation of a family of circles touching the line x=2 at (2,3) is

$$(x^2 + y^2 + 4x - 6y - 3) + \lambda(x - 2) = 0$$

As (1,1) lies on it

$$(1+1+4-6-3) + \lambda(1-2) = 0$$

-3 - \lambda = 0
\lambda = -3

Thus the equation of circle is

$$x^{2} + y^{2} + 4x - 6y - 3 - 3(x - 2) = 0$$

$$x^{2} + y^{2} + x - 6y + 3 = 0$$