Chapter 3

Trigonometry

- Introduction
 - Solution or root of a trigonometric equation
 - Principle solution of a trigonometric equation
 - General solution of a trigonometric equation
 - General solution of some elementary equations
- General solution of some standard equations
 - For General solution of equation sinθ=sinα
 - For the General solution of equation tanθ=tanα
 - General solutions of equation $\sin^2(\theta) = \sin^2(\alpha)$ or $\cos^2(\theta) = \cos^2(\alpha)$
 - General solutions equations $tan^2(\theta) = tan^2(\alpha)$
 - Solutions of equations of the form a $\cos \theta = b \sin \theta = c$
- Solving equations using graphs
- Inequalities
 - Trigonometric inequations
- Trigonometric ratios/Functions of acute angles
 - > Trigonometric ratios of standard angles
 - > Trigonometric identities
 - Use of trigonometry in geometry
- Measurement of an Angle
 - Degree measurement
 - Radian measurement
 - Conversion between Radians and degree
 - Relation between radians and real numbers
 - Conversion of some common angles
- Angles of trigonometry
 - Angle exceeding 360°
 - Sign of angles
 - Reference angle

INTRODUCTION

Trigonometric Equations

An equation that includes one or more trigonometric ratios of an unknown angle is referred to as a trigonometric equation.

Solution of Trigonometric Equation

A solution of trigonometric equation is the value of the unknown angle that makes the equation true.

For instance, If
$$\sin \theta = \frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{9\pi}{4}, \frac{11\pi}{4}, \dots$$

Therefore, due to their periodic nature, a trigonometric equation may have an infinite number of solutions and can be categorized as:

- (a) Principal solution
- (b) General solution.

Principle solution of a trigonometric equation

The solutions of a trigonometric equation that fall within the interval $[0,2\pi)$ are termed Principal solutions. For example, determine the Principal solutions of the equation

$$\sin x = \frac{1}{2}$$

there exists two values

i.e.
$$\frac{\pi}{6}$$
 and $\frac{5\pi}{6}$ which lie in $[0,2\pi)$ and whose sine is $\frac{1}{2}$

Principal solutions of the equation $\sin x = \frac{1}{2}$ are $\frac{\pi}{6}, \frac{5\pi}{6}$

General solution of a trigonometric equation

The mathematical expression incorporating an integer 'n' that yields all solutions to a trigonometric equation is referred to as the general solution. Below are the general solutions for some standard trigonometric equations.

CLASS – 11 JEE – MATHS

- Trigonometric functions of any angle
- Trigonometric functions defined as circular function
 - Sign of trigonometric functions in different quadrants
 - Variations in values of trigonometry functions in different quadrants
 - Graph of sine function with its varying values on unit circle
- Graphs and other useful data of trigonometric functions
 - Transformation of the graphs of trigonometric functions
- Trigonometric ratios of allied angles
- Trigonometric ratios for compound angles
 - Cosine of the difference and sum of two angles
 - Sine of the difference and sum of two angles
 - Tangent of the difference and sum of two angles
 - Important conditional identities
 - range of $f(\theta) = a\cos\theta + b\sin\theta$
- Transformation formula
 - Formula to transform the product into sum or differences
 - Formula to transform the sum or differences into product
- Trigonometric ratios of multiple and sub-multiple angles
 - Formulas for multiple angles
- Values of trigonometric ratios of typical angles
- Sum of sine or cosine of n angles in A.P.
- Conditional identities
 - Standard identities in triangle
- Finding range or expressions using trigonometric substitution

GENERAL SOLUTION OF SOME STANDARD EQUATIONS

If $\sin\theta = \sin\alpha \Rightarrow \theta = n\pi + (-1)n\alpha$ where $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}], n \in I$. If $\cos\theta = \cos\alpha \Rightarrow \theta = 2n\pi \pm \alpha$ Where $\alpha \in [0, \pi], n \in I$. If $\tan\theta = \tan\alpha \Rightarrow \theta = n\pi + \alpha$ where $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2}), n \in I$. If $\sin^2\theta = \sin^2\alpha \Rightarrow \theta = n\pi \pm \alpha, n \in I$ If $\cos^2\theta = \cos^2\alpha \Rightarrow \theta = n\pi \pm \alpha, n \in I$. If $\tan^2\theta = \tan^2\alpha \Rightarrow \theta = n\pi \pm \alpha, n \in I$

Note: α is called the principal angle