CLASS – 12 JEE – MATHS

PERIODIC FUNCTIONS

A function 'f' defined on its domain is said to be periodic function if their exist a positive number T such that f(x + T) = f(x)" $x \in D$

Additionally, both x + T and x - T should belong to D.

The smallest value of T, it exists is referred to the period of the function.

Ex.
$$f(x) = \sin x$$

$$f(x) = \sin(x + 2\pi) = \sin(x + 4\pi) = \sin(x + 6\pi) \dots$$

 $T = 2\pi, 4\pi, 6\pi \dots$

Least value of T is 2π , so time period of $\sin x$ is 2π

Some Standard Functions and their Period

Function	Period
sin x	2π
cos x	2π
tan x	π
{x}	1

Some Special Point about Periodic Function

- **1.** If period of f(x) is 'T' then
 - (a) Period of |f(x)| is. $\frac{T}{2}$.
 - (b) Period of $[f(x)]^n$ is, $\frac{T}{2}$, if n is even number $(n \in N)$
 - (c) Period of $[f(x)]^n$ is T, if n is odd number $(n \in N)$
 - (d) Period of f(ax) and f(ax + b) is. $\frac{T}{|a|}$.
 - (e) Period of $f(\frac{x}{a})$ is |a|T.
- 2. If the Period of f(x) and g(x) are both 'T' then the period of $f(x) \pm g(x)$ is given by
 - (a) $\frac{T}{2}$ (if f(x) and g(x) both are even).
 - (b) T (If f(x) is any function except even).
- 3. If period f(x) is T_1 and g(x) is, T_2 . Then period of $f(x) \pm g(x)$ is given by L.C.M. of T_1 and T_2 (same for $\frac{f(x)}{g(x)}$)

Note

- 1. LCM of $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f} = \frac{LCM \text{ of a,c,e}}{HCF \text{ of b,d,f}}$
- Functions like $\sin x$ and $\sin x^2$ is not a periodic function because these can't be expressed in the form of [f(x+T)=f(x)]
- 3. It is not possible to find the least common multiple (LCM) of a rational number with an irrational number. For example, the LCM of $(\pi, 2,2\pi)$ is not achievable as $\pi,2\pi\in$ irrational and \in rational.
- **Ex.** Determine the period of $f(x) = \sin 3x + \cos 2x$
- Sol: Period of $\sin 3x = \frac{2\pi}{3}$ Period of $\cos 2x = \frac{2\pi}{2} = \pi$ So, Period of f(x) is L. C. M. of $\frac{2\pi}{3}$, $\frac{\pi}{1} = 2\pi$
- **Ex.** Identify the period of the function $f(x) = \sqrt{1 + \sin 2x}$ if it is periodic.
- Sol: $f(x) = \sqrt{1 + \sin 2x}$ $\sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x}$

CLASS – 12 JEE – MATHS

$$\begin{split} &\sqrt{(\sin x + \cos x)^2} \\ &f(x) = |\sin x + \cos x| \\ &\text{Now, period of } \sin x + \cos x \text{ is } 2\pi \\ &\text{So, period of } |\sin x + \cos x| \text{ is } \frac{2\pi}{2} = \pi \end{split}$$

Bounded and Unbounded Function

If f(x) is such that there exists a constant M where f(x) is always less than or equal to M for all x, then f(x) is considered bounded above. Similarly, if there exists a constant m such that f(x) is never less than m (i. e., $m \le f(x) \le M$ for all, then f(x) is said to be bounded below. If one or both of the upper and lower bounds (M and m) are infinite, then f(x) is termed unbounded.

Example:

The function $f(x) = 3 + \sin x$ is considered a bounded function since the maximum and minimum value of $\sin x$ are +1 and -1 respectively.

Consequently, $2 \le f(x) \le 4$ for all value of x.