CLASS - 12 IEE - MATHS

Since range of f is a subset of the domain of g,

Domain of gof is $[0, \infty)$ and $g\{f(x)\} = g(\sqrt{x}) = x - 1$. Range of gof is $[-1, \infty)$ For f(x) = 1. Since range of g is not a subset of the domain of f i.e. $[-1, \infty) \not\subset [0, \infty)$ fog is not defined on whole of the domain of g.

Domain of fog is $\{x \in R, \text{ the domain of } g: g(x) \in [0, \infty), \text{ the domain of } f\}..$

Thus the domain of fog is $D = \{x \in R: 0 \le g(x) < \infty\}$

$$D = \{ x \in R : 0 \le x^2 - 1 \}$$

$$\{x \in R: x \le -1 \text{ or } x \ge 1\}$$

$$(-\infty, -1] \cup [1, \infty)$$

$$fog(x) = f\{g(x)\}$$

$$f(x^2 - 1) = \sqrt{x^2 - 1}$$

Its range is $[0, \infty)$

Ex. Find
$$fog(x)$$
 If $f(x) = cos x + x$ and $g(x) = x^2$.

Sol:
$$fog(x) = cos g(x) + g(x)$$

$$=\cos x^2 + x^2$$

Ex. If
$$f(x) = ||x - 3| - 2|$$
; $0 \le x \le 4$ and $g(x) = 4 - |2 - x|$; $-1 \le x \le 3$ Then find fog (2)

Sol:
$$fog(2) = f(4)$$
 (: $g(2) = 4$) $fog(2) = 1$

Inverse Function

Two functions f and g are inverse of each other if f(g(x)) = x for $x \in \text{domain of g}$ and g(f(x)) = x $x \ for \ x \in \ dom \ f, \ i.e., gof \ = I_{dom} \ f \ and \ fog \ = I_{dom} \ g \ where \ I_{dom} fis \ identity \ function \ on \ dom \ f \ and$ I_{dom} g is identity function on dom g. We denote g by

 f^{-1} or f by g^{-1} . To find the inverse of f, write down the equation y = f(x) and then solve x as a function of y. The resulting equation is $x = f^{-1}(y)$

Note

For an inverse function to exist, the original function should be both one-to-one and onto

Properties:

- Inverse of a bijection is also a bijection function. 1.
- 2. Inverse of a bijection is unique.
- $(f-1)^{-1} = f$ 3.
- 4. If f and g are two bijections such that (gof) exists then $(gof)^{-1} = f^{-1}og^{-1}$
- If $f: A \to B$ is a bijection then $f^{-1}: B \to A$ is an inverse function of f. 5.

$$f^{-1}of = I_A$$
 and $fof^{-1} = I_B$.

HereI_A, represents the identity function on set A, and I_B, represents the identity function on set B.

Ex. To determine the inverse of
$$f(x) = \frac{e^x - e^{-x}}{2}$$

Sol. We write
$$y = \frac{e^x - e^{-x}}{2}$$

$$2y = \frac{e^{2x} - 1}{e^x}$$
$$e^{2x} - 2ye^x - 1 = 0$$

$$e^{2x} - 2ye^x - 1 = 0$$

$$e^{x} = \frac{2y \pm \sqrt{4y^{2}+4}}{2}$$
$$e^{x} = y \pm \sqrt{y^{2}+1}$$

$$e^{X^3}$$
 0 so $e^x = y + \sqrt{y^2 + 1}$

$$x = \log(y + \sqrt{y^2 + 1})$$

$$f^{-1}(x) = \log(x + \sqrt{x^2 + 1})$$

The relationship between the graphs of f and f^{-1} is such that if the point (x, y) is on the graph of f, then the point (y, x) is on the graph of f^{-1} and vice versa. Consequently, the graph of f^{-1} is a reflection of the graph of f across the line y = x.

This can be illustrated with the example of $y = \log x$ and which are inverses of each other.

Existence of inverse function

Not all functions possess an inverse. For instance, the function $f(x) = x^2$ lacks an inverse when the domain of f is R. For a function to have an inverse, it must satisfy the conditions of being both one-one and onto, making it bijective.

- Ex. 1. Determine the objectiveness of $f(x) = \frac{2x+3}{4}$ for $f: R \to R$, If bijective. Find its inverse function $f^{-1}(x)$.
 - Consider, $f(x) = x^2 + 2x$; $x \ge -1$. Sketch the graph of $f^{-1}(x)$ and determine the number of Solutions of the equation, $f(x) = f^{-1}(x)$
 - 3. If $y = f(x) = x^2 3x + 1$ for $x \ge 2$. Calculate the value of g(1) where g is inverse of f.
- **Sol:** 1. The function is bijective, indicating that it has a unique inverse.

$$y = \frac{2x+3}{4}$$

$$x = \frac{4y-3}{2}$$

$$f^{-1}(x) = \frac{4x-3}{2}$$

g(f(x)) = x

- 2. The equation $f(x) = f^{-1}(x)$ is equivalent to f(x) = x $x^{2} + 2x = x$ x(x+1) = 0 x = 0, -1
- 3. Therefore, there are two solutions for $f(x) = f^{-1}(x)$ y = 1 $x^2 - 3x + 1 = 1$ x(x - 3) = 0 x = 0.3 $x \ge 2$ x = 3

CLASS – 12 JEE – MATHS

Differentiating both sides w.r.t. x

$$g'(f(x))\cdot f'(x)=1$$

$$g'(f(x)) = \frac{1}{f'(x)}$$

$$g'(f(3)) = \frac{1}{f'(3)}$$

$$g'(1) = \frac{1}{6-3} = \frac{1}{3} = (As(x) = 2x - 3)$$

Alternate Method

$$y = x^{2} - 3x + 1$$

$$x^{2} - 3x + 1 - y = 0$$

$$x = \frac{3 \pm \sqrt{9 - 4(1 - y)}}{2} = \frac{3 \pm \sqrt{5 + 4y}}{2}$$

$$x \ge 2$$

$$x = \frac{3 + \sqrt{5 + 4y}}{2}$$

$$g(x) = \frac{3 + \sqrt{5 + 4x}}{2}$$

$$g'(x) = 0 + \frac{1}{4\sqrt{5 + 4x}} 4$$

$$g'(1) = \frac{1}{\sqrt{5 + 4}} = \frac{1}{\sqrt{9}} = \frac{1}{3}$$

Domain and Range of Some Standard Function

Function	Domain	Range
Polynomial function	R	R
Identity function x	R	R
Constant function c	R	{c}
Reciprocal fn 1/x	R ₀	R ₀
Signum function	R	{-1,0,1}
ax + b; a, b ∈ R	R	R
$ax^3 + b$; $a, b \in R$	R	R
x ² , x	R	R ⁺ ∪ {0}
x ³ , x x	R	R
x + x	R	R ⁺ ∪ {0}
x - x	R	R⁻ ∪ {0}
[x]	R	Z
x – [x]	R	[0,1)
$\frac{\frac{ x }{x}}{\sqrt{x}}$	R ₀	{-1,1}
\sqrt{X}		$[0,\infty)[0,\infty)$
a ^x	R	R+
log x	R ⁺	R
sinx	R	[-1,1]
cos x	R	[-1,1]
tan x	$R - \{\frac{(2n+1)\pi}{2}\}$	R n ∈ z}
cot x	$R - \{n\pi \mid n \in z\}$	R
sec x	$R - \{\frac{(2n+1)\pi}{2}$	$R - (-1,1) \mid n \in z\}$
cosec x	$R - \{n\pi \mid n \in z\}$	R- (-1,1)
sin ^{−1} x	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

CLASS – 12 JEE – MATHS

cos ⁻¹ x	[-1,1]	$[0,\pi]$
tan ⁻¹ x	R	$\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$
cot ⁻¹ x	R	$(0,\pi)$
sec ⁻¹ x	R – (– 1,1)	$[0,\pi]-\{\frac{\pi}{2}\}$
cosec ⁻¹ x	R - (-1,1)	$(-\frac{\pi}{2},\frac{\pi}{2}]-\{0\}$

Ex. Determine the value of
$$\tan^{-1}(\tan \frac{3\pi}{4})$$
.

Sol.
$$\tan^{-1}(\tan x) = x$$

$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

$$\tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right)$$

$$\tan^{-1}\left(-\tan\frac{\pi}{4}\right)$$

$$\tan^{-1}\left(-\tan\frac{\pi}{4}\right)$$

$$-\tan^{-1}\left(\tan\frac{\pi}{4}\right)$$

$$-\tan^{-1}\left(\tan\frac{\pi}{4}\right) = -\frac{\pi}{4} \text{ (using property 3)}$$