COMPOSITE FUNCTION

Let $f: A \to B$ and $g: B \to C$ then the composition of g and f is denoted by gof and is defined as gof: $A \to C$ given by gof (x) = g(f(x))

Similarly fog is defined. Note that, gof is defined only if Range $f \subseteq Dom g$ and fog is defined only if Range $\subseteq dom f$.

The domain of fog is given by $\{x \in \text{dom } g: g(x) \in \text{dom } f\}$

Note

- (a) Function gof will exist only when range of f is the subset of domain of g.
- (b) Gof (x) is simply the g-image of f(x), where f(x) is f-image of elements $x \in A$
- (c) Fog does not exist here because range of g is not a subset of domain of f.

Properties of composite function:

- 1. If f and g are two functions then for composite of two functions fog ¹ gof.
- **2.** Composite functions obeys the property of associativity fo (goh) = (fog) oh.
- 3. Composite function of two one-one onto functions if exist, will also be a one-one onto function.
- **Ex.** Let $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$. Since the domain g is, $[0, \infty)$, and the domain f is R
- **Sol.** We have fog(x) = f(g(x))

$$f(\sqrt{x}) = (\sqrt{x})^2 + 3 = x + 3$$

So, dom fog = $\{x \in [0, \infty): g(x) \in R\} = [0, \infty)$

Now, let's determine the composition gof,

We have $(gof)(x) = g(f(x)) = g(x^2 + 3) = \sqrt{x^2 + 3}$,

dom gof = $\{x \in R: f(x) \in [0, \infty)\} = R$.

Ex. Describe fog and gof wherever is possible for the following functions

1.
$$f(x) = \sqrt{x+3}, g(x) = 1 + x^2$$

2.
$$f(x) = \sqrt{x}, g(x) = x^2 - 1$$
.

Sol: 1. Domain of f is $[-3, \infty)$, range of f is $[0, \infty)$.

Domain of gR, range of g is $[1, \infty)$.

For gof(x)

Since range of f is a subset of domain of g,

Domain of gof is $[-3, \infty)$

{equal to the domain of f}

IEE - MATHS

$$gof(x) = g\{f(x)\}$$

$$g(x) = 1 + \sqrt{x+3}(x+3) = x+4$$
.

Range of gof is $[1, \infty)$.

For fog(x)

Since range of g is a subset of domain of f,

Domain of fog is R

{equal to the domain of g}

$$fog(x) = f\{g(x)\}$$

$$f(1+x^2) = \sqrt{x^2+4}$$

Range of fog is $[2, \infty)$.

2.
$$f(x) = \sqrt{x}, g(x) = x^2 - 1$$
.

Domain of f is $[0, \infty)$, range of f is $[0, \infty)$.

Domain of g is R, range of g is $[-1, \infty)$.

For gof(x)

CLASS - 12 IEE - MATHS

Since range of f is a subset of the domain of g,

Domain of gof is $[0, \infty)$ and $g\{f(x)\} = g(\sqrt{x}) = x - 1$. Range of gof is $[-1, \infty)$ For f(x) = 1. Since range of g is not a subset of the domain of f i.e. $[-1, \infty) \not\subset [0, \infty)$ fog is not defined on whole of the domain of g.

Domain of fog is $\{x \in R, \text{ the domain of } g: g(x) \in [0, \infty), \text{ the domain of } f\}..$

Thus the domain of fog is $D = \{x \in R: 0 \le g(x) < \infty\}$

$$D = \{ x \in R : 0 \le x^2 - 1 \}$$

$$\{x \in R: x \le -1 \text{ or } x \ge 1\}$$

$$(-\infty, -1] \cup [1, \infty)$$

$$fog(x) = f\{g(x)\}$$

$$f(x^2 - 1) = \sqrt{x^2 - 1}$$

Its range is $[0, \infty)$

Ex. Find
$$fog(x)$$
 If $f(x) = cos x + x$ and $g(x) = x^2$.

Sol:
$$fog(x) = cos g(x) + g(x)$$

$$=\cos x^2 + x^2$$

Ex. If
$$f(x) = ||x - 3| - 2|$$
; $0 \le x \le 4$ and $g(x) = 4 - |2 - x|$; $-1 \le x \le 3$ Then find fog (2)

Sol:
$$fog(2) = f(4)$$
 (: $g(2) = 4$) $fog(2) = 1$

Inverse Function

Two functions f and g are inverse of each other if f(g(x)) = x for $x \in \text{domain of g}$ and g(f(x)) = x $x \ for \ x \in \ dom \ f, \ i.e., gof \ = I_{dom} \ f \ and \ fog \ = I_{dom} \ g \ where \ I_{dom} fis \ identity \ function \ on \ dom \ f \ and$ I_{dom} g is identity function on dom g. We denote g by

 f^{-1} or f by g^{-1} . To find the inverse of f, write down the equation y = f(x) and then solve x as a function of y. The resulting equation is $x = f^{-1}(y)$

Note

For an inverse function to exist, the original function should be both one-to-one and onto

Properties:

- Inverse of a bijection is also a bijection function. 1.
- 2. Inverse of a bijection is unique.
- $(f-1)^{-1} = f$ 3.
- 4. If f and g are two bijections such that (gof) exists then $(gof)^{-1} = f^{-1}og^{-1}$
- If $f: A \to B$ is a bijection then $f^{-1}: B \to A$ is an inverse function of f. 5.

$$f^{-1}of = I_A$$
 and $fof^{-1} = I_B$.

HereI_A, represents the identity function on set A, and I_B, represents the identity function on set B.

Ex. To determine the inverse of
$$f(x) = \frac{e^x - e^{-x}}{2}$$

Sol. We write
$$y = \frac{e^x - e^{-x}}{2}$$

$$2y = \frac{e^{2x} - 1}{e^x}$$
$$e^{2x} - 2ye^x - 1 = 0$$

$$e^{2x} - 2ye^x - 1 = 0$$

$$e^{x} = \frac{2y \pm \sqrt{4y^{2}+4}}{2}$$
$$e^{x} = y \pm \sqrt{y^{2}+1}$$

$$e^{X^3}$$
 0 so $e^x = y + \sqrt{y^2 + 1}$

$$x = \log(y + \sqrt{y^2 + 1})$$

$$f^{-1}(x) = \log(x + \sqrt{x^2 + 1})$$