CLASS - 11 **IEE - MATHS**

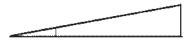
VALUES OF TRIGONOMETRIC RATIOS OF TYPICAL ANGLES

In academic literature, the angles 0°, 30°, 45°, 60°, and 90° are commonly referred to as standard angles. The trigonometric ratios for these standard angles can be found in the table

	0°	30°	45°	60°	90°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cosec θ	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cot θ	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Value for 0° and 90°

Let's examine an angle of 90° and another angle close to 0° , as shown in the following image.



Let the smallest angle be A then

 $\sin A = \text{perpendicular/hypotenuse}$

 $\cos A = base/hypotenuse$

Since angle A is very small, the corresponding perpendicular is also very small, resulting in a value of sin A that is close to zero.

Moreover, the length of the triangle's base will be approximately equal to the length of the hypotenuse. Therefore, the value of cos A will be approximately close to one.

After all this, we can say that.

 $\sin A = 0$ and $\cos A = 1$

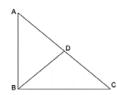
Now we know that

$$\tan A = \frac{\sin A}{\cos A} = \frac{0}{1} = 0$$

From this, we have shown that $\sin 0^{\circ} = 0$, $\cos 0^{\circ} = 1$, and $\tan 0^{\circ} = 0$. Consequently, we can also deduce that $\sin 90^{\circ} = 1$, $\cos 90^{\circ} = 0$, and $\tan 90^{\circ}$ is undefined.

Value for 30° and 60°

Let's examine the triangle below.



Given that AC = 2BA and from the image above where AD = DC = BD according to plane geometry, we establish that angle $C = 60^{\circ}$ and angle $A = 30^{\circ}$.

Now, as we understand

$$\sin C = \frac{BA}{AC} = \frac{BA}{2BA} = \frac{1}{2} = \sin 30^{\circ}$$

$$\cos C = \frac{BA}{AC} = \frac{BA}{2BA} = \frac{1}{2} = \cos 60^{\circ},$$

$$\cos C = \frac{BA}{AC} = \frac{BA}{2BA} = \frac{1}{2} = \cos 60^{\circ},$$

Now
$$\cos A = \frac{BC}{AC} = \sqrt{1 - (\frac{BA}{AC})^2} = \sqrt{1 - (\frac{1}{2})^2} = \frac{\sqrt{3}}{2} = \cos 30$$

CLASS - 11 **IEE - MATHS**

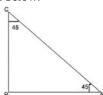
$$\cos C = \frac{BC}{AC} = \sqrt{1 - (\frac{BA}{AC})^2} = \sqrt{1 - (\frac{1}{2})^2} = \frac{\sqrt{3}}{2} = \sin 60$$

Here we can summarize the trigonometric ratios for 30° and 60° as follows:

	30	60
Sin	1	3
	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{2}$
Cos	3	1
	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{2}$

Value for 45°

Let's examine the triangle depicted below.



This is a right triangle where the other two angles are 45° each. Such a triangle is of the isosceles type.

This means
$$AB = BC = \frac{AC}{\sqrt{2}}$$

$$\sin 45 = \frac{BC}{AC} = \frac{1}{\sqrt{2}}$$
$$\cos 45 = \frac{AB}{AC} = \frac{1}{\sqrt{2}}$$

$$=\frac{AB}{AC}=\frac{1}{\sqrt{2}}$$

Hence proved

	45°
Sin	1
	$\sqrt{2}$
Cos	1
	$\sqrt{2}$

We've demonstrated how to derive the values of standard angles. To gain a deeper understanding of the topic, let's explore some examples or problems that can be solved using these trigonometric ratios for standard angles.

Ex. What is the value of $\cos 45\sin 30 + \sin 45\cos 30$?

Using the table of trigonometric ratios for standard angles, we can derive the following values: Sol.

$$\cos 45 = \sin 45 = \frac{1}{\sqrt{2}}$$
$$\sin 30 = \frac{1}{2}$$

 $\cos 30 = \frac{\sqrt{3}}{2}$ Let's put these values in the expression.

$$\cos 45\sin 30 + \sin 45\cos 30 = \frac{1}{\sqrt{2}} \times \frac{1}{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} = 1 + 322$$

Here the above value is our answer.

Ex. If, $\sin 60 + \cos 301 + \cos 60 + \sin 30 = \sin$ then, what is the value of?

Sol. Using the table of trigonometric ratios for standard angles, we can find the values and substitute them into the equation as follows:

$$\sin 60 + \cos 301 + \cos 60 + \sin 30 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 301 + \cos 60 + \sin 30 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 + \sin 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 + \sin 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{21} + \frac{3}{2} + \frac{3}{2} + \frac{1}{2} + \frac{1}{2} = \sin 60 + \cos 60 = \frac{3}{2} + \frac{3}{2$$

$$\frac{3}{2} = \sin$$

Now, we can say that. $= 60^{\circ}$